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Abstract: Although retrieval systems based on probabilistic models will rank the objects 

(e.g. documents) being retrieved according to the probability of some matching criterion 

(e.g. relevance) they rarely yield an actual probability and the scoring function is 

interpreted to be purely ordinal within a given retrieval task. In this paper it is shown that 

some scoring functions possess the likelihood property, which means that the scoring 

function indicates the likelihood of matching when compared to other retrieval tasks 

which is potentially more useful than pure tanking although it cannot be interpreted as an 

actual probability. This property can be detected by using two modified effectiveness 

measure, entire precision and entire recall. Empirical evidence is offered to show the 

existence of this property both for traditional document retrieval and for analysis of crime 

data where suspects of an unsolved crime are ranked according to probability of 

culpability. 

 

1. Introduction 
 
Retrieval systems in general and Information Retrieval (IR) systems in particular 

typically produce a ranked list of objects (e.g. documents) according to some search 

criterion (e.g. relevance). Where this criterion is a dichotomous attribute it is meaningful 

to talk of the probability that some object satisfies it. However, as we see below an 

estimate of probability is often not possible. Instead we consider a weaker but still useful 

property of likelihood which is above and beyond mere ranking of objects from some 

retrieval task. It allows us to consider that an object is more or less likely to match some 

criterion irrespective of its position in the list. In this paper we firstly define the 
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likelihood property, secondly propose a way of measuring it and thirdly provide three 

cases where a scoring function can be shown to exhibit the likelihood property: one when 

analysing TREC collections and two which are based on the analysis of crime data.  

 

In the traditional IR domain there will be situations where the scoring function not only 

orders the documents in a collection according to an estimated measure of relevance to a 

query but also implies a notion of relevance likelihood. Then, in addition to the standard 

retrieval task, it has the following uses: 

• The user can be guided how far down the list to search for relevant documents 

indicating when the likelihood of a document being relevant to the query is higher 

or lower than for previous queries; 

• It can be used for pseudo-relevance feedback. Relevance feedback is where 

documents already retrieved and known to be relevant are used to modify the 

query in order to perform a new scoring of the collection. Pseudo-relevance 

feedback assumes that the top ranked documents are relevant and uses them 

without an independent relevance judgement. For this latter case only documents 

with a likelihood measure over a given threshold need be chosen; 

• By examining the scores for the top-ranked documents it is possible to gauge 

query difficulty providing an alternative to the approach proposed by Carmel et 

al. (2006). 

 

We do not propose that all scoring functions exhibit this property – most do not. But 

Bache et al. (2007b) do propose such a scoring function based on Language Modelling 
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(Ponte & Croft, 1998). We propose therefore a way of measuring whether this likelihood 

property is present for a given scoring function over standard sets of data. 

 

Many of the concepts applied in IR also prove useful in the analysis of crime data and the 

likelihood property proves useful in this domain since it gives an indication of the degree 

of trustworthiness when models seek to identify the culprit for an unsolved crime. This 

research arose out of the EPSRC (UK Government) funded project iMOV – a multi-

disciplinary collaboration between computer scientists and investigative psychologists.  

The motivation for the work presented here arose out of the problem of prioritisation of 

suspects which we now define. Given an unsolved crime and a list of suspects who are 

known to have committed this type of crime before, we rank the suspects according to 

how likely each suspect is to be the actual culprit. We assume that there is some 

information about each suspect’s past criminal history and about the unsolved crime; we 

are thus making a closed world assumption in that all possible suspects are known.  

Linking a suspect with a crime can be done on the basis of the observed actions of that 

offender where we have textual information describing the unsolved crimes and past 

solved crimes. Linking can also be performed where we have the physical location of 

each crime as a coordinate and not text at all. Thus some scoring function attempts to 

order the suspects according to the strength of linkage between the past crimes and the 

unsolved one. For example, in the case of a burglary, if only one past offender is known 

to enter a house by forcing a door with a crowbar and this behaviour is repeated in the 

unsolved crime, this links the suspect to this crime. Also, if a burglar is known to operate 

in the area around the unsolved crime, again it links the suspect to the crime; this latter 
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case is using coordinates rather than free text.  The top ranked suspect is, by definition, 

the one considered most likely to be the culprit. If the scoring function possesses the 

likelihood property then the magnitude of the scoring value also indicates how much 

more likely this suspect will be over the other suspects lower down the list. 

 

The rest of the paper is organised as follows: Section 2 explains a general retrieval 

system based on Fuhr’s Conceptual Model (1992) and then defines the likelihood 

property. In Section 3 we argue that likelihood can be assessed using the proposed 

measures of entire precision and entire recall. Section 4 applies these measures to two 

scoring functions and 3 TREC collections. Section 5 considers suspect prioritisation 

where crimes are linked by free text descriptions of the offences. In Section 6, we look at 

suspect prioritisation where crimes are linked by distance. Section 7 provides some 

conclusions. Note that Sections 5 summarises results published elsewhere, whereas 

Sections 4 and 6 provide results for the first time. However this is the first time that all 

three applications have been presented together as a general theory. 

