VALAIS

Hes- SO// WALLIS
Haute Ecole Spécialisée
de Suisse occidentale

Studiengang Systemtechnik

Vertiefungsrichtung Infotronics

Diplom 2007

Silvan Zahno

Frame capturing and
sending in FPGA

Dozent Francois Corthay

Experte Prof. Jorgen Nordberg
Patrik Arlos

Hes so// e

Haute Ecole Spécialisée
de Suisse occidentale

Fachhochschule Westschweiz

University of Applied Sciences
Western Switzerland

Systems Engineering: Infotronic

Diploma Work

- Frame Capturing and Sending in FPGA -

Author Zahno Silvan
Under guidance of Patrik Arlos, Corthay Francois
Version v1.0

Karlskrona, 25.03.08

| Frame Capturing and Sending in FPGA Zahno Silvan

Table of content

Y Xol [)V 1Yo P 41T) &SR 5
2 o =Y =T ol IR 5
2.1 ([aY i oTe [T o1 4 To] o NP 5

D A Vo o 1= o To [PSP 5

3 OV BIVIBW .ttt e e et e e e e e e ettt eeeeeeeee ettt a e eeeeesaesasaaaaeeeesasstannnnsseesssssssnnnsaeeeesssssnnnnnseeesssssnnnnnseesenns 6
4 HAEAWAIE ..ttt ettt e e e e e eee bbb e e e e eeeeaeababaseeeeeeeeassbabeaaaeseeesaasbsbaeeseeeeesassssreeeeeeeeen 7
4.1 [0) =] =Tl ISR 7
4.2 (000 01V (=] U 9
421 Pin assignment on the CoONTrOllEruiii i e 10

4.3 (01 Y 4 o]| L=T SN 11
43.1 1YL= 0 0o o VAP P PP P PP PPPPPPPPPPPPPPPPPRt 11
4.3.2 7Y g o 0 1 2 13

5 Passive Measurement INfrastrUCTUreooooiiiiiiiiiiii 14
5.1 1Y Y RNt 15
5.2 [000] o 1101 0 1 1= SO RN 15
53 1Y RNt 16

6 Y oYY =L STR T PPPPPPPPPRPRPPPRt 17
6.1 CPLD 0N INtEITACE-D0GITeevveeeiieeeieeeeeee e e e e e e e e e e e e e e s e e saabeeeeeeeeean 17
6.1.1 High-impedance BUTfEr..........oo oottt e e et e e e 18
6.1.2 Yy 01 (<] o - Lol TR 18
6.1.3 Serial ManagemMENT INTEITACEocic i e e st e e e e e eanreee s 18
6.1.4 2] 81Vl o Yol SR 19
6.1.5 LY=L= A== o [Pt 19
6.1.6 Y oo Y = R L L] 0 £ o< TR 19
T O Y00 R Y=Y (U ol = To [U]=T g Uor VAU 19

LT ST A Y- Yo (U ol I ol o ST =1 | (] =R 21

6.2 FPGA ON DEV-DOGIT ...ttt e et e e e e e st e e e e e e e seenssbesereseeesennnns 22
6.2.1 AN Y B o U ol A U UPP 22
6.2.1.1 MeEASUIEMENT fraMB..ciii i iiciireieee ettt e e e e e e ettr e e e e e e eeessabbaaeeeeeeeesasssraaeeseessensanes 22
6.2.1.2 Control and Status framES.......ceiiiiiiiiiiiieeeee et e e e e eeerrrre e e e e e e e eaabraeeeeeeesennsnns 24
6.2.1.3 INtErMEAIATE frAME coeiie et e e e e e e e e e e e bbaeeeeeeeeesasbraeeeeeeesenanns 25
6.2.1.4 Filter data base StrUCTUIE (FDB).......ueiiicueeieiiireeeeeireee et eetreeeeetreeeeeareeeeeenreeeeeenbeeeeennnees 26
o B T D =1 - i [1V AT UURPRRROt 26

6.2.2 e o R 117 PP PUPR 27
6.2.3 =T =] (L= o U PUPPR 28
6.2.4 (0 oY {0 I [g1 =T s - Lol TSR 28
3 3 Y/ Tol a1 o | = 4o] o PSSP 28
A (=T ol Y 17T U 29
L T 1 | <] o 30

6.2.5 (000] V=T 8 (o T a I {1 L =T] LT 32
6.2.6 AT e 32
6.2.7 (O Ec 1T o o 11 N 34
6.2.8 (@ TU1 o 11 ST ol o ol USSR 36
6.2.9 1Y =] Vo £ N 37
oI A Nt N I =Y o 1 V1 o 1 T 39

(20 O T U 7Y 3 USSP 41
LS00 T G 43

7 LI T UPPPP PN 45
8 ACTUL STATE ceeiiiiiiiiiieeee e e e eeee e e e e e e e ee bbb e e e e e e e e e e bbb e rateeeeeeaabbbaaaaeeeeeaatbraraaaaeeeeeananes 45
9 FUTTNEI WOTK oottt e e et e et e e e e e e ee s abbbaeeeeeeeeastabbaaaesesesasssssaseseeeeesasstsrasaeeeeeens 46
10 CoNCIUSION @GN FEMAIKS ...uevvviieiiieieieicitteeee ettt e e e e eeerebreeeeeeeeeeeetbbareeeseeesasssareaseeseeeeessssrsreeseessnnnsnns 47

