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Abstract

The well-preserved histology of the geologically oldest sauropod dinosaur from the Late Triassic allows new insights
into the timing and mechanism of the evolution of the gigantic body size of the sauropod dinosaurs. The oldest
sauropods were already very large and show the same long-bone histology, laminar fibro-lamellar bone lacking growth
marks, as the well-known Jurassic sauropods. This bone histology is unequivocal evidence for very fast growth. Our
histologic study of growth series of the Norian Plateosaurus indicates that the sauropod sistergroup, the Late Triassic
and early Jurassic Prosauropoda, reached a much more modest body size in a not much shorter ontogeny. Increase in
growth rate compared to the ancestor (acceleration) is thus the underlying process in the phylogenetic size increase of
sauropods. Compared to all other dinosaur lineages, sauropods were not only much larger but evolved very large body
size much faster. The prerequisite for this increase in growth rate must have been a considerable increase in metabolic
rate, and we speculate that a bird-like lung was important in this regard.
© 2004 Elsevier GmbH. All rights reserved.
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Introduction ancestral form. This evolutionary pattern is known as
“Cope’s rule”.

The famed American paleontologist and zoologist Sauropods were a highly successful group of dino-
E.D. Cope observed that large body size in vertebrate saurs which was widespread in the Jurassic and
animals is generally attained by a gradual size increase Cretaceous. Sauropods were the largest animals ever
within an evolutionary lineage that began with a small to inhabit the land, culminating in truly gigantic forms

in at least three lineages (Upchurch 1998; Wilson 2002).
These giants are unique in exceeding the body mass of
*Corresponding author. any other large terrestrial tetrapods (i.e. large mammals
E-mail address: martin.sander@uni-bonn.de (P.M. Sander). and other dinosaurs) by an order of magnitude (Burness
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et al. 2001), which raises the question whether Cope’s
rule applies to them as well. Recent finds (Buffetaut et al.
2000, 2002) indicate that the group arose already in the
Late Triassic, but they also document the very rapid
evolution (within a few million years after their origin)
of very large body size in sauropods (Buffetaut et al.
2002). Sauropods therefore did not follow Cope’s rule
and are apparently unique among dinosaurs in this
respect, because all major dinosaur lineages show a
gradual size increase over tens of millions of years,
lacking large representatives before the Middle or Late
Jurassic, with the possible exception of the Theropoda
(Thulborn 2003).

The discrepancy in body size between other dinosaurs
and sauropods has recently been highlighted by the
availability of more accurate mass estimates calculated
from volume estimates based on photogrammetric
measurements of actual skeletons (Gunga et al. 1999)
or on scientific reconstructions (Seebacher 2001). These
estimates place common sauropods consistently in the
15-50t category (e.g. Diplodocus 10-20t, Apatosaurus
20-35t, Brachiosaurus 30-50t; Seebacher 2001). In
addition, there are a number of very large sauropods,
e.g. the diplodocid Seismosaurus, the brachiosaurid
Sauroposeidon (see Wedel et al. 2000), and the titanosaur
Argentinosaurus, that are estimated to have attained a
body mass of 80-100t, whereas sauropod species with
an adult body mass below 4-5t are virtually unknown
(Seebacher 2001). The largest representatives of other
dinosaur lineages, despite generally being perceived as
very big, rarely exceeded the 10t threshold and thus
actually are in the size range of very large terrestrial
mammals such as extant and fossil elephants and the
fossil indricotheres. Among animals only whales grow to
a larger body mass, but a direct comparison between
these two groups is difficult because of the vastly
different constraints of the aquatic versus the terrestrial
environment.

What made the gigantism of sauropods possible? This
question obviously must center on a closer exami-
nation of sauropod evolutionary origins. The earliest
currently known sauropod material is from the Late
Triassic of Thailand (Buffetaut et al. 2000, 2002),
from the Nam Phong Formation which is late Norian
to Rhaetian in age (Racey et al. 1996). The material
consists of the remains of two individuals. The first
was relatively small (total length about 6.5m) and
possibly juvenile (although histologic samples were not
available to confirm this), but the femur and other bones
offered sufficient morphological characters for descrip-
tion as a separate genus and species, Isanosaurus
attavipachi Buffetaut et al. (2000). The second individual
(Buffetaut et al. 2002) is represented by various bones
(primarily a right and an incomplete left humerus)
which clearly pertain to a larger animal (Fig. 1). Because
of the size difference and insufficient overlap in skeletal

elements, it is uncertain if the second individual also
belongs to I attavipachi or represents a different
sauropod taxon.