 

2. General Retrieval Systems 

 

In traditional IR we have a collection of documents and a set of queries and seek to 

determine if documents are relevant to a specific query (or more accurately the 

information need which led to the query’s formulation). The scoring function (also called 

a ranking function or matching function) is an attempt to give a numerical value to each 

document according to its relevance; these score are usually used to rank the documents 
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in order of relevance. Relevance is, in a sense, outside the system and actual judgements 

of relevance are made by humans. One important way of evaluating an IR system is by 

measuring its effectiveness – that is the degree to which the scoring function agrees with 

the human relevance judgements. However, since the likelihood property discussed here 

is applicable to areas beyond this domain, we will need a more general terminology. 

 

2.1 Beyond Queries, Documents and Relevance 

 

Instead of documents and queries, we shall speak of objects and keys since this will allow 

us to deal with geographical information where there is no actual text. Fuhr (1992) 

proposes a conceptual model for IR and this is clarified further by Crestani et al. (1998). 

We now generalise this model to deal with the more general situation described here but 

keep many aspects of Fuhr’s notation.  

 

We start with assuming collection (set) of objects O and a set of keys K. In the case of IR 

these are respectively the set of documents and information needs that users may have. 

There is some matching criterion which links each object with each key which we can 

interpret as relevance in the traditional IR domain. There are functions and which 

map the objects and keys to representations thereof, O and K. In IR,  is the content 

of the document or of some surrogate (such as a review or abstract);  is the text of 

the query composed by the user. There are two further functions, and , which map 

the representations to descriptions O’ and K’. These can be interpreted as the indexes of 
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the text which could be derived automatically and reduce free text to a vector of terms 

optionally with stemming and stopword removal. However the model is consistent with 

manual indexing too. There is a scoring function which gives a real-valued score for each 

object and key. . Figure 1 shows the relationship between these entities. 

 

 

Figure 1: A Generalisation of Fuhr’s Conceptual Model 

 

We later see that this model can be extended for crime data. Here, K is the set of unsolved 

crimes and O is the set of suspects who have previously committed at least one crime of 

this type. The matching criterion M is culpability – that a suspect committed that crime 

(possibly with accomplices). The full interpretation of the model is detailed in sections 5 

and 6, but it is sufficient to say here that both for the text-based and geographical 

representation of crimes we are able to define a scoring function. 

 

2.2 Probability of Matching 
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Throughout this paper, we will consider the special case where the matching criterion is 

dichotomous; either an object and key match or do not . This is common 

assumption used in IR evaluations. For example, the majority of TREC evaluations 

(Voorhees & Harman, 2005) adopt this view of the world. This is also a reasonable 

assumption for suspect prioritisation since a suspect is either innocent or guilty. 

 

We now address what the scoring function actually means. No scoring function can 

realistically achieve a perfect partition the set of objects into matching and non-matching 

subsets. As Crestani et al. (1998) point out there is a fundamental difference between 

scoring functions which seek to measure similarity between the object and key (e.g. 

vector space models) and a scoring function derived from the probability of a document 

being relevant to a query. The likelihood property is only meaningful in this latter case. 

Although both similarity and probabilistic scoring functions are used for traditional IR,  

the models applied to crime data proposed here are necessarily Bayesian and thus assume 

a probabilistic interpretation.  

   

2.3 Definition of Likelihood Property 

 

According to Robertson’s Probability Ranking Principle (1997), a scoring function can 

only rank documents according to the probability of relevance when the following 

condition is true. 

 (1) 
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  where  are descriptions of objects; 

 is a description of a key and 

  is the probability of object, o’, matching key, k’. 

This means that two objects will be ranked by the probability that each matches a given 

key. In the context of information retrieval, where objects are documents and keys are 

queries, document 1 would be ranked over document 2 for a given query implies that the 

probability of document 1 being relevant to that query is higher than the probability that 

document 2 is relevant to the same query. This is the weakest pnecessary for a function 

derived from the notion of probability of matching to qualify as a scoring function at all.  

 

The strongest condition we can impose is that the scoring function actually yields the 

probability of matching. 

 (2) 

This is the best situation we could achieve given that we are basing the scoring function 

on descriptions (or indices) of the document and key.  As we see below, this is very 

difficult to achieve.  

 

The likelihood property is defined to exist when the following condition holds. 

 (3) 

where . This means that two objects will be ranked by the probability that they 

match two (possibly distinct) keys. So the scoring function provides a measure of 

likelihood that may be applied for different keys although this measure may fall short of 
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being an actual probability. We note that Condition 2 implies Condition 3 which, in turn, 

implies Condition 1. 