25.03.2008 -2/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

3 R € [T3 | 78U UPPSRNS 48
A = =Y =Y o Vol T UPPRRNS 49
T Y oo 1= o 1 PP 49

25.03.2008 -3/49 -

| Fra

me Capturing and Sending in FPGA Zahno Silvan

Table of figures

Fig. 3.1 Bloc diagram of the hardWare...........cuueii i e e e e e e s re e e e raaee s 6
Fig. 4.1 Bloc diagram of the INtErfaCe........cooi i e e e e et e e e s eaeee s 8
= B [o1 =T = Yol=] o Yo - ol U 8
Fig. 4.3 Blocdiagramm of ConVerter-board ... e e s raeee s 9
= O 00T V< o =T o To =1 o SRR 9
Fig. 4.5 Table Pin asSiSNMENTooii ettt e e e e s e e e e e bbe e e s e abaeeeesraeeeenabeeeeenreeeeennsens 10
Fig. 4.6 Table MEMOIY OVEIVIEW.uviiiiiiiiie ettt e ettt e e ettt e e e ste e e e tte e e e s bbe e e s e abaeesaassaeesassseeeeasseeeeannreeeeennsens 11
= B A 27\ N o [Yo Yol 1= 1 4 - PP 12
Fig. 4.8 Table utilization and performance from Arm7 soft COreccvviiiiiiiiiiie i 13
Fig. 4.9 Actel CoreMP7 Developement Kitciiiciiiiiiiiieeeeiiiee e esiee e estte e sree e s seree e s sire e e s saree e s snreeessnnes 13
FIg. 5.1 MEASUIEMENT AN . ..ueeiiiiiiiiiee ettt e et e e ettt et e e e e e e sttt e e e e e s e s s s asbebaeeeeessasasnbeaaeaeesssanannseeaaaeesesnnaanns 14
= BN Y AN Ol [o1 =T - ol ISP 15
Fig. 5.3 IMP SChEMALIC OVEIVIEW .cciueviiiiiiiiiie ettt sttt e et e e et e e et e e s s tbe e e s saabeeeesssbeeeessbeeeseareeesennsens 16
Fig. 6.1 Top-level Of the CPLD d@SISN..cccccuiiiiiiiieiiiiiee ettt ettt e e e e e e s s e e e e s sbe e e e sabeeeesnraeeeennsens 17
Fig. 6.2 Table MIl Management Serial ProtOCO|uiiiiiiiiiiiiiee ettt e e e e 18
Fig. 6.3 Serial Management iNtEITaCEuuiii i e s e e s e e e e s abee e e e nares 18
Fig. 6.4 FSM of serial management iNTerfacecouuvii i 19
TS T Y =Yoo =Y - [0 = o = ol <IN 20
TS S R Y = Yol e =Y - [0 1= o = ol <IN 21
Fig. 6.7 Bloc diagram of the dataflow inside the FPGA..............uii i e 26
Fig. 6.8 Bloc diagram of the capture interface, the demux and the filters.........cccocvviiecie e, 27
Fig. 6.9 Table I/O SigNals FESETEENcuviiciie ettt ettt ettt e e e ete e e tae e e be e e teeeeateeebeeessseeesreesareeennes 28
Fig. 6.10 Table Input signals SyNChronisatioNcccuiieeiiiiii e e e e e e e are e e e enres 28
Fig. 6.11 Table 1/0 SINaIS FECRIVETcc.veiieeee ettt ettt eete e et e e e be e e beeeeabeeebaeesatesesreesareeennes 29
Fig. 6.12 Table 1/0 SINaIS TECRIVETcc.veieteee ettt ettt ettt eete e et e e be e e teeeeabeeebaeesateeeseeesareeennes 29
Fig. 6.13 Table 1/0O SINaIS FECRIVETccuveiieieeetee ettt ettt ettt e e e e et e et e e e baeeeabeeeebeeesateseseeesareeennes 30
= S ST = Lo Yol Yol o Y=Y g = o 1 =T PR 31
Fig. 6.15 Statemaching filter_NEart.......ooouiii i e e e s ee e e e rae e e e ares 32
Fig. 6.16 Table I/O SiGNalS @rbiter.....ccuiiiii ittt et e s e e st estb e s b e eabeeebe e beesbaesabeenreenbeebeans 33
Fig. 6.17 Statemaching Arbiterooocuiiiiieie e e e s e e e st e e e e s abee e e enbeeeeennrees 33
Fig. 6.18 Table I/0 SiGNAIS ClmOEMUXeeiveeiieeiiieciieeiecte et et et e steeeeeebeesbeesbeestaesasesabeeabeebeesseesssessseesseenseessenns 34
Fig. 6.19 BlOCk SChemMa Of Cl-OEMUXciiiiiiiiiciiiiecciee ettt e e e re e e s s e e e e s abe e e e sabaeesenreeeeennsees 35
Fig. 6.20 Statemachine Cl-demMUX_NEAItccccuiiiiiiiiiie et e e s e e e s e e e s are e e e esbae e e ennrees 36
Fig. 6.21 Table I/0 Signals OULPUL-CROICEccueeiiieieciecieeeteetee ettt ettt e e te e v e et e e be e beesteesaaeeaaeeabeebeens 37
Fig. 6.22 Table I/O SiGNAIS SENUENcvieieecieeeteecee ettt ettt ettt e et e rbeesbeesteestbesabeeabeebeebeesseesaseesseenbeesenns 37
TS W E I =] (ool (Yol o 1=Y g = e Y =] 0 [o [PP 38
Fig. 6.24 Statemachine transmitter_CONTIOIEIccccuviiii i e 39
Fig. 6.25 Table 1/0 SigNals tranSmMitter......cc.cicceiieiee ettt ettt e e e e tee e te e eeteeeeteeeeteeeeateeeteeesareeennes 40
Fig. 6.26 BlOCk SChemMa Of TranSMItLErviiiiciiie et e e e e et e e e e are e e e e abeeeeenraeeeennres 40
Fig. 6.27 RECEIVEA fIlLEIDUTTRIeeiiieeeeeeecee e e e e e e e are e e e et e e e e eabeeeeenraeeeennses 40
Fig. 6.28 Table /O SIZNAIS UARTuviietie ettt ettt ete e eetve e et e e teeeeteeeeteeeeaseeebeeesnseeenteeeentessnseeesnreeennes 41
Fig. 6.29 BlIOCK SC@MA Of UART ..ottt ettt ettt e e et e e e et e e e e e ab e e e e enabaeesanabeeaeensbaeeeentaeaeennsens 41
Fig. 6.30 RECEIVEA fIlLEIDUTTRIeeiieeeeeceeee et e et e e e et e e e e e ab e e e e eeabaeeeenraeeeennses 42
Fig. 6.31 Statemaching UART @Atccci ittt ee e e e e e e e a e e e e e e s e e nannbeeeeeeeeseenannns 42
Fig. 6.32 Table UART CONFIUIATIONciiiiiiiee ettt ettt e et e e e e et e e e e e ar e e e e e abeeeeeabeeeeenbaeaeenses 43
Fig. 6.33 Time synchronisation NEIWOIKeeeiiii it e e e e e e earbre e e e e e e e e e eannns 43
Fig. 6.34 Table /O SIZNAIS TSC ...ueiieiieeiee ettt ettt et e e etre e et e et e e e ete e e teeeeaseeebeeeenseeensseeestessnseeesareeenses 44
Fig. 6.35 BIOCK SCEMA OF TSC ...eviiiiiiiieccee ettt et e e e st e e e st e e e s s aba e e s e abeeeesabaeeeenreeeeennsens 44
Fig. 6.36 Statemaching delay _CalCcoouiiii i e s e e e s e e e e e e e e e s ennres 44

