The “Complex-in-a-Complex” Cations \([\text{acac})_2\text{M}\subset\text{Ru}_6-(p-\text{IPrC}_6\text{H}_4\text{Me})_6(\text{tpt})_2(\text{dhbq})_3]^{6+}: \text{A Trojan Horse for Cancer Cells}^{**}

Bruno Therrien,*, Georg Süss-Fink, Padavattan Govindaswamy, Anna K. Renfrew, and Paul J. Dyson

The directed synthesis of organometallic cage molecules for the assembly of molecular nano-objects is a topical area of chemical research.\[1\] By combining the “molecular clip” strategy developed by Stang\[2\] with the “molecular paneling” strategy pioneered by Fujita,\[3\] we recently synthesized trigonal-prismatic cage molecules in which six \((\eta^6-\text{arene})\) ruthenium or \((\eta^5-\text{pentamethylcyclopentadienyl})\) rhodium units are held together by two trigonal \(2,4,6\)-tris(pyridin-4-yl)-1,3,5-triazine (tpt) panels and three dichloro\[5\] or oxalato\[5\] bridges. We have now extended this principle to construct the larger cationic hexanuclear metalloliposomes \([\text{Ru}_6(p-\text{IPrC}_6\text{H}_4\text{Me})_6(\text{dhpq})_3]/\text{C}_26\] which incorporates \(p\)-cymene ruthenium building blocks and is bridged by 2,5-dihydroxy-1,4-benzoquinonato (dbhq) ligands and connected by two tpt subunits (Scheme 1).

The hexametallic cation \(1^{6+}\) was prepared from the dinuclear complex \([\text{Ru}_6(p-\text{IPrC}_6\text{H}_4\text{Me})_6(\text{dhpq})\text{Cl}]_{6}\)\[9\] and tpt in the presence of \(\text{AgO}_{2}\text{SCF}_3\). The cationic complex was isolated and characterized as its triflate salt \(\text{I-(OSO}_2\text{CF}_3)\) in 75% yield. The assembly of \(1^{6+}\) can also be achieved in the presence of \([\text{Pd}\text{acac}]_2\) or \([\text{Pt}\text{acac}]_2\) \((\text{acac} = \text{acetylacetonato})\) to give the “complex-in-a-complex” cations \([\text{acac})_2\text{Pd}\subset\text{I}^{6+}\) and \([\text{acac})_2\text{Pt}\subset\text{I}^{6+}\) without affecting the overall yield (Scheme 2). Cations \([\text{acac})_2\text{Pd}\subset\text{I}^{6+}\) and \([\text{acac})_2\text{Pt}\subset\text{I}^{6+}\) were both isolated as their triflate salts.

The formation of \([\text{acac})_2\text{Pd}\subset\text{I}^{6+}\) and \([\text{acac})_2\text{Pt}\subset\text{I}^{6+}\) can easily be monitored by \(^1\text{H}\) NMR spectroscopy and their molecular structure established by one-dimensional \(^1\text{H}\) ROESY experiments. The \(\text{CH}\) and \(\text{Me}\) signals of the acetylacetonato ligands in the \(^1\text{H}\) NMR spectra of \([\text{acac})_2\text{Pd}\subset\text{I}^{6+}\) and \([\text{acac})_2\text{Pt}\subset\text{I}^{6+}\) are shifted upfield by about 1.7 ppm relative to the free complexes in \(\text{D}_2\) acetone (see the Supporting Information). One-dimensional \(^1\text{H}\) ROESY experiments confirmed the molecular structure of cations \([\text{acac})_2\text{Pd}\subset\text{I}^{6+}\) and \([\text{acac})_2\text{Pt}\subset\text{I}^{6+}\). Thus, intense cross-peaks are observed between the protons of the encapsulated complex \((\text{H}_{\text{enc}}\text{ and Me}_{\text{enc}})\) and the protons of the cage molecule \((\text{H}_{\text{gap}}, \text{H}_{\text{gap}}\text{, and M}_{\text{enc}})\) in close proximity (see Supporting Information).