 

In essence, Condition 3 implies that the score is comparable not only within the objects 

retrieved for one key but also across keys. In the context of Information Retrieval, if the 

scoring function adhered to this condition, we would be able to compare the relevance of 

documents across queries. This would be beneficial for the three proposed uses specified 

in Section 1. Users could be guided how far down a ranked list it would be useful to 

browse in terms of relevance i.e. if the relevance score falls below a given value. This 

threshold would have to be determined by the success of other queries to this particular 

collection (and possibly in general). As a means of assisting pseudo-relevance feedback, 

we only select those documents above a certain likelihood score and if the score for the 

top ranked item is sufficiently low we may decide that feedback is counterproductive. 

Again this threshold would have to be calibrated from the experience of other queries. 

For assessing query difficulty, if the relevance scores in a ranked list were below those 

typically attained for other (successful) queries, this may be an indicator that the query 

did not retrieve many relevant documents. 

 

In the context of suspect prioritisation (either from text descriptions or geographical 

locations), Condition 3 implies that the suspects towards the top of the list with a high 

score, and in particular the prime suspect at the top of the list, are more likely to be 

culprit. Consider two unsolved crimes A and B where the respective scores given to the 

prime suspects are 0.3 and 0.9. We would be able to infer that the prime suspect for crime 
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B was more likely to be the culprit and thus, given limited resources, prioritise the 

investigation into crime B.   

 

An interesting corollary of condition 3 is 

 (4) 

which means that where two keys are used to retrieve the same object if   scores 

higher than  it is more likely to match the object. In other words, for a given object we 

can rank the queries in order of probability of matching. 

 

2.4 Testing for the Presence of the Likelihood Function 

 

It is possible to argue that the likelihood property exists purely from the assumptions used 

to derive the scoring function. Indeed we would expect a theoretical argument to 

underpin such a view that the property existed. However, all probabilistic models are 

based on a set of assumptions which are often idealised. For example, in Language 

Modelling, it is assumed that the occurrence of terms (i.e. words) is independent. 

Common sense tells us that some words are more likely to co-occur with other words and 

so this assumption is plainly false. Nevertheless, despite a mismatch between the 

assumptions of a model and the more messy reality of the world, such models do yield 

useful results. Therefore if we accept that the assumptions underlying these models are, at 

best, approximations to the truth then there would still be an obligation to show that the 

likelihood property actually existed. An implication of Condition 3 is that the actual value 
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of the scoring function is a better predictor of matching than the ranked value of objects 

implied by the scoring function for a single key. Here we are comparing the estimate of a 

probability of matching with the grounded truth which is that a key and object either 

match or they do not. Therefore any evidence can only increase our belief that the 

likelihood property exists although in some cases this evidence will be overwhelming. 

Standard methods for assessing retrieval effectiveness cannot be used to assess if 

Condition 3 applies. As we discuss below, they only assess the extent to which Condition 

1 is true. We therefore propose new measures. 

 

3. Entire Precision and Entire Recall 

 

Precision and recall are standard measures used to gauge the effectiveness of an IR 

system (van Rijsbergen, 1979). Precision is the number of retrieved objects that match 

the key as a proportion of the total number of retrieved objects. Recall is the number of 

retrieved objects that match as a proportion of the number of matching objects. In the 

simplest situation a scoring function has just two values and thus partitioning the 

collection into retrieved and not retrieved is trivial. More often the scoring function will 

give a range of values and so partitioning can be achieved by setting some cut-off point; 

objects above the cut-off are deemed to be retrieved. As the threshold is lowered more 

objects are deemed to be retrieved and recall will rise as precision tends to fall. In this 

situation various measures derived from precision and recall are used. For example, a 

common approach is to produce precision/recall graphs. Composite measures such as 

average precision, which is, loosely speaking, the area under the precision/recall graph 
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are often used. Alternatively, precision is calculated at various cut-off points are 

calculated and plotted, e.g. precision at 10, 20, 50, 100 etc. 

 

Where the scoring function yields a range of values, both precision and recall require 

condition 1 to be true. However, all they can assess is the resulting notion of 

effectiveness in that the values yielded by the scoring function are only meaningful for a 

single key. Thus, when we are evaluating the performance of a scoring function over a 

number of keys, it is usual to calculate the precision and recall measures individually for 

each key separately and then take the mean over all keys.  