Based on the humerus length of 105cm, the large
individual is in the size range of the well-known large
sauropods from the Late Jurassic (e.g. a medium-sized
Apatosaurus has a humerus about 1 m long). The entire
animal was at least 12—-15m long but, based on its bone
histology, was not fully grown yet (see below). This
documents the evolution of very large body size in
sauropods already by the late Norian or Rhaetian
(Buffetaut et al. 2002), at most 15 million years after the
appearance of the closest relatives of the sauropods, the
Prosauropoda, in the early Norian.

The groups ancestral to the Sauropoda are the
prosauropod dinosaurs. Although it has long been
recognized that there is a close relationship between
these small (<100kg) to large (3t; Seebacher 2001)
animals and the sauropods, the exact nature of this
relationship has not yet been resolved. Prosauro-
pods may be monophyletic and in their entirety
form the sistergroup of sauropods. Alternatively, it
could be that only certain prosauropods, namely the
melanorosaurids, are the sistergroup of sauropods,
the other prosauropod taxa such as plateosaurids
being successively more distantly related to the Saur-
opoda (Benton et al. 2000). Sauropod monophyly,
however, is unanimously accepted, as is the mono-
phyly of Sauropoda plus all prosauropods, which are
united in the taxon Sauropodomorpha (Upchurch 1998;
Wilson 2002).

The evolution of gigantism in sauropod dinosaurs
from prosauropods, and of the body plan changes
linked to this, are an obvious case of a pattern of
heterochrony termed peramorphosis (Long and McNa-
mara 1997) in which the descendant has a larger body
size than the ancestor, and the juvenile descendant
resembles the adult ancestor whereas the adult descen-
dant is more ‘developed’. However, which process of
heterochrony produced the gigantic body size of
sauropod dinosaurs had not been understood until
recently. Because a number of recent studies (Rimblot-
Baly et al. 1995; Curry 1999; Erickson et al. 2001;
Sander 2000) detected very fast growth in several taxa of
Middle and Late Jurassic sauropods based on examina-
tions of their bone histology, it was suggested that an
increase in growth rate (acceleration) compared to
primitive dinosaurs was responsible (McNamara 1997).
At the time, however, the very large Late Triassic
sauropod was not known yet, and a model of prolonged
acceleration from the Late Triassic to the Late Jurassic,
i.e. a gradual phyletic size increase, seemed tenable to
account for sauropod gigantism.

Heterochrony describes the evolutionary effects of
changes in rate or timing of ontogenetic processes of a
descendant compared to the ancestor, affecting its shape
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Fig. 1. Sampling location for the large sauropod from the late Norian to Rhaetian Nam Phong Formation at Khok Hin Poeng
(Chaiyaphum Province, Thailand). The sample was taken from the fragmentary left humerus (Paleontological Collection,
Department of Mineral Resources, Thailand CH 5). The sampling location (*) is marked here on an image of the right humerus.

(a) Cranial view and (b) Caudal view of the right humerus.

and size (Gould 1977; Alberch et al. 1979; McNamara
1997). As we concentrate here on the change of size, not
so much on change of shape, we follow the more general
terminology of McNamara (1997) and Long and
McNamara (1997). “Acceleration” thus also refers to
an increase in the rate of overall body growth and not
only to an increase in the rate of shape change of a
particular structure, the latter being the original defini-
tion of Alberch et al. (1979).

We examined the bone histology of the oldest
sauropod dinosaur and, by comparing it histologically
to numerous Late Jurassic sauropods and the ancestral
prosauropods, are now able to paint a detailed picture
of the evolution of the very large body size of sauropod
dinosaurs. The results may have a bearing on what made
the unique gigantism of sauropods possible.