25.03.2008 -4/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

1 Acknowledgments

First, | would like to thanks all of the people who helped me and gave me the opportunity to come here to
BTH, Sweden to do my diploma work.

A special thanks goes to the supervisor and mentor of the project, Patrik Arlos. He assisted me in many
ways and gave me useful tips during the whole project.

A big thanks belongs to Francois Corthay and Olivier Gubler, who sent me some required electronic parts
and helped me a lot with the VHDL programming.

Everyone of my student colleagues and friends with whom | stayed in contact during my work. They have
supported me from Ireland, China, Japan and also Switzerland.

And of course my family, who helped and motivated me all the time.

2 Preface

2.1 Introduction

This diploma work is the second part of a project, which began in Switzerland and was continued in
Karlskrona, Sweden.

The subject of the Diploma Work is “Frame capturing and sending in FPGA”. In this part of the project, all
components are brought together and developed into an MP. The hardware, or a part of it, | already made
during my semester project in Switzerland. It is the sequel of the work in Switzerland. A first prototype of
an MP was made by Olivier Gubler. He also did his work in Sweden with Patrik Arlos.

The goal is to explore and to develop the functionalities of a MP and then to implement and test these
functions. For the work | have several hardware available:

- CoreMP7 Development Kit made by Actel

- The Interface | created during my semester project

- Converter which allows to attach the Interface with the Dev-Board

| will also give a small overview on the programs | used during this project.
- Liberovs8.0
- CoreConsole v1.3
- SoftConsole (Eclipse) v1.1
- Xilinx Webpack v9.2
- HDLDesigner v2002.b

- Synplify

Before you read this report, it would be useful, if you have already read the semester project report. There
you have a good overview about the hardware | used.

2.2 Appendix

Some articles and parts of the work are given in the appendixes. They can be found at the end of the
report. A few appendixes are just given on the enclosed CD. In chapter 13 you can see a list of all
appendixes.

25.03.2008 -5/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

3 Overview

The goal is to build a type of Hardware, called Measurement Point (MP). Such a device does packet
capturing. Then the captured data will be filtered, and a time stamp added onto each packet. The new
packet will be stored into a buffer. After all, this packet will be sending in data packets in a measurement
frame with defined sizes.

You also have the possibility to send some requests from a GUI called DPMI which was made in BTH by
Patrik Arlos. This DPMI will analyze the captured packets and make some graphical approaches.

| will realize this MP with an FPGA, which can implement a microprocessor as an IP soft-core. Therefore, the
used programming languages are C/C++ and VHDL.

The Ethernet input connections are:
- 10/100 Copper Ethernet RJ45
- Fiber Ethernet 100Base-FX (optional)

Because an MP is a passive device to the Ethernet input, it must be invisible to the Measurement Area
Network (MArN). To do a serious time stamp, an exact time synchronization is needed. Therefore an RS422
Interface is added, to synchronize with a master’s clock.

The captured data will also be sent with a 10/100 Copper Ethernet RJ45. The programming interface of the
board will be done via JTAG interface for the FPGA and also the Soft ARM7-Core.

It should also be possible to exchange the Interface with a different one, so that the input sources can be
enlarged again; for example, to implement Giga Ethernet or other transmission mediums. For this project, it
is sufficient to have a 10/100Base —TX or a FX support. However with a new Interface, it is possible to
attach other transmission mediums also. It is not necessary to develop the Controller again.