 

However, such an approach cannot, by definition, make comparisons across keys as 

required for Condition 3. Suppose that instead of using the values yielded by the scoring 

function we ranked all the documents with respect to a given key and gave each 

document an integer value to reflect its position in the list. In terms of Condition 1 this 

changes nothing but in terms of Condition 3 it does. Nevertheless, standard precision and 

recall measures would yield exactly the same result if scores are replaced with ranks. The 

fundamental idea behind the likelihood property is that the score is comparable not only 

between objects and the same key but also between different keys. We are interested in 

evaluating scoring functions with respect to Condition 3, in other words we wish to show 

that it is meaningful to rank across keys.  Thus we construct two new effectiveness 

measures: entire precision and entire recall. Before defining them formally we first offer 

an example to illustrate the underlying concept. Let us suppose that a hypothetical (and 

somewhat contrived) IR system operated in batch model so that all queries to a collection 
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of documents must be submitted in one go. This system then retrieves all documents 

which relate to any query in one single list. If a document is retrieved according to two 

queries it will appear twice in the list and so on. If we attempted to define the standard 

effectiveness measures over the entire batch operation the resultant measures would be 

entire precision and entire recall.  

 

3.1 Definition of the Measures 

 

Entire precision and recall are analogous to the standard precision and recall measures 

except that they apply over many keys simultaneously. For the set of objects and set of 

keys, we consider the cross product – the set of pairs containing each possible 

combination of object and key. We then use a ranking strategy to order this set of pairs 

based on the scoring function under consideration. Once the pairs are ranked, a cut-off 

point can be introduced to separate the set of pairs into retrieved and not retrieved. Each 

pair is said to match if and only if the key matches the object according to whatever 

matching criterion (e.g. relevance, culpability) is being used for normal retrieval.  

 

We therefore define entire precision as the number matched pairs that were retrieved as a 

proportion total number of matched pairs. We define entire recall as the number of 

matched pairs that were retrieved as a proportion of the total number of retrieved pairs 

(whether matched or not). 
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3.2 Ranking Strategies 

 

We propose two ranking strategies: one that takes the likelihood property into account 

and one that does not. We then attempt to show that the first strategy gives higher entire 

precision and entire recall measures than the second. If this is the case we have found 

evidence that the likelihood property exists. In the first strategy we use simply the value 

given by that scoring function for the object and key – this we term the actual value 

ranking. In terms of the hypothetical batch IR system mentioned above, the documents 

would be ranked by the absolute value of the scoring function and therefore it is possible 

that the documents ranked first, second and third with respect to one query will appear 

above the top ranked document yielded by a different query.  

 

For the second strategy we rank all objects for each key first and then rank the pairs 

according to the initial ranking given. We will term this ranked value ranking. Using the 

example of the batch IR system again, here it would conduct retrieval for each query 

separately and then merge the lists so that all the top ranked documents for each query 

appears first, then the second ranked documents and so on.  

 

Table 1 gives the raw data for a fictitious example where there are 4 objects and 2 keys. 

Table 2 shows how the pairs would be ranked by the two strategies. So, whereas pair (B, 

Y) is ranked fourth according to actual value scoring because it has the fourth highest 

score of all the pairs, it is ranked equal fifth for ranked value scoring since it is the third 

highest scoring pair for all those with key Y. 



16/36 

 
 

Objects Values of  
Scoring function A B C D 

X 0.9 0.02 0.03 0.05 Keys 
Y 0.34 0.32 0.33 0.01 

Table 1: Scoring values for a fictitious example of a scoring function with 2 keys and 
4 objects – bold indicates matching 

 
 

Actual Value Scoring Ranked Value Scoring 
Rank Pair Value Rank Pair Value 

1 A, X 0.9 1= A, X 0.9 
2 A, Y 0.34 1= A, Y 0.34 
3 C, Y 0.33 3= D, X 0.05 
4 B, Y 0.32 3= C, Y 0.33 
5 D, X 0.05 5= C, X 0.03 
6 C, X 0.03 5= B, Y 0.32 
7 B,X 0.02 7= B, X 0.02 
8 D,Y 0.01 7= D, Y 0.01 

Table 2: Comparison of Meta-scoring Functions showing each pair of object and 
key from the scoring values in Table 1 – bold indicates matching 

 
If the underlying scoring function satisfies Condition 1 then, by definition, the matched 

pairs should tend to appear towards the top of the list. This is true for both strategies. 

However, if the scoring function also satisfies Condition 3 then the actual scoring value 

of a pair will be a better predictor of its being matched then the rank. Thus we expect 

matched pairs to be higher up the list for actual value scoring than ranked value scoring. 

The implication of this is that entire precision and entire recall will be higher especially 

when relatively few items are retrieved. In the example given, we can consider precision 

for the first 4 items. For entire actual value scoring, this is whereas for ranked 

value scoring it is . For entire recall, the values are 1 and 0.5 respectively. 
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We now consider three case studies where entire precision and recall are used to 

determine the likelihood property. 

 

4. Case 1: Information Retrieval 

 

We consider here examples of IR models which are based on vectors of terms derived 

from a set of documents and the query. Such models are readily automatable and do not 

require human input such as the probabilistic models proposed by Fuhr (1989) and Turtle 

and Croft (1997).  As we discussed in Section 2.2, these retrieval models are often 

divided into two categories: similarity models and probabilistic models. Similarity 

models produce a scoring function which measures degree of similarity between the 

vectors rather than probability of relevance and so the conditions described above are not 

appropriate and there can be no likelihood property. There are theoretical reasons to 

believe that one type of probabilistic model, namely language models, can under certain 

circumstances capture the likelihood property (Bache et al. 2007b). We provide evidence 

for this by comparing with a typical vector space model (TF-IDF), for which this 

property should be absent. 