Methods and material

The record of growth provided by bone histology

Fossil bone is generally characterized by good to
excellent preservation of its histology, which allows
comparisons with fossils of different geological ages and
with recent vertebrates. Bone histology records the
growth of the individual and thus provides information
about the growth strategies and life-history parameters of
species and higher taxa, making it uniquely suited to
detect heterochronic processes in evolution by comparing
life-history parameters in phylogenetic lineages. This has
been pointed out some time ago by Ricqles (1980), and
applied to archosaurs by Erickson and Brochu (1999),
Padian et al. (2001), and Ricgles and Buffrénil (2001).
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Bone may show growth marks, most commonly lines
of arrested growth (LAGs), which record cessation of
bone apposition, albeit for an unknown duration. Other
types of growth marks are modulations (Rimblot-Baly
et al. 1995) and polish lines (Sander 2000). Making the
well-founded assumption of annual growth cyclicity
(Castanet et al. 1993; Chinsamy 1993), the growth mark
record can be quantified (this technique, called skeleto-
chronology, is regularly used in the study of recent
vertebrates), and estimates of growth and important life-
history parameters become possible (Ricqles 1980;
Castanet et al. 1993; Castanet 1994).

A more general record of growth is contained in the
type of bone laid down; because a specific bone type is
linked to a particular rate of bone apposition, a
relationship known as “Amprino’s rule” (Ricqles et al.
1991; Castanet et al. 2000; Sander 2000; Padian et al.
2001; Margerie et al. 2002). This relationship is difficult
to quantify because of the limited number of tissue types
which are deposited within wide (but non-overlapping)
rate brackets. The fastest-growing bone is fibro-lamellar
bone without LAGs (found today in large mammals),
intermediate rates are indicated by fibro-lamellar bone
with LAGs, and low rates are indicated by lamellar-
zonal bone (found today in most reptiles) (Ricqgleés et al.
1991; Castanet et al. 2000; Margerie et al. 2002).

Sampling

Bone histology was studied in thin sections, polished
sections, and high-resolution digital photographs of
fracture surfaces. The fracture surfaces were located
around mid-shaft of the bones to capture a cross section
of the neutral growth region of the shaft. This contains
the longest record of an individual’s growth. The thin
sections and polished sections can be ground either from
samples cut off a fracture surface or from a core sample.
We obtained core samples by drilling with a diamond
drill bit at a standardized sampling location, also at mid-
shaft (for details see Sander 2000). After embedding in
polyester resin, the sample was cut perpendicular to the
long axis of the bone, revealing a segment of the cross
section of the shaft. One half of the sample was ground
into the thin section, the other half into the polished
section.

The oldest sauropod from the Late Triassic

The sample was taken from the fragmentary left
humerus of the large individual from the Nam Phong
Formation of Thailand (Buffetaut et al. 2002). The
sampling location is in the lateral side of the mid-shaft,
somewhat distal to the neutral region (Fig. 1). Sampling
would ideally have taken place 8 cm farther proximally
but was constrained by natural breaks in the specimen.

The medullary region is small and filled with cancellous
bone. The sections show conspicuous diagenetic altera-
tion in some regions, but this is not widespread enough
to preclude histological evaluation.

Late Triassic prosauropod bones

We sampled numerous prosauropod post-cranial
bones, concentrating on limb and girdle bones of
Plateosaurus from the German locality of Trossingen
and the Swiss locality of Frick (Sander 1992), but also
from the basal prosauropod Thecodontosaurus from the
Late Triassic of England (Benton et al. 2000). Techni-
ques employed for sampling the prosauropod bones
were mainly coring and high-resolution digital photo-
graphy of fracture surfaces (not possible with the Frick
material because of a mineral cover on the fracture
surfaces).