The molecular structure of \([\text{acac})_2\text{Pt}\subset\text{I}^{5+}\) was confirmed by single-crystal X-ray structure analysis of \([\text{acac})_2\text{Pt}\subset\text{I}^{6+}/\text{O}_2\text{SCF}_3\) (Figure 1).\[7\] The structure shows the \([\text{Pt}\text{acac}]_2\) complex to be held between the triazine units of the tpt ligands. It is clear from the van der Waals representation of the “complex-in-a-complex” cation that the \([\text{Pt}\text{acac}]_2\) complex is indeed encapsulated in \(\text{I}^{6+}\); the separation between platinum and triazine-centroid being 3.4 Å. The \([\text{Ru}-\text{acac}]_2\) cation is held into the cavity of the trigonal prismatic cage by the \(\text{Pt}\text{acac}\) units.

Scheme 1. Synthesis of \([\text{I}^{6+}/\text{O}_2\text{SCF}_3\) and \([\text{acac})_2\text{Pt}\subset\text{I}^{6+}/\text{O}_2\text{SCF}_3\).

Scheme 2. Synthesis of \([\text{acac})_2\text{Pd}\subset\text{I}^{6+}/\text{O}_2\text{SCF}_3\) and \([\text{acac})_2\text{Pt}\subset\text{I}^{6+}/\text{O}_2\text{SCF}_3\).

\[1\] Dr. B. Therrien, Prof. Dr. G. Süss-Fink, Dr. P. Govindaswamy

Institut de Chimie

Université de Neuchâtel

Case postale 158, 2009 Neuchâtel (Switzerland)

Fax: (+41) 32-718-2511

E-mail: bruno.therrien@unine.ch

Homepage: http://www2.unine.ch/chs/page9676.html

A. K. Renfrew, Prof. Dr. P. J. Dyson

Institut des Sciences et Ingénierie Chimiques

Ecole Polytechnique Fédérale de Lausanne (EPFL)

1015 Lausanne (Switzerland)

This work was supported by the Fonds National Suisse de la Recherche Scientifique. A generous loan of ruthenium trichloride hydrate from Johnson Matthey Technology Centre is gratefully acknowledged. M = Pd, Pt; acac = acetylacetonato; tpt = 2,4,6-tris(pyridin-4-yi)-1,3,5-triazine; dbhq = 2,3-dihydroxy-1,4-benzoquinonato.*
(dhbq)²⁺ clips are tilted out of the plane of the tpt subunits by as much as 14° to accommodate the [Pt(acac)] complex within the cavity of 1⁺.

To examine the stability of the cage in solution, we recorded the ¹H NMR spectra in D₂O at elevated temperatures (Figure 2). The ¹H NMR spectra of 1⁺, [(acac)PdC₂₆] and [(acac)PtC₂₆] in D₂O show no signal changes, thereby indicating the stability of the cage. The [M(acac)₃] complexes are only (partially) released after a prolonged period, with the palladium complex being released to a greater extent.

![Figure 1. Molecular structure of [(acac)PtC₂₆]⁺; side view and top view.](image1)

![Figure 2. ¹H NMR spectra of [(acac)PdC₂₆]⁺ (D₂O, 200 MHz) at elevated temperature.](image2)

Given the well-established anti-cancer activity of platinum compounds⁹ and the promising anti-cancer potential of ruthenium complexes,¹⁰ several of which are currently undergoing clinical evaluation,¹⁰ we studied the cytotoxicity of the two “complex-in-a-complex” cations [(acac)PdC₂₆]⁺ and [(acac)PtC₂₆] with respect to the empty hexaruthenium cage 1 and the free acetylacetonato complexes [Pd(acac)₃] and [Pt(acac)₃] against A2780 human ovarian cancer cells.