 

4. 1 Theoretical Basis for Models   

 

Probabilistic models start from the premise that there is probability that a document is 

relevant to a query that can be expressed a function of the descriptions of the document 
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and the query. Examples are OKAPI (Spark-Jones et al. 2000) and Lafferty and Zhai’s 

justification for Language Modelling (2003). However, these models take as their only 

inputs the term vectors from the queries and documents. The formal derivation of these 

models assumes also the existence of certain quantities such as the probability that a 

document is relevant to an arbitrary query which cannot be estimated from the queries 

and documents alone. Thus the models are only made usable by eliminating these 

quantities by a series of order preserving transformations. In other words, inestimable 

quantities are removed from the model but the price paid is it yields only an ordinal 

function (Condition 1) rather than an estimate of actual probability (Condition 2). Also, 

for ease of calculation, logarithms are taken; this also preserves order.  

 

Bache et al. (2007b) argue that under certain conditions the output of Language 

Modelling can be interpreted as a probability. This requires the assumption that the user 

formulated the query with the intention of finding a single ideal document which would 

satisfy the whole information need (which is almost certainly absent from the collection). 

We require also that we work in actual probabilities (not logarithms) and that the scoring 

function is normalised so that: 

 (4) 

This does not yield an actual probability of relevance satisfying Condition 2 but a 

measure of relevance likelihood satisfying Condition 3. 
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4.2 Data Analysed  

 

Three TREC collections (TREC123, HARD03, HARD05) were analysed using both 

types of scoring functions. The Language Modelling scoring function chosen used 

Jelinek-Mercer smoothing (1980) with a smoothing parameter of 0.5. The default TF-IDF 

scoring function from The Lemur Toolkit (Zhai, 2007) was used as an example of a 

similarity function. We are not specifically interested here in comparing the respective 

performance of each model. It is well established that different models perform better or 

worse on different collections. Furthermore we note that we are dealing with three 

different collections where the entire precision and recall measures will vary across 

collections, whatever scoring function is used. Again this is not specifically of interest 

here. Instead, we wish to show the difference between the two scoring strategies for a 

given model and a given collection. 

 

Calculations were performed using The Lemur Toolkit (2007) with the output files being 

post-processed by a purpose-built application to calculate the actual probabilities and also 

to calculate entire precision and recall at n. 

4.3 Results and Discussion 

 

Precision measures were calculated at various multiples of the number of queries. So for, 

say, 50 queries we would calculate recall at 50, 250, 500 etc corresponding to 1, 5 and 10 

times the number of queries. This is because the ranked value scoring gives rise to ties 
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and we want to make sure that any set tied pairs are either all retrieved or not retrieved. 

Tables 3, 4 and 5 give the results for each test collection. Note that since 1000 documents 

were retrieved for each query, both scoring methods will give the same result for 

precision at 1000 times number of queries. Figures 2 to 7 show the data in graphical 

form. 

 
Language Modelling TF IDF Pairs retrieved as 

multiple of number 
of queries 

Ranked Actual Ranked Actual 

1 0.0000 0.5600 0.4600 0.4200 
5 0.0480 0.5160 0.3280 0.3520 
10 0.0580 0.4720 0.3180 0.3360 
15 0.0640 0.4507 0.3120 0.3253 
20 0.0560 0.4190 0.3030 0.3440 
30 0.0627 0.3873 0.2880 0.2980 
100 0.0652 0.2858 0.2168 0.2052 
200 0.0639 0.1989 0.1606 0.1507 
500 0.0656 0.1194 0.0990 0.1032 
1000 0.0686 0.0686 0.0622 0.0622 

Table 3: Entire Precision for HARD 03 
 

Language Modelling TF IDF Pairs retrieved as 
multiple of number 

of queries 
Ranked Actual Ranked Actual 

1 0.1000 0.3600 0.5400 0.6200 
5 0.0840 0.3120 0.4760 0.3840 
10 0.0840 0.3080 0.3920 0.3760 
15 0.0827 0.3013 0.3733 0.3627 
20 0.0830 0.3090 0.3340 0.3550 
30 0.0713 0.3093 0.3267 0.3340 
100 0.0768 0.2424 0.2454 0.2524 
200 0.0742 0.1801 0.1877 0.1780 
500 0.0753 0.1108 0.1183 0.1023 
1000 0.0761 0.0761 0.0735 0.0735 

Table 4: Entire Precision for HARD 05 
 
 