Converter

Interface Controller

Eth

ITAG
. —‘ r RAM Flash ITAG
A I
cCPLD ™ . | . L J

FPGA

Eth
Ry L]] e

| e

EthTP 1 J Eth TP 2 RS422 usB Eth TP LED

o o 7. 7

< Fig. 3.1 Bloc diagram of the hardware

As discussed with Mr. Arlos, this MP should contain the following functionalities:
- Auto configure at boot
- Capture frames
- Filter frames
- Build and send measurement frames
- Send status messages
- Accept and act according to control messages
o Add filter
o Change filter
o Remove filter
o Flush buffers
- Use UDP/IP for messaging
- MP’s should comply with v0.6/0.7 of the DPMI interface

25.03.2008 -6/49 -

Frame Capturing and Sending in FPGA Zahno Silvan

4 Hardware

The Hardware is divided into three main parts:
- Interface to the MArN
- Converter between Interface and Controller
- Controller to generate the captured packets

I will give here just a little overview about the hardware | used during this project. More detailed
information can be found on the semester project-report.

< Appendix 1 Report Semester project

4.1 Interface

This part of the hardware submits the captured packages of the MArN-Network to the Controller, without
changes in the content. The network entrance can be carried out via a 100Base-TX twisted pair, a 10Base-T
twisted pair or a 100Base-FX fiber (optional).

This Interface can be used for the following tasks:

- Active tap: Both input-lines go directly to the physical Interface (Phy)
without any influence.
- Passive tap: Both Rx-Channels are connected through the high-impedance

tap to the Phy. Since we are just listening, we do not need
the Tx-Channels

In this project, only the passive tap is in use, because a normal MP is always invisible to the MArN-Network.
The active tap is to implement functions in the future.
For example, it would be possible to attach either the twisted pair (TP) or the fiber. There are the following
possibilities:

- TP&>TP: Both twisted pair inputs are used

- TP&—>fiber: One twisted pair and one fiber are used (TP — FX conversion)

- fiber&—>fiber: Both fiber inputs are used

In the passive case, it is only possible to attach the twisted pair. It is not possible to listen completely
passively to the fiber-network. The fiber plug, already do a conversion between the light pulses and the
electrical Signals.

- TP&E>TP: Both twisted pair inputs are used

With Jumpers it is possible to switch the input-line between the RJ45 and the optical fiber input, as well as
for the switch from the active to the passive tap. This is illustrated in the following picture.

The schematic is given in the appendix.

< Appendix 2 Schematic Interface

25.03.2008 -7/49 -

| Frame Capturing and Sending in FPGA

Zahno Silvan

Power 14
Supply
LPHY-POt pam | 8 | 8
Tx 4RX + 4Tx
Data /8
Rx Interface ’U ——/3—]
<'7 Sb MDIO
To Plug Fiber| Management |——/3——] CPLD —/5—]
Interface
Port Led's 332
To Plug Ethernef Address 5 —/32—{ Plg
Control
—132—
2PHY-Pot paa | 8 |
Tx 4Rx + 4Tx /8-
18
Data
Rx Interface 8 13—
qi sD MDIO
To Plug Fiber]| Management 13—
Interface 15
Port Led's
To Plug Ethernet Address | 5 | -
Control Xilinx XC95288XL.
Disable National Semiconductor DP83849ID PHY j
High impedance buffer High impedance buffer| atonal Semiconducter ﬁ H?B
TXAHTXP RXAH RxP TP HTXA RxP H RxA .
Jumper for passive (P)
or active (A) tap
Junjper Junjper Juniper Juniper

Jumper for switch
TxRx || TxRx| fromTPtoFiber |TxRx || TxRx

‘ Jumper
o
PiY

Plug Fiber Plug Fiber

Jumper ‘

l:jzz Transeiver

/8 differential

N

S N
o

PHY

Plug RJ45

Plug RJ45 Plug RJ45

RS422 network

]

Fiber network Fiber network

ITP networkl ITP nerworkl

< Fig. 4.1 Bloc diagram of the Interface

As you can see in the picture above, the board also provides a CPLD to implement some conversions
between the interface board and the controller board. These conversions must be done to avoid
transmission problems of some packets between these two boards. In the section software is a more

detailed explanation.
High impedance buffer

Power supply

Ethernet input <
Connect to MArN
Ethernet phy

3*32Pin connector

RS-422 interface

Hes-soff W&

CPLD

Jumpers Reset JTAG interface

< Fig. 4.2 Interfaceboard

25.03.2008 -8/49 -

| Frame Capturing and Sending in FPGA

Zahno Silvan

4.2 Converter

We need a Converter board so that our Interface board is able to connect to the Controller board. A new
Controller which can be done in future works, could attached directly to the Interface without using the
Converter board. However, in my case, | use a prefabricated Dev board as Controller and therefore, | have

to use the Converter board.

This converter has on one side a 96-Pin connector for the connection with the Interface and on the other
side, three 40Pin connectors to attach the Controller. The connectors on the Controller board also offer
several powerlines, like 5V, 3.3V and GND. Therefore, we do not need the external 5V connector in the
Interface. The power can be directly taken from the Dev board.

ﬂonverter

‘ 96Pin
e Connector

Connector

40Pin

-

Connector

40Pin

Connector

40Pin A

E
(T

w
(T

N

< Fig. 4.3 Blocdiagramm of Converter-board

To Interface board

N

To Controller board

< Fig. 4.4 Converterboard

Power test pins

25.03.2008

-9/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

4.2.1 Pin assignment on the Controller

With the help of the Converter board, the signals of the Interface, which belongs together, can be
consolidated on one or several /0O Banks of the Controller.
The pin assignment of the different signals are shown in the following table.

