Faculté des sciences

Polyhedral hyperbolic metrics on surfaces

Fillastre, François

In: Geometriae Dedicata, 2008, vol. 134, no. 1, p. 177-196

Let S be a topologically finite surface, and g be a hyperbolic metric on S with a finite number of conical singularities of positive singular curvature, cusps and complete ends of infinite area. We prove that there exists a convex polyhedral surface P in hyperbolic space ℍ³ and a group G of isometries of ℍ³ such that the induced metric on the quotient P/G is isometric to g. Moreover, the... Plus

Ajouter à la liste personnelle
    Summary
    Let S be a topologically finite surface, and g be a hyperbolic metric on S with a finite number of conical singularities of positive singular curvature, cusps and complete ends of infinite area. We prove that there exists a convex polyhedral surface P in hyperbolic space ℍ³ and a group G of isometries of ℍ³ such that the induced metric on the quotient P/G is isometric to g. Moreover, the pair (P, G) is unique among a particular class of convex polyhedra