 
Language Modelling TF IDF Pairs retrieved as 

multiple of number 
of queries 

Ranked  Actual  Ranked Actual 
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1 0.0900 0.2450 0.1800 0.1650 
5 0.0820 0.2600 0.1850 0.2240 
10 0.0785 0.2710 0.1815 0.2355 
15 0.0773 0.2703 0.1827 0.2413 
20 0.0775 0.2653 0.1875 0.2458 
30 0.0792 0.2488 0.1872 0.2333 
100 0.0808 0.1913 0.1699 0.1818 
200 0.0811 0.1493 0.1520 0.1377 
500 0.0823 0.1078 0.1123 0.1031 
1000 0.0828 0.0828 0.0820 0.0820 

Table 5: Entire Precision for TREC123 
 
 

We are specifically interested here in the difference between the two scoring strategies. It 

would be expected that a scoring function that adheres to Condition 3 to display higher 

score for the actual scoring compared to the ranked scoring. When plotted this would 

manifest itself as the gap between the two lines. The reasoning for this is that if the 

scoring function conforms to Condition 3, then documents will be more optimally ranked 

by the actual score in comparison to the ranked position by keys. This is because for 

some keys, there will be a higher proportion of relevant documents ranked higher with 

respect to the relevance score.  

 

For Language Modelling, there is a marked improvement of actual value scoring over 

rank value scoring in all three collections. In other words, if we considered the top ranked 

documents for each query, the normalised scoring value would act as a predictor of 

relevance. The plots for all three collections provide supporting evidence that the 

normalised scoring function does give a measure of query likelihood as the actual 

scorings have a higher entire precision value compared to the ranked scorings.  It is 

theoretically possible that the results are purely by chance, but given the number of 
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documents retrieved (1000) and the number of queries (1000) and that the result occurred 

three times independently this is very unlikely.   

 

This result is not repeated for TF-IDF where the different scoring procedures give results 

which are greater or less at various levels of entire precision and there is no great gap 

between them. The scoring function from TF-IDF is not based on a probability of 

relevance and thus should not exhibit the likelihood property. This leads to the question: 

could the likelihood property still be present if the two ranking strategies give broadly the 

same results? Theoretically this is possible but we can dismiss this possibility by a 

reductio ad absurdum argument. If this were to be true then we are asserting that all top 

ranked items will have broadly the same probability of relevance irrespective of the 

query. This will be true too for the second ranked, third ranked and so on. This would 

imply then that each query would have broadly the same number of relevant documents 

in the collection. A simple inspection of the data refutes this.  

 
 

 
Figure 2: Entire Precision for HARD03 –   

Language Modelling  
Figure 3: Entire Precision for HARD03 –  

TF-IDF 
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Figure 4: Entire Precision for HARD05 – 

Language Modelling  
Figure 5: Entire Precision for HARD05 – TF-

IDF 
 

 
Figure 6: Entire Precision for TREC123 – 

Language Modelling 
 

Figure 7: Entire Precision for TREC123– TF-
IDF 
 
 

 

5. Case 2: Text Analysis of Crime Data 
 
It is well established that when offenders commit the same type of offence, they are likely 

to do so in a similar manner (Bennell & Canter, 2002; Canter and Fritzon, 1998; Yokota 

and Canter, 2004). Police can use this fact to prioritise suspects for an unsolved crime by 

comparing the way the crime was committed, known as Modus Operandi (MO) with 

previously solved crimes.  However, given the enormous human effort required to look 

through and compare the descriptions of many previous offences, such a strategy is 

usually reserved only for the most serious offences such as murder and rape. Nevertheless 

the police do record both free text and structured data about volume crimes such as 

burglaries, vandalism and robbery as an electronic archive. These data contain 

information about the offenders’ behaviour. The fact that free text is used in the 
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descriptions means that techniques drawn from IR may be applied to find connections 

between a new unsolved offence and past solved ones. Here, we summarise the results 

and show how, firstly, this fits into our general model of retrieval and, secondly, that the 

suspect prioritisation system proposed also yields a measure of culprit likelihood.  

5.1 Underlying Theory 

 

Language Modelling was used (Bache et al. 2007a) to provide an automatic suspect 

prioritisation system based on comparing the textual description of an unsolved crime 

with descriptions of crimes of the same type. The rationale underlying the model is that 

features of the offender’s behaviour will manifest themselves in the choice of words used 

by the police officer to describe the incident. Structured information in the form of a 

number of features which are recorded as either present or absent are mapped to extra 

tokens and added to the free text if present for that crime. We now consider how this 

problem differs from standard IR. 

