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Abstract – In some recommender systems where users can vote objects by ratings, the similarity
between users can be quantified by a benchmark index, namely the Pearson correlation coefficient,
which reflects the rating correlations. Another alternative way is to calculate the similarity based
solely on the relevance information, namely whether a user has voted an object. The former
one uses more information than the latter, and is intuitively expected to give more accurate
rating predictions under the standard collaborative filtering framework. However, according to the
extensive experimental analysis, this letter reports the opposite results that the latter method,
making use of only the relevance information, can outperform the former method, especially when
the data set is sparse. Our finding challenges the routine knowledge on information filtering, and
suggests some alternatives to address the sparsity problem.

The explosion of information raises a serious overload
problem: we face too many data and resources and are
unable to efficiently find the relevant results. A promis-
ing way to solve this problem is to adopt recommender
systems [1], which are essentially information filtering
techniques that attempt to find out objects likely to be
interesting to the target users. Due to its significance for
economy and society, the design of efficient recommenda-
tion algorithms has become a common focus for computer
science, mathematics, management science and physics
(see the review articles [2] and the references therein).
Many recommendation algorithms have been proposed,
such as the content-based methods [3], spectral analy-
sis [4,5], principle component analysis [6], iterative self-
consistent refinement [7], heat conduction [8], opinion
diffusion [9], network-based inference [10–12], and so on.
A commonly existent problem for all recommendation
algorithms, called the sparsity problem, is how to get accu-
rate predictions for very sparse data [13].
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Collaborative filtering (CF) is one of the most successful
algorithms [2], whose basic assumption is that people
who agreed in the past tend to agree again in the
future [14]. Accordingly, the most important thing is to
properly quantify the similarity between users. In some
recommender systems, users are allowed to evaluate the
objects by ratings. We call them rating systems. Obviously,
the rating correlation can be considered as the similarity of
users’ tastes, that is, two users usually give close ratings to
the same objects are considered to be similar. A standard
index for this purpose is the so-called Pearson correlation
coefficient (PCC). In comparison, the user similarity can
be measured based only on the information whether a
user has voted an object. The former one is called the
correlation-based index while the latter is the relevance-
based index. A big difference between these two indices
lies in the fact that if two users give much different
ratings to an object, it gives a negative contribution to
the correlation-based index while a positive contribution
to the relevance-based index.
Intuitively, the correlation-based index should give

better predictions since it utilizes more information.
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This routine thought is well accepted without any doubt
as indicated by the previously proposed algorithms for
rating systems [2] —most of the algorithms use PCC or
its variants as standard similarity indices. We here argue
that the relevance information may be more important
than the rating correlations. The reasons are twofold:
i) whatever the ratings are, to vote the same objects
indicates a kind of taste similarity between users; ii) the
ratings are very noisy while the relevance information is
more credible (a bad mood may lead to a biased rating
but not an inclination to read or vote a book with no
interest). This letter reports extensive experimental tests
on three data sets, MovieLens, Netflix and Amazon.
Results are unexpected, that is, the relevance-based
similarity index gives more accurate predictions than the
PCC, especially when the data set is sparse.
A rating system can be represented by a bipartite

network G(U,O,E), where U , O and E are the sets of
users, objects and links (labeled by ratings), respectively.
We denote ruα the rating from user u on object α. Let
Ou be the set of objects that user u has voted and Uα
the set of users having voted object α. The mean rating
for u is r̄u =

1
|Ou|
∑
α∈Ou ruα. According to the standard

collaborative filtering, the predicted rating of user u on an
unvoted object α is

r′uα = r̄u+κ
∑
v∈Uα

suv(rvα− r̄v), (1)

where suv denotes the similarity between user u and user v,
and κ= (

∑
v suv)

−1 is for normalization. The benchmark
correlation-based index, PCC, is

suv =

∑
α(ruα− r̄u)(rvα− r̄v)√∑

α(ruα− r̄u)2
√∑

α(rvα− r̄v)2
, (2)

where α runs over Ou ∩Ov.
For comparison, we here adopt a simple relevance-based

similarity index. We first project the bipartite network into
a monopartite network where two users are connected if
they have voted at least one common object. Note that
there are many refined methods to project the bipar-
tite networks into weighted monopartite networks [10],
but here we consider only the unweighted version for
simplicity. Based on the projected network, we apply
the random walk with restart (RWR) algorithm [15,16]
to calculate the similarity between users. Consider a
random walker starting from node i, who will iteratively
move to a random neighbor with probability c and return
to node i with probability 1− c. Denote sij the probability
this random walker locates at node j in the steady state,
then we have

�si = cP
T �si+(1− c)�ei, (3)

where �ei is an n× 1 vector (n is the number of users) with
the i-th element equal to 1 and others all equal to 0, and

PT is the transition matrix1 with Pij = 1/ki if i and j are
connected, and Pij = 0 otherwise (ki is the degree of node
i). The solution is straightforward, as

�si = (1− c)(I − cPT )−1�ei. (4)

The probability sij here is used as a relevance-based
similarity index. Different from the PCC in eq. (2), the
RWR-based index is asymmetrical.
The RWR process is closely related to the famous