Pin from Interface

Signal description Number of pins Pin of the Header 1/0 Bank of the Controller
Header J11 (control)

RES 1-5 5 [4..8] Bank 0[3..5] & Bank1[0..1]
RS422 Interface 4 [11..14] Bank 1 [4..5] & Bank 2 [0..1]
Control signals of port B 10 [17..24] Bank 2 [4..6] & Bank 3 [0..4]
Control signals of port A 10 [27..34] Bank 3 [7..11] & Bank 4 [0..2]
MDIO Interface 2 [37..38] Bank 4 [5..6]

High impedance buffer disable 2 [39..40] Bank 4 [7..8]

Header J12 (data port B)

Bank 4 [9..23] &
Data signals of port B 32/4 [1..32] Bank 5 [0..5] &
Bank 6 [0..10]

Header J13 (data port A & power signals)

Data signals of port A 32/4 [5..36] Bank 7 [0..31]
5V 1 (38] -

3.3V 1 (37] -

GND 1 [39..40] -

Total Nbr of Pins 129

< Fig. 4.5 Table pin assignment
For further information, look at the schematic given in the appendixes

<= Appendix 3 Schematic Converter

25.03.2008 -10/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

4.3 Controller

The Controller part will receive all the Rx packets. These packets will be filtered and a time stamp will be
added. After this, the packets will be reorganized and saved in RAM-Modules. To send the filtered packets
to a computer, an Ethernet connection is used. On the computer, we have a DPMlI-Interface, which is
developed by Arlos Patrik, this interface will analyze the captured packets which were sent by the
Controller.

The board consists of the following:
- Wall-mount power supply connector with switch and LED indicator
- Switches to select from 1.5V, 2.5V, and 3.3 V (I/O Bank) voltages on banks 3—4
- 10-pin, 0.1"-pitch programming connector compatible with Altera connections
- 50 MHz oscillator and 32kHz oscillator for real-time clock (RTC) calculations
- Eight LEDs driven by outputs from the device
- Jumpers allowing disconnection of all external circuitry from the FPGA
- One monostable pulse generator switch
- Eight switches providing input to the device
- Two RS-232 serial interfaces
- Two 10/100 Ethernet interfaces
- One Controller Area Network (CAN) 2.0B serial interface
- One USB 1.1 serial interface

<= Appendix 4 CoreMP7 development kit users guide

Remark: A reason why | chose this Dev-Board is, that the FPGA works with a 50MHz oscillator(clock). The
packets leave the Phy with a speed of 25Mhz, so we have a certain surplus and can work without problems
on the data in the FPGA. Otherwise, we could have an anti-aliasing effect.

4.3.1 Memory

One of the major tasks is to store all the data from the captured interface in a memory; to filter, modify and
send them forward to the DPMI interface.

On the Dev-Board, SRAM and Flash memory are provided. We have two external memories and two
internal memories. The external memories are slower than the internal, also the width and the depth are
more or less fixed. The advantage of the external memories is that they are much bigger.

On the following table you can see an overview about all provided memory from the Dev-Board

Internal Memory

Type Description Number Total size Address bits Data bits

SRAM Built-in SRAM 32 block a 4608bit 18kbytes 0..16 0..576

Flash Built-in Flash 1 128bytes 6 7

External memory

Type Chip description Number Total size Configuration

SRAM STMicroelectronics 2 2Mbytes 1M x 16 or 512k x 32
M29W800DT

Flash GSI Technology 2 2Mbytes 1M x 16 or 512k x 32
GS8001BT

< Fig. 4.6 Table memory overview

In this project, the internal SRAM is used as filter storage and buffers for the Capture blocks. The external
SRAM has to be used as program storage for the Arm.

One of the advantages of the internal SRAM is, that it is a true Dual-Port Ram and each block can have his
separate address- and data-lines, therefore, it is possible to work parallel on the different buffers.

25.03.2008 -11/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

External SRAM

Flash

The evaluation board includes two STMicroelectronics M29W800DT Flash memory chips, totaling 2 MB,
which can be arranged in either a 1M x 16 or a 512K x 32 configuration. The Flash memory is intended for
use as executable program storage for the embedded ARM microprocessor. However, it can also be used as
nonvolatile memory for the storage of system constants and parameters.

SRAM

There are also two GSI Technology GS8001BT Synchronous SRAM provided on the board, totaling 2 MB,
which can be arranged in either a 1M x 16 or a 512K x 32 configuration like the external flash memory. The
SRAM memory is used for the embedded ARM microprocessor stacks (both hardware and software) and for
dynamic system data.

Internal SRAM

In the FPGA we have chosen for this project, it is 144kbits(18kbyte) of RAM in 4,608bit (576bytes) blocks
provided. Inside the FPGA, these blocks are arranged along the top and bottom of the device to allow a
better access from the core and the I/O. All these blocks are true dual-port and can be configured in many
different aspect ratios. The true dual-port functionality allows to read and write independently on two
ports. Both ports can also have different clock speeds, because these RAMs are used as buffers. It is
possible to read faster than write, which is a big advantage in this case. With the same RAMs, it is also
possible to make a two-port RAM which has also two independent working ports. The difference to the
dual-port is that on one port you can just write and on the other just read.

The maximum space taken in the RAM to store one whole Ethernet packet is 759 lines. The maximum
length of an Ethernet frame is 1’518 bytes (12’144 bits) and the RAM width is 16 bits, in order to have an
sufficient gap to write the capture header.

So it is necessary to have 10 bits to write the length of a frame and 10 bits it is also the minimum number of
RAM address. With 10 bits, there are 1024 lines in RAM.

In this case, the data length is 16 bits and the address length is 10 bits. This means that each buffer has an
available space of 2kbytes.

Because there are 18kbytes of RAM available and 4kbytes are already used from the ARM7 Core, is possible
to have 7 buffers of 2kbytes space.

In the following picture, you can see both possible RAM blocks with the input and output signals.

Write Data Write Data Read Data

DINA ——— | Port A DINA —— Port A +——————— DOUTA
ADDRA Address ADDRA Address

WEN Write Enable BLKA R/W Action .