 

The set of objects to be retrieved here are not the unsolved crimes per se but sets of 

unsolved crimes linked to a particular offender who now becomes a suspect for the 

unsolved crime (the key). Where we know that a past crime was committed by more than 

one offender, that crime will appear in more than one set. So, to put this into our 

generalized version of Fuhr’s framework,  is a text representation of the unsolved 

crime, and  is an indexed version of this. Also  is the set of text 

representations of crimes known to have been committed by one offender;  is the 

indexed version of the concatenation of these documents. The matching criterion is 
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culpability. This is again stored in the police archive and is interpreted as a suspect being 

charged with a given crime.  The scoring function produces a probability of each suspect 

being the culprit. Note that where there a crime has more than one offender it is assumed 

that they adopt the behavioural features of the dominant member of the group. In this 

case the model seeks to identify the ringleader. 

 

The Language Modelling approach requires Bayes’ theorem and thus a prior. In typical 

IR applications, it is usually assumed (somewhat unrealistically) to be the same for all 

documents; for an arbitrary query, all documents are equally likely to be retrieved.   

However, for this suspect prioritisation model, the prior is more meaningful and 

represents the probability that a given suspect will commit a crime. This can be estimated 

from the past frequency of offending.  

 

The accounts of crimes entered by police officers are of variable quality. Some reveal 

clear features of the crime that indicate a particular pattern of behaviour. Others provide 

very little information. In this latter case the model will tend to give broadly similar 

values to each suspect but will still rank them even though this scoring does not tell us 

much. So, in addition to a ranked list, we would also want some measure of 

trustworthiness, particularly for the suspects ranked highest. Although the scoring 

function yields a probability and thus appears to satisfy Condition 2, an inspection of the 

results showed this not to be the case. For example, if we consider all the suspects given a 

probability of 0.99 or more, we would expect more than 99% to be culprits; the actual 

figure was nearer 60%. Nevertheless, it could be that a notional probability of 0.99 
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indicates a higher likelihood of being the culprit that 0.9 in which case Condition 3 would 

hold. So we use entire precision and recall to determine if this is the case. 

5.2 Data Analysed 

 

Eight crime sets were analysed reflecting different crime types. These were taken from a 

police archive of crimes collected over a 4-year period for an inner city district.  Only 

solved crimes were considered. These were randomly allocated into a training set to act 

as the ‘solved’ crimes and a test set to act as the ‘unsolved’ crimes. The model was run 

100 times to even out the effect of random allocation and the mean taken. Table 6 

summarises the datasets. 

 
Set 
No. 

Crime Type No. 
Crimes 

No. 
Offenders 

Crimes used for training 
model per offender 

1 Theft from Vehicles 155 51 1 
2 Other Theft 83 28 1 
3 Shoplifting 803 294 2 
4 Assault 436 205 1 
5 Criminal Damage 255 82 1 
6 Criminal Damage to 

Vehicles 
37 17 1 

7 Burglary 854 227 4 
8 Robbery 138 62 1 

Table 6: Summary of Crime Data Analysed 
 

5.3 Results 
 
Table 7 shows the average precision values for all 8 datasets. We note that the values for 

actual value scoring are always higher. If we apply a sign test to the results then we can 

conclude with greater than 99.5% confidence that the likelihood property is present.  



27/36 

Figure 7 shows the entire precision and recall graph for the criminal damage dataset 

which clearly shows how the two lines deviate at low levels of recall. 

 
 Average Precision 

Set No. Actual Value Scoring Ranked Value Scoring 
1 0.322 0.214 
2 0.285 0.213 
3 0.028 0.021 
4 0.025 0.012 
5 0.173 0.112 
6 0.625 0.533 
7 0.150 0.100 
8 0.141 0.101 

Table 7: Average Precision for Suspect Prioritisation based on text description 
 

 

 
Figure 7: Entire precision and recall graph for Criminal Damage 

6. Case 3: Suspect Prioritisation Based on Location 
 
The final example considers the distance an offender travels to commit a crime and does 

not use text at all. Geographical information has been considered within the context of 

IR. Watters and Amoudi (2003) seek to extract words and phrases which indicate 

geographical location. The example we use here actually uses coordinates which were 

stored in the police archive along with the data used in case 2. Van Kreveld et al. (2005) 

consider the situation where a document is matched both according to its topicality and 
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also distance and consider these to be two dimensions of matching which can be 

represented visually. Here we consider only the geographical dimension of the problem 

but accept that the analysis performed in this case and case 2 would need to be integrated 

at some stage. Nevertheless, concepts drawn from IR are useful here even though there is 

no text. 

 

The assumption is that each offender travels from a base to commit a crime; this base will 

usually be the place of residence. The scoring function assigns probabilities to suspects 

according to the distance the suspect would have travelled. We consider a model which 

prioritises suspects based on the way in which the probability density of a crime 

decreases as the location moves further from the offender’s base. Again we wish to 

determine if the scoring function has the likelihood property. 

 

6.1 Underlying Theory 

 

There has been extensive research into the distance offenders are prepared travel to 

commit a crime (Brantingham & Brantingham, 1981; Canter and Hammond, 2005; 

Turner, 1969). In particular, researchers have attempted to define a decay function which 

captures the decreasing relationship between distance travelled and frequency of 

offending. However, there is another reason why the probability of offending in a given 

location will decrease as we move further from the offender’s base rooted in geometry. 