Late Jurassic sauropod bones

The bone histology of later sauropods was studied by
us in extensive growth series of long bones of several
Late Jurassic taxa (Barosaurus, Brachiosaurus, Dicraeo-
saurus, Janenschia) from the Tendaguru beds of
Tanzania (Sander 1999, 2000), and from the Morrison
Formation of the western United States (Apatosaurus,
Camarasaurus, Diplodocus; work in progress by the first
author), using the core sampling technique. Sauropod
limb bones such as the humerus and femur are ideal for
studying growth because they have a thick cortex that is
little affected by remodeling (Rimblot-Baly et al. 1995;
Sander 2000).

Results
Histology of the oldest sauropod

The primary bone of the cortex of the large sauropod
humerus from the Late Triassic of Thailand consists
entirely of laminar fibro-lamellar bone tissue (Fig. 2).
Growth marks are not very well developed, as there are
neither LAGs nor polish lines but only modulations.
The modulations are more closely spaced in the outer
cortex than in the inner cortex. The inner cortex shows
resorption cavities and incipient secondary osteons but
no secondary bone. The medullary cavity is small and
completely filled with cancellous bone.

This histology of the humerus is unequivocal evidence
of very rapid and uninterrupted growth at rates
comparable to those of modern large terrestrial mam-
mals such as large ungulates and elephants (Curry 1999;
Sander 1999, 2000). However, due to the lack of
sufficiently developed growth marks, the life history of
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the individual cannot be quantified. It is also important
to note that the histology of the large Thai humerus
conforms in all aspects to that seen in later sauropod
long bones and differs clearly from that of prosauropod
long bones. This provides independent histologic con-
firmation of the assignment of the material to the
Sauropoda which was based on morphology alone.

Bone histology also indicates that the individual was
not fully grown yet. Firstly, it lacks closely spaced LAGs
in the outermost cortex. The presence of this feature in
large individuals of the Late Jurassic sauropods
indicates the near termination of growth (Curry 1999;
Sander 1999, 2000). In addition, the lack of Haversian
remodeling in the cortex of the large Thai humerus
argues against an advanced ontogenetic stage, because
Haversian remodeling is seen to occur only in fully
grown individuals of Late Jurassic sauropods (Curry
1999; Sander 1999, 2000).

Prosauropod histology

Plateosaurus limb bones (humerus, femur, tibia,
fibula) exhibit a different histology (Fig. 2). There is a
large medullary cavity bordered by a thin inner zone of
remodeled cortex. The remainder of the cortex consists
of primary bone of the laminar fibro-lamellar type
containing regularly spaced LAGs. Plateosaurus girdle
bones (scapula, pubis) also show LAGs, but the latter
are more distinctive and set in fibro-lamellar bone with
longitudinal vascular canals. These differences in the
primary bone of long and girdle bones are due to the
lower bone apposition rates in the latter. In the girdle
bones, there is no medullary cavity but a limited internal
region of secondary cancellous bone. The growth mark
record is therefore longer and more distinctive in the
girdle bones than in the long bones. Thecodontosaurus
limb bone histology is essentially the same as that of
Plateosaurus, but the sample size is insufficient for
quantitative estimates.

Individuals of Plateosaurus with a femur length
between 56 and 89cm (the longest known femora are
nearly 1 m long) display between 5 and 15 cycles in their
cortex, usually between 6 and 13. This is a minimum
count, because several cycles were destroyed by expan-
sion of the medullary cavity of the long bones and by the
formation of secondary cancellous bone in the girdle
bones. An abrupt decrease in LAG spacing in the middle
to outer cortex of some specimens (Fig. 2) indicates a
decrease in growth rate fairly late in observed ontogeny.

The abundance of fibro-lamellar bone in combination
with regularly spaced LAGs in Plateosaurus and
Thecodontosaurus indicates that growth was cyclical
but rapid, at least until sexual maturity was reached.
Afterwards, growth rate decreased but still was sub-
stantial and elevated above typical reptilian rates.

Eventually, growth plateaued as indicated by a thin
layer of poorly vascularized lamellar-zonal bone with
very closely spaced LAGs in the outermost cortex of
some individuals.

