Faculté des sciences

Manipulation of tritrophic interactions : a key for belowground biological control ?

Hiltpold, Ivan ; Turlings, T.C.J. (Dir.)

Thèse de doctorat : Université de Neuchâtel, 2008 ; Th. 2073.

En réponse à des attaques d’insectes phytophages, les plantes produisent des composés organiques volatiles servant de signal aidant les ennemis naturels de l’insecte herbivore à localiser un hôte ou une proie potentielle. De telles interactions trophiques sont bien comprises pour la partie aérienne de la plante. Récemment, des systèmes tritrophiques souterrains ont été mis en... Plus

Ajouter à la liste personnelle
    Résumé
    En réponse à des attaques d’insectes phytophages, les plantes produisent des composés organiques volatiles servant de signal aidant les ennemis naturels de l’insecte herbivore à localiser un hôte ou une proie potentielle. De telles interactions trophiques sont bien comprises pour la partie aérienne de la plante. Récemment, des systèmes tritrophiques souterrains ont été mis en évidence et des composés importants impliqués dans de telles interactions ont été identifiés. Parmi eux, un sesquiterpène, le (E)-β-caryophyllène, est considéré comme un composé clé dans le modèle tritrophique Zea mais - Diabrotica virgifera virgifera - Heterorhabditis megidis. Des racines de maïs attaquées par la larve du ravageur D. v. virgifera émettent dans le sol ce signal d’alerte et peuvent ainsi attirer le nématode entomopathogène H. megidis capable d’infecter et de tuer la larve de D. v. virgifera. Les feuilles de maïs attaquées par des insectes émettent un large spectre de composés volatiles. Afin de comprendre pourquoi les racines d’une même plante n’émettent qu’un éventail réduit de ces composés lors d’une attaque de D. v. virgifera, largement dominé par le (E)-β-caryophyllène, une étude concernant la diffusion de ces volatiles dans le sol fût menée. Parmi les composés testés, quelques autres sesquiterpènes diffusèrent mieux que le (E)-β-caryophyllène, mais la biosynthèse de ces derniers est plus coûteuse pour la plante. L’émission de (E)-β-caryophyllène semble donc être un compromis optimal entre les propriétés de diffusion de cette molécule et ses coûts de production pour la plante (Chapitre I). A cause de la sélection opérée sur le maïs depuis sa domestication, certains des cultivars ont perdu la capacité de produire et d’émettre ce signal souterrain. L’insertion d’un gène responsable de la synthèse du (E)-β- caryophyllène de l’origan dans une variété de maïs ne produisant plus ce signal d’appel à l’aide a rétabli la capacité de la plante à émettre du (E)-β-caryophyllène. Lors d’expériences en champs et en présence de H. megidis, cette émission résulte en une meilleure protection du système racinaire et moins d’adultes de D. v. virgifera émergent à proximité des plantes transformées que des plantes contrôles (Chapitre II). Dans un souci d’utilisation de la meilleure espèce de nématodes entomopathogènes en lutte biologique contre D. v. virgifera en Europe, l’efficacité de H. bacteriophora, H. megidis et Steinernema feltiae contre ce ravageur fût testée dans des conditions semi-naturelles. Une mortalité plus importante à tous les stades pré-imagos du ravageur ciblé fût observée en présence des trois espèces de nématodes entomopathogènes susmentionnées. Cependant des résultats légèrement meilleurs furent obtenus avec les deux espèces du genre Heterorhabditis comparé à Steinernema feltiae (Chapitre III). Lors d’expériences en champs, H. megidis et S. feltiae se sont révélés considérablement plus efficaces dans les parcelles plantées de maïs émettant du (E)-β-caryophyllène que dans les parcelles n’en émettant pas. H. bacteriophora semble ne pas être influencé par la présence ou l’absence de ce volatile mais semble plutôt répondre à d’autres composés produits par une plante infestée. Néanmoins, H. bacteriophora a égalé le niveau de contrôle du ravageur atteint par les insecticides chimiques (Chapitre IV). Dans le but d’obtenir encore un meilleur contrôle de D. v. virgifera, H. bacteriophora a été manipulé en laboratoire. Une nouvelle souche de ce nématode a été sélectionnée pour une réponse améliorée au (E)-β- caryophyllène. Grâce aux olfactomètres souterrains à six bras, il a suffi de six générations pour accroître l’attraction de H. bacteriophora vers ce signal racinaire, alors que cette espèce ne répondait normalement pas à ce composé (voir Chapitre IV). Lors d’expériences en champs, la souche sélectionnée, lorsqu’elle était appliquée près d’une variété de maïs produisant du (E)-β-caryophyllène, s’est avérée plus efficace pour éliminer D. v. virgifera que la souche d’origine. De telles différences entre la souche sélectionnée et l’originale n’ont pas été observées auprès des plantes n’émettant pas de (E)-β-caryophyllène (Chapitre V). En parallèle des connaissances fondamentales sur les interactions tritrophiques souterraines mises en lumière, la présente étude apporte des informations clés sur l’utilisation des nématodes entomopathogènes dans un contexte de lutte biologique contre D. v. virgifera. De plus, cette thèse démontre pour la première fois à notre connaissance que la lutte biologique peut être améliorée par la manipulation soit de la production d’un signal émis par une plante, soit de la réponse du troisième niveau trophique à ce même signal.
    Summary
    In response to attack by phytophagous insects, plants produce volatile organic compounds that serve as cues for natural enemies of the herbivore to locate their potential host or prey. Such tritrophic interactions are well understood aboveground. Recently, it has become evident that such interactions also occur belowground. Among the compounds that are involved in belowground tritrophic signalling is the sesquiterpene (E)-β-caryophyllene, a key compound emitted by insect-damaged maize roots (Zea mais) when attacked by larvae of Diabrotica virgifera virgifera. This sesquiterpene is attractive to the entomopathogenic nematode Heterorhabditis megidis, which infects and kills D. v. virgifera larvae. Aboveground, maize leaves subjected to insect herbivory emit a wide range of volatile compounds. To understand why the same plant when attacked belowground only emits a reduced pattern of compounds, largely dominated by (E)-β-caryophyllene, we studied the diffusion properties of this sesquiterpene. Of the potential compounds tested a few other sesquiterpenes diffused better than (E)-β-caryophyllene, but these are more costly to synthesize for the plant. The release of (E)-β-caryophyllene seems ideal balance between diffusion efficiency and production costs (Chapter I). Because of breeding, some maize varieties are not emitting this belowground signal anymore. The transformation with a terpene synthase gene from oregano into a maize line that normally does not produce this call-for-help signal successfully restored their ability to release (E)-β-caryophyllene. In presence of H. megidis, this release resulted in a better protection of the root system and fewer D. v. virgifera adults emerging near the transformed plants compared to their original lines under field conditions (Chapter II). In order to determine the most effective nematode species for biological control of D. v. virgifera in Europe, we compared the control efficiency of H. bacteriophora, H. megidis and Steinernema feltiae. The susceptibility of different D. v. virgifera development stages to the above mentioned nematodes species was assessed under semi-field conditions. All stages of the targeted pest were susceptible to entomopathogenic nematodes and Heterorhabditis species were slightly better in controlling the pest than Steinernema species (Chapter III). When tested in the field near (E)-β-caryophyllene producing and non-producing maize varieties,H. megidis and S. feltiae were considerably more effective in plots with the (E)-β-caryophyllene releasing line. H. bacteriophora appears to use other plant-produced signals. Promisingly H. bacteriophora level of control was comparable to levels that can be achieved with pesticides (Chapter IV). In order to achieve an improved control of D. v. virgifera, was manipulated in the laboratory. We selected a strain of H. bacteriophora in belowground six-arm olfactometers over six generations for improved attraction to (E)-β-caryophyllene. This species does normally not respond to the signal (Chapter IV). In field trials it was confirmed that the selected strain, when applied near a (E)-β-caryophyllene producing maize variety, was more efficient in killing D. v. virgifera than the original strain. As expected, there was no such difference between the strains when released near a maize variety that did not emit (E)-β-caryophyllene (Chapter V). In addition to the fundamental knowledge on belowground interactions obtained by the current study, it also provides key information on how to use entomopathogenic nematodes for biological control of D. v. virgifera. Moreover, this study is, to our knowledge, the first demonstration that biological control can be improved by manipulating the production of and responsiveness to a plant signal.