The further one is prepared to travel the more places there are to go. More formally, a 

circle drawn 2km from the base will have twice the circumference as a circle 1km. If the 
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offender’s home base is known the distances can be calculated from each crime to that 

home base. Where the home base is not known, as in the data presented below, the 

centroid of previous crimes can be used. Thus to place this into the conceptual 

framework,  is the grid reference of the unsolved crime, and is also the same 

so the mapping is an identity operation. Also  is the set of grid references of 

crimes known to have been committed by an offender; is the centroid of these 

points. Culpability is determined from the police archive as in case 2. The scoring 

function is derived from the decay function expressed as a probability density function 

and the application of Bayes’ Theorem.  

 

We model the decay function with either a negative exponential or negative power 

function. Taking into account the geometry, it is possible construct a probability density 

function to estimate the probability an offender with a known base will offend at a given 

location. Using Bayes Theorem will then yield a scoring function for each base and crime 

scene. As with the suspect prioritisation model based on text, we could use a prior based 

on frequency of offending and this would make the model more accurate.  However, here 

we will assume a uniform prior where all offenders are equally likely to offend since later 

we can compare this Bayesian model with a much simpler one. We again apply the test 

using both ranking strategies as in the previous two cases.  

6.2 Data Analysed 

 

The data was taken from the same source as in Section 5 although only a subset of the 

data sets was used. Each solved crime had a 6-figure grid reference, according to the 
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Ordnance Survey British national grid reference system, indicating its location to within 

100 meters. The home location was not possible so instead we used the centroid of the 

known solved crimes to estimate it. Distance was calculated as the Euclidean distance but 

a value of 1 (i.e. 100m) was added so that locations in the same 100m square did not have 

a zero distance. Crimes were partitioned into a training set and test set as before and for 

each data set, the calculation of entire precision and recall was run 100 times and the 

mean taken. 

 

6.3 Results 

 

Figure 8 shows the precision and recall graph for the burglary data using the negative 

exponential model. The graph for the power model is almost coincident with the 

exponential model. Table 8 shows the average precision measures for both models using 

each ranking strategy. Both the negative exponential and power demonstrate similar 

performance and actual value ranking outperforms ranked value ranking. Using a sign 

test we can conclude that the likelihood property is present with 95% confidence. This is 

evidence that these Bayesian models do capture culprit likelihood. 
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Figure 8: Entire Precision and Recall Graph for the Negative Exponential Model for 

Burglary 
 
 

Crime Type Neg. Exponential Power 
Ranking Strategy Actual Ranked Actual Ranked 
Theft from Vehicles 0.20 0.12 0.19 0.12 
Criminal Damage 0.37 0.23 0.37 0.23 
Damage to Vehicles 0.90 0.68 0.91 0.68 
Burglary 0.14 0.10 0.13 0.10 
Robbery 0.15 0.11 0.15 0.11 

Table 8: Average Entire Precision for Location Models for Different Crime Sets 
 

6.4 Corollary 
 
We can consider a third suspect prioritisation model which is considerably simpler. This 

simple model merely ranks the offenders by distance and its scoring function assigns an 

integer to each offender where the nearest offender has the highest value. It is then easy 

to show that all three scoring functions are equivalent up to a strictly increasing 

transformation while there is a uniform prior. This explains why the ranked values in 

Table 8 are identical for both Bayesian models. Furthermore this simple model would 

yield the same entire precision statistics for ranked value ranking and incidentally this 

would, by definition, be identical to actual value ranking calculated for the simple model. 

The implication here is that, when using a uniform prior, the only advantage the Bayesian 
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models offer over simple ranking by distance is that they indicate suspect likelihood. The 

ranking is identical. Of course, if priors were instead based on the frequency of past 

offending then the ranking provided by the Bayesian models would differ from the 

simple model (and possibly from each other). 

 

7. Conclusions 

 

By using the entire precision and recall measures it is possible to assess whether the 

likelihood property is present in a scoring function in a general retrieval situation. For IR, 

this means that we can infer that Language Modelling can yield a measure of likelihood 

provided that the scoring function is normalised. In the case of suspect prioritisation, 

which is essential a known item search, it means that the probabilities yielded by the 

model can be used as a measure of trustworthiness in the result for the highest ranked 

suspects  even if the actual probabilities cannot be taken at face value. 

 

Although the approach here was devised initially for the analysis of crime data, its 

application to other forms of retrieval, and, in particular, IR should be obvious. Models 

and scoring functions are being assessed all the time on different data sets to gauge the 

effectiveness of scoring, often using precision and recall.  Entire precision and recall 

provide the researcher with new tools to determine whether or not the likelihood property 

is also present. 
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