CLKA Clock - WENA Yrite Enable

CLKA Clock

Address Write Data
ADDRB ——— g Port B Read Data o houyrg pINB o D50 g | Port B |Read Data o 1y 75
Read Enable Address
REN —/ g ADDRB
CLKB L BLKB m}
WENB Write Enable
Two-port Clock Dual-port

CLKB

< Fig. 4.7 RAM block schema

25.03.2008 -12/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

4.3.2 Arm7

The CoreMP7 soft IP core is an ARM7 family processor optimized for use in Actel ARM-ready FPGAs and is
compatible with the ARM7TDMI-S.
CoreMP7 is supplied with an Advanced Microcontroller Bus Architecture (AMBA) Advanced High-
Performance Bus (AHB) compliant wrapper for inclusion in an AMBA-based processor system.
The microprocessor has the following features:

- FPGA Optimized ARM7™ Family Processor

- 32/16-Bit RISC Architecture (ARMvAT)

- 16-Bit Thumb Instruction Set

- 32-Bit Unified Bus Interface

- 3-Stage Pipeline

- 32-BitALU

- 32-Bit Memory Addressing Range

Utilization and Performance:

Performance (MHz) Tiles RAM Block Utilization (%)
28.12 6083 4 (4kbytes) 24.8%

21.7 7931 4 (4kbytes) 32.3%

< Fig. 4.8 Table utilization and performance from Arm7 soft core

Unfortunately, there is no Interface between the FPGA logic and the ARM processor (AMBA Bus). The time
was too small to develop this interface, also a cheap Ethernet interface was required, but the Actel 10/100
Ethernet core costs 20005 per project, because of these reasons, the Arm Core was not used as intended.
The core was implemented and tested, but it is not used for the MP system. The tested subcores are listed
below.

- Core MP7 & Core MP7 Bridge

- GPIO-Interface

- UART-Interface

- Interrupt core

- AHB2APB core

- AHB SRAM

<= Appendix 5 Datasheet CoreMP7

Connect to Interface-Board

JTag Interface

Top side: Flash memory
Bottom side: SRAM memory

Power supply / On/Off Switch
Actel FPGA

Buttons/Leds

2*RS232 Interface

2*RJ45 Ethernet

CAN Interface USB 1.0 Interface

< Fig. 4.9 Actel CoreMP7 Developement Kit

25.03.2008 -13/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

5 Passive Measurement Infrastructure

In this section you will find an overview about the passive measurement infrastructure. For a good quality
analysis of networks, it is necessary to have exact and accurate packet capturing. A passive measurement
infrastructure allows to capture and filter data from a computer network. After that, it can be analyzed and
displayed for the user.
A passive measurement infrastructure consists of 4 components which are connected together:

- Measurement Area Controller (MArC), this device controls the MP

- Measurement Point (MP), device which physically listens to channels, captures the wanted

packets and distributed it.
- Time Synchronization Device (TSD), which gives the exact time to the MP
- Consumer receive the sent data by the MP and analyze it and finally displays to the user

The passive measurement infrastructure is further explained in the documentation of Patrik Arlos.
< Appendix 6 Passive measurement infrastructure

All these devices are connected together through several networks. A RS 482 connection is between the
TSD and the MP. The consumers, the MArC and the MP’s are connected over the MArN network.

In the following picture, you can see a schematic overview about a Measurement Area (MAr) with two MP’s
and Consumers.

TSD

MArC /
- N

Consumer2

Link under t

Switch

Consumerl

< Fig. 5.1 Measurement Area

25.03.2008 -14/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

5.1 MArC

The MATrC is the central component of the Infrastructure, and provides the user an Interface to the MP.
In the MATrC, the filter can be set and changed, as well as the status of the MP checked. An example of an
MArC can viewed on the BTH website < http://inga.its.bth.se/projects/dpmi, there is also a consumer

mp101
Filter_ID |Filter Description [consumer nformation mp0S
Capturing 2 filters
Mo Filters 10.0.3.218 2000 20
mp102 Matched Packets Capture Interface 0 Packets Buffer Utilization
Filter_ID |Filter Description |consumer Information Lost heard from 2007-11-29 22:25:34
10 [£(512) and (if = dag0) ¥ [Etharnet to 0x(010000000010) length 54 bytes. - - -
mp102
Filter_ID |Filter Description [consumer Information 3 3 3
No Filters : N [
mp12 eann i i) -Enie T b |-t e b
Filter_ID |F|Itar Description |CD,|5."“E, Information Max Matched/s : 173333333333 Mase Pitfs : 0866666666657)
Last matched/s 1 0 Lsst Bz < 0 Las :
[10 [t (512) and (if = dago) } [Ethernet to 0x(010000000001) length 54 bytes.
wlanMp Capturing 1 filters
[z0 [€(512) and (if = dag1) ¥ [Ethernet to 0x(010000000002) length 54 bytes. . ..\ . . =
=0 |{ {512) and (if = dag2) } |Ethamet to 0=(010000000002) length 54 bytes. Matched Packets Capture Interface 0 Packets Buffer Utilization
mp035 Last heard from 2007-11-27 17:15:31
Filter_ID |Filter Description [consumer Information - i S
10 [t (512) and (if = dago) ¥ [Ethernet to 0x(010000000101) length 96 bytes.
20 [t (512) and (if = dag1) } [Ethernet to 0x(010000000300) length 96 bytes. |3 = H
wlanMP
Fiiter_ID [Filter Description e i e T S T b ||t = b || o s h
Mo Matched/= < 0 M Pife < 0 Vo Utl/= 0
1 [£ (128) and (=thtype = 2054) } [Etharnet to 0x(010000000000) length 54 bytes. (oot wawmne/s 1 0 [Lot Utire 0

< Fig. 5.2 MArC Interface

5.2 Consumer

In the DPMI Interface, there is also a consumer integrated which displays the results of the analysis for the
user. These are the possible diagrams in the actual DPMI:

- Packet inter arrival time

- Link utilization

- Link utilization over 24h

- Hosts > 5 pkts/min

- Hosts < 5 pkts/min

- Protocol distribution VLAN

- Protocol distribution network

- Protocol distribution Transport

- Protocol distribution application

- Protocol distribution ICMP

- Beacon test

- Paket inter arrival (comparison)

- Kilroy classical

- Kilroy Nueco

- Kilroy

- OWTT

- BPS comparison classical

- Timestamp comparison

25.03.2008 -15/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

53 MP

The MP is the device which has to be developed. In this project, it listens to one or several links under test.
It can be a logical or a physical device, in this case the MP will be a physically device, made in custom
hardware.