PageRank algorithm [21]. Actually, the PageRank algo-
rithm mimics the RWR process with a random walker
initially located in each web page. Denoting by gi the mass
of random walkers in page i, the set of equations for the
PageRank algorithm are

gi = c
∑
j �=i

gj

kj
+(1− c), (5)

where j runs over all the web pages that contain an out-
link pointing to i and kj is the out-degree of page j.
Despite of the close relationship between RWR process
and PageRank algorithm, one should be aware of their
essential difference. For example, �si defined in eq. (3)
is a vector representing the similarity between i and
other nodes, where the walker starts from the node i. In
contrast, gi defined in eq. (5) is a scalar that measures the
attractiveness of webpage i. The PageRank coefficient gi
can be considered as a centrality measure [22] of webpage
i while the vector �si cannot be directly related to any
centrality indices.
We test the two indices on three data sets: i) Movie-

Lens2 is a movie recommendation website, which uses
users’ ratings to generate personalized recommendations.
ii) Netflix 3 is an online DVD and Blu-ray Disc rental
service in the US. The data we used is a random sample
that consists of 3000 users who have voted at least 45
movies and 3000 movies having been voted at least by 23
users. iii) Amazon4 is a multinational electronic commerce
company. The original data were collected from 28 July
2005 to 27 September 2005, and what we used here is also
a random sample. Table 1 summarizes the basic statistics.
To test the algorithm’s accuracy, the observed ratings

(links), E, is randomly divided into two parts: the training
set, ET , is treated as known information, while the probe
set, EP , is used for testing and no information in this set
is allowed to be used for prediction. Clearly, E =ET ∪EP
and ET ∩EP = ø. In our experiment, for each user we
1It is easy to prove that πi = ki/2M with M the number of

edges is a unique stationary distribution satisfying that PT �π= �π
if the network is connected (see, for example, ref. [17]). However,
one should note that because of the presence of loops in real
networks [18,19] and the bipartite nature [20], starting with a
random initial distribution, the stationary distribution may never
be achieved. For example, if all the walkers are initially located in
user nodes, the stochastic process driven by PT will never converge.
2http://www.grouplens.org.
3http://www.netflix.com.
4http://www.amazon.com.
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Table 1: The basic statistics of the three data sets. U , O and E
are the total numbers of users, objects and ratings, respectively.
The density equals E

U×O .

Data Set U O E Density
MovieLens 943 1682 100000 6.3%
Netflix 3000 3000 197248 2.2%
Amazon 3000 3500 128193 1.2%

randomly select p% of his/her ratings as the probe set,
and the remaining (100− p)% constitute the training set.
One can control the data density by tuning p, with larger p
corresponding to sparser data. To quantify the accuracy of
predictions, we apply two standard metrics, mean absolute
error (MAE) and root-mean-square error (RMSE):

MAE=
1

‖EP ‖
∑

(u,α)∈EP
|ruα− r′uα|, (6)

RMSE=

√√√√ 1

‖EP ‖
∑

(u,α)∈EP
(ruα− r′uα)2, (7)

where ruα is the real rating in the probe set, r
′
uα is the

predicted rating obtained by eq. (1), and ‖EP ‖ is the
number of user-object pairs in the probe set. Clearly,
lower MAE and RMSE correspond to higher prediction
accuracy.
Figure 1 presents the experimental results, wherein the

larger p makes the training set sparser. For MovieLens and
Netflix, the relevance-based index performs better when
p exceeds a certain value pc (pc ≈ 40 for MovieLens and
pc ≈ 15 for Netflix), namely it performs better for sparser
data. Since the density of Netflix is smaller than that of the
MovieLens, the value of pc for Netflix is also smaller. For
the very sparse Amazon data, the relevance-based index
always outperforms the correlation-based index in the
monitored interval 10� p� 90 (see footnote 5). All these
results indicate a surprising conclusion that the relevance-
based index can outperform the correlation-based index,
especially for the very sparse data. The practical signi-
ficance of this finding is twofold. Firstly, to calculate
the relevance-based indices is generally much faster
than to calculate the correlation-based indices [15,16],
and thus using the relevance-based indices instead of
correlation-based indices can save time. Secondly, the real
data are usually very sparse (usually sparser than the three
data sets used in this letter, see, for example, the empirical
analysis in ref. [23]), where the relevance-based indices

5When p= 90, the training set is extremely sparse, with density
equal to 0.12%. Two users rarely have chance to vote common
objects, and thus the similarity matrices obtained by eq. (2) and
eq. (4) are very sparse, leading to the predictions close to the simple
average scores. This is the reason for the observed drop on PCC in
p= 90 for Amazon.

Fig. 1: (Colour on-line) Prediction accuracy as a function
of p, where p% of the data constitute the probe set and
thus a larger p corresponds to a sparser training data. Each
point is obtained by averaging over 20 implementations with
independently random divisions of training set and probe set.
The parameter c in RWR is set as 0.95.

may get better predictions. Some refined correlation-
based indices, like to assign a small positive contribution
(instead of a negative contribution) to the similarity of
two users if they vote a common object but with far
different ratings, may lead to more accurate predictions.
Analogously, considering properly weighted monopartite
network may improve the prediction accuracy of the
current correlation-based index. However, our moti-
vation is not proposing a better similarity index for
more accurate predictions, but aiming at highlighting
the significance of the relevance information, even in
the rating systems where the correlation information
is available. This finding suggests some alternatives to
address the sparsity problem in information filtering.
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