Brief published descriptions of limb bone histology
are also available for the prosauropods Massospondylus
(Chinsamy 1993) and Euskelosaurus (Ricqles 1968). The
quantitative data obtained for Massospondylus are
consistent with those for Plateosaurus (see also Seitz
1907; Gross 1934). However, the largest individuals of
Massospondylus do not show any indication of a growth
plateau. This was interpreted as evidence for an
indeterminate growth strategy in this taxon (Chinsamy
1993) but could also be due to a taphonomic bias
against very large individuals of this species. Euskelo-
saurus is of particular interest because it belongs to the
Melanorosauridae, generally considered to be the
prosauropod group most closely related to the saur-
opods. It, too, shows the combination of fibro-lamellar
bone and LAGs (and also dense Haversian bone), but
precise counts were not given (Ricqles 1968).

Histology of the Late Jurassic sauropods

As in the oldest sauropods, the primary bone of the
long-bone cortex of later sauropods consists entirely of
laminar fibro-lamellar tissue. Commonly, the primary
bone lacks growth marks entirely. If present, most are
weakly expressed (as modulations; Ricqlés 1983) and
polish lines (Sander 1999, 2000), and irregularly spaced
LAGs are very rare.

As in the prosauropods and in modern reptiles, but
unlike in most large mammals, sauropod dinosaurs
apparently reached sexual maturity well before max-
imum size. An abrupt decrease in vascularization and an
increase in tissue organization in the fibro-lamellar bone
of the middle to outer cortex document a sudden slow-
down in growth best explained by the onset of sexual
maturity (Ricqlés et al. 1991). Sauropods reached a
distinctive growth plateau which is indicated by a thin
layer of lamellar-zonal bone with closely spaced growth
marks in the outermost cortex of large individuals
(Curry 1999; Sander 2000).

Because of the poor expression or complete lack of
growth marks in their fibro-lamellar bone, quantitative
estimates of sauropod life-history parameters are the
exception. Janenschia from Tendaguru (Sander 2000)
and Apatosaurus from the Morrison Formation (Curry
1999) reached sexual maturity at >11 and > 10 years,
respectively. One large individual of Janenschia stopped
growing at >26 years and died at > 38 years (Sander
2000). A large individual of Apatosaurus (femur length
164cm) was estimated to be 33 years old and still
growing (Sander and Tiickmantel 2003). An age
estimate of only 15 years for another large Apatosaurus
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(Erickson et al. 2001) appears too low in comparison
with these estimates. Longevity data are not yet
available for any other sauropods.

The long-bone histology of Late Jurassic sauropods is
in agreement with that of the Middle Jurassic Lappa-
rentosaurus from Madagascar (Rimblot-Baly et al.
1995). Detailed histologic data are not yet available
for Cretaceous sauropods, but there is no reason to
believe that their histology differed from that of the
earlier forms.

Discussion

The qualitative comparison of the bone histology of
the large humerus from the Late Triassic of Thailand
with that of prosauropods provides unequivocal evi-
dence that the oldest sauropods grew considerably faster
than the much smaller prosauropods and at the same
rate as in the Late Jurassic sauropods. The quantitative
figures for age at sexual maturity and life span for the
Late Jurassic sauropods are roughly comparable to
those for prosauropods, also indicating that sauropods
grew considerably faster than the much smaller pro-
sauropods because they reached a much larger body size
in a not much longer life span (Fig. 3).

The occurrence of a typical sauropod bone histology
in the oldest known sauropod clearly indicates that the
evolutionary process of acceleration (increase in growth
rate; McNamara 1997) produced the large body size of
sauropods (Fig. 3), and that acceleration was very
strong. An alternative scenario, which would call first
for phylogenetic size increase by hypermorphosis
(prolonged growth at the rate of the ancestor), followed
later by an increase in growth rate resulting in a
shortened ontogeny, apparently did not take place. This
suggests that the key innovation that enabled sauropods
to reach gigantic size was present from the beginning of
the lineage. The early evolution of very large body size
apparently allowed sauropods to be the dominant
terrestrial herbivores for at least the entire Jurassic,
and thus may well have been the key to the evolutionary
success of the Sauropoda.