To the captured data there will be several additional pieces of information’s added. These are listed in
chapter 6.2 (¥° see 6.2 RAM-structure).

In the following picture, you can see a schematic overview of an MP with two capture interfaces.

- Capture interface: Each MP has at least one capture interface. It listens to a channel, captures
and filters the arriving packets. If a frame arrives which should be stored, it
adds also a capture header to each frame.

- Time synchronization client: This block receives the actual time and forwards it to the Cl. It is

necessary for the timestamp in the capture header.

- Sender: The sender interacts with the MArN and if a full Ethernet packet is filled
with captured frames, he adds an measurement header and send the
packet through the MArN to the consumer.

- Controller: The communication between the Cl and the sender is managed by the
controller.

Clo

|

. l

Link under Controller Sender MArN
test

| T ' !

< Fig. 5.3 MP schematic overview

25.03.2008 -16/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

|
6 Software

In this project, there are 2 tasks to implement and test:
- Implementation of the Interface functionalities in the CPLD. The hardware will be described in
VHDL
- Implementation of the Controller functionalities in the FPGA. The hardware will be described in
VHDL

The following features are integrated in the MP to be developed:
- 2 Capture Interfaces (Cl), which represent the connection to the MArN
- Time synchronization client (TSC)
- Filtering possibility for 2 filters
- Adaptable filter- and capture-length
- An Ethernet Interface to connect to the MArC
- Sending of status message every second

6.1 CPLD on Interface-board

On the Interface is a Xilinx XC95288XL CPLD mounted. There we have enough space to implement the
Interface functions, which are:

- Activate the high impedance buffers

- Passon the RS422 interface to the Controller

- Passthe control signals from Phy to the Controller

- Manage the bidirectional Mll interface

- Generate the 25Mhz clock for the Phy

These functions were implemented with HDL-Designer. In the following section, | will give you a more
detailed view. In the next picture, you can see the top-level of the CPLD design. | split it up into 7 sub bloc’s
to separate the different problems. On the picture you can see on the left side of the blocs, the signals
connected to the components in the interface-board and on the right side, the signals going to the
controller board.

Ck50MHZ
RXD ‘A = (3:0 RXD A QUT : (31:04

RX_CLK A RX_CLK_A _OU
RX_DV_A ! RX_DV_A_OU
RX_ER_A RX_ER A OUT,
CRS_A CRS_A_OUT,
COL_A COL_A_OUT,
PWRDOWN_INT 4 PWRDOWN_INT_A_OU,

byvte valid nb 4 : (1:0,

IXD A (3:0

TX_CLK A
TX_EN_A TX_EN_A_OUT
reset TX_CLK A OUT,

RXEN_O|
TXEN_OU

o

" ClksomHz

RXD_B': (3:0) RXD_B_OUT : (31:0

CIk50MHZ CIk25MH:
reset

RX_CLK_B. RX_CLK_B_OUT,
RX DV B RX_DV_B_O
RX_ER'B RX_ER B_OUTy
CRS B CRS_B_ OUT,
COL B COL_B_OUT
PWRDOWN_INT B PWRDOWN_INT_B_OU;
byvte valid nb B : (1:9

TXD B :(3:0

TX_CLK B
TX EN B TX_EN_B_O!

o TX_CLK_B_OUT,

< Fig. 6.1 Top-level of the CPLD design

25.03.2008 -17/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

6.1.1 High-impedance Buffer

In the high impedance buffer, it is possible to control the input from the Ethernet plugs to the Phy. You can
either turn it on and let pass on all the packets to the Phy or bloc all signals to the Phy. In this case we do
not need this functionality. Each buffer is enabled all of the time.

6.1.2 RS422 interface

Since the Dev-board does not have a RS422 interface for the time synchronization, it was added in the
interface-board. The CPLD gives the signals directly to the FPGA without any changes made to the signals.
The interface for the RS422 is done in the FPGA.

6.1.3 Serial management interface

In the Phy, some control and status register are available. To reach these registers a Mll serial management
interface is used.

This interface consists of two pins: Management Data Clock (MDC) and Management Data Input/Output
(MDIOQO). MDC has a maximum clock rate of 25MHz and no minimum clock rate. In this case | used a clock
rate of 25MHz. The MDIO line is bi-directional and can be shared with other devices. The MDIO frame
format for read and write access is shown in the Figure below.

MIl Management Serial Protocol

Operation \ Protocol <idle><start><op code><device addr><reg addr><turnaround><data><idle>
Read operation <idle><01><10><AAAAA><RRRRR><Z0><XXXX XXXX XXXX XXXx><idle>
Werite operation <idle><01><01><AAAAA><RRRRR><10><XXXX XXXX XXXX XXxx><idle>

< Fig. 6.2 Table MIl Management Serial Protocol

The communication with the Phy will be done in the Dev-Board. In the CPLD the signals will be connected
together. Since the MDIO signal is bi-directional, it is necessary to build a logic who can detect a read or a
write access and enables the right buffer. This problem was solved by two tri-state buffers and a finite state
machine. The following figures show the logic.

