Faculté des sciences

Double occupancy and magnetic susceptibility of the Anderson impurity model out of equilibrium

Dirks, Andreas ; Schmitt, S. ; Han, J. E. ; Anders, F. ; Werner, Philipp ; Pruschke, Thomas

In: EPL (Europhysics Letters), 2013, vol. 102, no. 3, p. 37011

We use different numerical approaches to calculate the double occupancy and magnetic susceptibility as a function of a bias voltage in an Anderson impurity model. Specifically, we compare results from the Matsubara voltage quantum Monte Carlo approach (MV-QMC), the scattering states numerical renormalization group (SNRG), and real-time quantum Monte Carlo (RT-QMC), covering Coulomb repulsions... Plus

Ajouter à la liste personnelle
    Summary
    We use different numerical approaches to calculate the double occupancy and magnetic susceptibility as a function of a bias voltage in an Anderson impurity model. Specifically, we compare results from the Matsubara voltage quantum Monte Carlo approach (MV-QMC), the scattering states numerical renormalization group (SNRG), and real-time quantum Monte Carlo (RT-QMC), covering Coulomb repulsions ranging from the weak-coupling well into the strong-coupling regime. We observe a distinctly different behavior of the double occupancy and the magnetic response. The former measures charge fluctuations and thus only indirectly exhibits the Kondo scale, while the latter exhibits structures on the scale of the equilibrium Kondo temperature. The Matsubara voltage approach and the scattering states numerical renormalization group yield consistent values for the magnetic susceptibility in the Kondo limit. On the other hand, all three numerical methods produce different results for the behavior of charge fluctuations in strongly interacting dots out of equilibrium.