One of the main challenges in cancer chemotherapy is to develop drugs that are selective towards cancer cells in order to reduce the general toxicity and consequently the side effects of the compound. One such targeting method involves using large carrier compounds which release the drug once inside a cancer cell, since large compounds selectively accumulate in cancer cells owing to the “enhanced permeability and retention effect”.[¹¹] Herein, 1⁺ represents the carrier compound and its high charge also potentially facilitates uptake in cancer cells.[¹²] We found that cisplatin can also be encapsulated within 1⁺, but it rapidly leaches from the hydrophobic pocket in water. However, the more hydrophobic complexes [M(acac)₃] (M = Pd, Pt) are strongly immobilized within 1⁺, while being almost insoluble in water in their free form under ambient conditions. Indeed, the cytotoxicity data of the compounds described herein is in complete correlation with their observed solubility/stability properties (Table 1). The free [M(acac)₃] complexes, which are virtually insoluble in water (the palladium species being slightly more soluble), show no cytotoxic effects on the A2780 human ovarian cancer cells. However, while the cage complex 1⁺ is moderately cytotoxic, both “complex-in-a-complex” species [(acac)PdC₂₆]⁺ are more active, with the platinum-containing species being about twice as active as the empty cage and the palladium entrapped species being more than one order of magnitude more cytotoxic; indeed, the IC₅₀ value of 1 μM for the complex is extremely low in comparison to other platinum and ruthenium complexes. The higher cytotoxicity of [(acac)PdC₂₆]⁺ in comparison to that of [(acac)PtC₂₆]⁺ may suggest that the palladium complex is more easily released from the hexaruthenium cage 1⁺ than the platinum complex. Once inside a cell, the hexaruthenium cage may open and release the [M(acac)₃] complex to the biological target. A more detailed study of this mode of action is in progress.

A large number of polynuclear metal complexes have been evaluated as putative anticancer agents.¹³ In general, these complexes are based on metal centers connected through bridging ligands or metal centers connected to macromolecular supports. However, to our knowledge, the “Trojan horse” strategy described herein represents the first example in which a relatively hydrophobic complex encapsulated within a hydrophobic pocket of a metal-containing host functions in a synergistic fashion by accelerated release inside a cancer cell.

Experimental Section

All organic solvents were saturated with nitrogen prior to use. [Pd(acac)₃], [Pt(acac)₃], and 2,5-dihydroxy-1,4-benzoxazine (dhbqH₂) were purchased from Fluka. 2,4,6-Tris(pyridin-4-yl)-1,3,5-triazine (tpt)⁹ and [Ru(p-PrC₆H₄Me)₂(dhbq)][Cl]⁹ were prepared according to published methods. NMR spectra were recorded with a Varian 200 MHz or Bruker 400 MHz spectrometer. IR spectra were
recorded with a Perkin–Elmer 1720X FT–IR spectrometer (4000–
400 cm⁻¹). Microanalyses were performed by the Laboratory of
Pharmaceutical Chemistry, University of Geneva (Switzerland).

I-(O-SCF₃)₆−: A mixture of [Ru(dp–pyPh₂C₅H₄Me)₂(dhbq)Cl] (60 mg, 0.09 mmol) and Ag₂O(SCF₃)₆ (46 mg, 0.18 mmol) in MeOH (20 mL) was stirred at room temperature for 2 h. After filtered. The
ligand tpt (18.4 mg, 0.06 mmol) was then added to the red filtrate and the mixture stirred at room temperature for 48 h. The solution
was then removed under vacuum. The dark residue was taken up in CH₂Cl₂ (20 mL) and, after filtration, the solution was concentrated (3 mL) and diethyl ether added to precipitate a red solid. Yield: 75 mg (75%). ¹H NMR (400 MHz, D₂O, [acetone]; δ = 8.75 (dd, J₁H₂H = 5.36 Hz, J₂H₁H = 1.56 Hz, 12 H; J₁H₂H = 5.36 Hz, J₂H₁H = 1.56 Hz 12 H); 6.52 (dd, J₁H₂H = 6.32 Hz, 12 H; J₂H₁H = 6.32 Hz, 12 H); 6.57 (s, 13 H; CH); 2.28 (s, 18 H; CH₃), 1.41 ppm (d, J₋₁₋₋₋之內容。

