Faculté des sciences

Probing the potential of N-heterocyclic carbenes in molecular electronics: redox-active metal centers interlinked by a rigid ditopic carbene ligand

Mercs, Laszlo ; Neels, Antonia ; Albrecht, Martin

In: Dalton Transactions, 2008, vol. 41, p. 5570-5576

Bimetallic homonuclear iron(II) and ruthenium(II) N-heterocyclic carbene complexes have been synthesized and crystallographically analyzed. As a spacer ligand for interconnecting the two redox-active metal centers, a ditopic carbene ligand has been used that comprises two carbene sites annelated to benzene. Detailed electrochemical and spectroelectrochemical analyses of the bimetallic... Plus

Ajouter à la liste personnelle
    Summary
    Bimetallic homonuclear iron(II) and ruthenium(II) N-heterocyclic carbene complexes have been synthesized and crystallographically analyzed. As a spacer ligand for interconnecting the two redox-active metal centers, a ditopic carbene ligand has been used that comprises two carbene sites annelated to benzene. Detailed electrochemical and spectroelectrochemical analyses of the bimetallic systems revealed that despite the potentially π-delocalized nature of the ditopic ligand, the iron centers are only moderately coupled. In the ruthenium complexes, the intermetallic interactions are very weak and the centers are electrochemically nearly independent. A model is proposed for rationalizing these observations which is based on (i) relatively weak charge delocalization in the spacer ligand and (ii) on electrostatic factors governing the metal–carbene bond.