Acceleration in growth rate was also at work in other
dinosaur lineages (Erickson et al. 2001; Padian et al.
2001) and by itself cannot explain the unique body size
of sauropods. Gradual phylogenetic size increase
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Fig. 3. Heterochronic processes in the evolution of gigantism.
Large size in the Late Cretaceous crocodilian Deinosuchus was
achieved by hypermorphosis (prolonged phase of growth at
juvenile rate), whereas large size in the Triassic and later
sauropods was primarily achieved by acceleration (increase in
growth rate). The growth curve for the large Jurassic
sauropods summarizes observations for several taxa (Rim-
blot-Baly et al. 1995; Curry 1999; Sander 1999, 2000). The
duration of the juvenile growth phase in the large Triassic
sauropod is an estimate. Age data for Plateosaurus were
obtained during this study, those for crocodiles are from
Erickson and Brochu (1999). SM = sexual maturity.

produced by acceleration is probably also seen in other
endothermic amniote lineages such as proboscidean
mammals. The difference between sauropod dinosaurs
and all other terrestrial tetrapod lineages leading to very
large representatives is the initial massive increase in
growth rate in sauropods, resulting in ‘instantaneously’
very large animals. The increase in growth rate must
have required an equally dramatic increase in metabolic
rate.

What evolutionary innovations could have allowed
this massive increase in metabolic rates? We speculate
that a major adaptation was a bird-like lung, although
the performance of other organs and organ systems such
as the heart and circulatory systems also would have had
to increase greatly. The lungs of living birds, with their
unidirectional flow, are twice as efficient as mammalian

Fig. 2. Comparison of the bone histology of the prosauropod Plateosaurus from the Triassic of Frick (Switzerland) and the large
sauropod from the Triassic of Thailand. (a) Cross section of a Plateosaurus humerus at mid-shaft, showing a large medullary cavity
and clear growth cycles which are more closely spaced with increasing age of the individual; rectangle marks location of sample
in (b). (b) Detail of cortical bone; the cortex consists of laminar fibro-lamellar bone with regularly spaced LAGs. (c) Cortex of the
large sauropod humerus, note the lack of obvious growth marks; rectangle marks location of sample in (d). (d) Detail; the cortical

bone is of the laminar fibro-lamellar type seen in later sauropods.
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lungs, greatly decreasing the energetic cost of breathing
(Perry and Reuter 1999). While nothing is known about
the lungs of prosauropods, there is considerable
osteological evidence for bird-like Iungs in sauropods,
e.g. the highly pneumatized vertebrae of derived
sauropods, pointing to the presence of an extensive air
sac system (Wedel et al. 2000; Wedel 2003). In addition,
features of the axial skeleton of the trunk region suggest
that the sauropod lung was attached dorsally (Perry and
Reuter 1999).

Even more evidence, osteological (pneumatization of
the skeleton) as well as phylogenetic (birds as the
descendants of maniraptoran theropods), is strongly
suggestive of derived theropod dinosaurs possessing a
bird-like lung (Perry 2001). Possibly, a bird-like lung
thus arose much earlier than in derived theropods and is
a synapomorphy of Saurischia in general. The ability of
predators such as Tyrannosaurus rex to grow to giant
size may have created the evolutionary pressure on size
increase in the sauropodomorph lineages. Of course, this
pressure must have been met with the ability of the prey
to ‘outgrow’ the predator, resulting in giant size of the
prey. The adaptive radiation of saurischian dinosaurs
may thus be seen as the arms race between giant
carnivores and giant herbivores, the unique gigantism of
which (Burness et al. 2001) was facilitated by a super-
efficient lung, among other improvements to the organ
systems. This would not only answer the question what
made gigantism in sauropods possible, but also which
selection pressure actually pushed up body size in
sauropods as well as theropods.

The hypothesis of super-efficient lungs in saurischian
dinosaurs can be tested in at least two ways: (1) by
further study of skeletal correlates of lung anatomy,
especially in prosauropods; and (2) by modeling
saurischian respiratory physiology. Respiratory physiol-
ogy is well studied in extant vertebrates, and insights
from it could be combined with the baseline data for
growth rates in saurischians obtained from this and
other studies to see if lung efficiency would make a
difference.
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