MDC_OuUT

std_ulogic

« MDIO_OUT

oo e ¢!''Di0g

= MDC_OUT

< Fig. 6.3 Serial management interface

25.03.2008 -18/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

/ \ Start

\

[MDIO = O
\ Write

a 6

| disable | ‘ read

@

< Fig. 6.4 FSM of serial management mterface

6.1.4 Phy clock

To work in the CPLD with the phy-signals, it is indispensable to have a clock with a higher frequency than
the clock in the phy. He needs a 25MHz clk. On the board is a 50MHz +/-10VPP mounted. The CPLD use this
clock to create the 25MHz for the phy.

Clock25MHz = Clock50MHz / 2

6.1.5 Reset gen

This block is necessary to synchronize and invert the nreset signal with the used clock in the CPLD. As
output we finally get a well synchronized reset signal.

6.1.6 Mac data interface

One of the problems of the ancient Diploma work was that the sending of the packets from the Interface to
the Controller Board caused some errors in the CRC-Check. Because of this, some frames were lost.

To prevent the lost of a package, | tried 2 possibility the first was to reduce the frequency of the data
between the Interface and the Controller and the second was to reduce the cross talking during
transmitting over the ribbon cable.

6.1.6.1 Reduce frequency

The phy has a data-output of 4 signals, which means he gives the data nibble per nibble to the Controller.
The maximal frequency of a 1000Base-TX Ethernet on the 4 Phy-Output lines is:

F = b 16b/s _ 250MH
max = nbrOflLines " Alines z

We have chosen to use 32 lines/channel, this gives a maximal frequency of:

25.03.2008 -19/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

Fmax =

D 1Gb/s

= = 31.25MH
nbrOfLines 32lines g

For the assignment about a ribbon cable or hard plug, 31.25MHz does not represent a problem. Some of
the CRC-checks were right after that modification but the problem was not completely solved, there were
still some problems during transmitting which affected the CRC-check. In the next section you can see my
implementation to change the number of data signals from 4 to 32.

Three sub-blocks were used to implement this function in the CPLD.

Synchronization:

Shift register:

Frame detector:

All the used signals from the Phy will synchronized by a D-FlipFlop with the
rx_clk from the phy.

In this shift register we take the synchronized nibbles and put it in our 32-
bits output signals. If all the signals are filled, we generate an additional
word valid signal (en) to indicate that the 32-bits are ready to read. Since
a frame doesn’t have to be a multiple of 32bit, there is another signal
(byte_valid_nb) to say, which bytes are valid from the sent 32bit data.
Finally the signal rx_dv will also be generated to avoid synchronization
problems between the two boards, so that we have the guarantee that the
rising and falling edge is at exactly the right time.

For the Shift register we have to know, when the data should be shifted.
This is the case when the start of a frame delimiter is detected (after the
preamble and SOF). This bloc generates this impulse if a SOF is detected in
the rx-data signals. This signal will also be sent to the Controller, so that
we do not have to test it again.

The following figure shows the three blocks with the in- and output signals.
All error control signals are just going through, so that the Controller can see directly, when an error

occurred.

Because there are 2 Capture Interfaces (Cl) on the Interface board, the mac data interface bloc is
implemented twice in the CPLD-Design, once for the RX lines and once for the TX lines.

RXD

|

RX_CLK

- ClksOMEZ

o RX_CLK > RX_CLK OUT -
Gy

RX_DV._OUTO > RX DV OUT o

= RX_ER > RX_ER_OUT »

Synchronisation crs > crs _our

coL COL_ouT

< Fig. 6.5 Mac data interface

25.03.2008

-20/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

6.1.6.2 Reduce cross talking

In the finally version of the MP, this implementation was used. In a ribbon cable the signals were parallel
and very close to each other, this affected the signal during transmitting. Therefore there were some
glitches of the signals. To prevent this, | putted between each signal a ground line, that the signals are
shielded from each other. Therefore, the number of signals could not be adapted, some signals are used as
ground between the these lines.

To have a more stable and better synchronized signals, a D-FF and a buffer was inserted on each signal. This
means on all control and data signals from the Phy. This solution was better and eliminated the wrong CRC-
Checks. All packets arrive properly with a right CRC calculation. In the next figure you can see the
implemented buffer and D-FF’s.

RXD

» e RXD(3) Q
- RX CLK -
CIkSOMHZ

»—— OFF

RXD(2)

RX_CLK

-~ reset OFF s
RXD(1) HtToBus RX_ER RX_ER_OUT,

RX_CLK s
CRS CRS OUT o

Sequ
-, reset OFF

Q3 17
coL CoL_ouT

q

- RX_CLK »RX CLK_OUT
14

RX_DV_INT » RX_DV_OUTg,

< Fig. 6.6 Mac data interface

e
o-reset ofF

25.03.2008 -21/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

6.2 FPGA on Dev-board

MP functions will be implemented in the FPGA. The Interface is connected on the user 1/O pins to receive
the packets and also the timestamp. The implemented MP functions are:

- RS422 Receiver for time stamping

- Mll Interface to get the status from the Phy

- Capture Interface to receive and filter the incoming packets

- Sending the captured frames over Ethernet

- Sending and receive control/status messages over UDP/IP

First | would like to give you an overview about the different data packets formats which exist in the MP.
We can separate the packets in measurement frames, control/status frames and intermediate frames. The
last frame format will be generated by the Mac receiver and transmitter, he will store all the packets into a
intermediate buffer, then it is possible to take the data any time, in any order and many times.

6.2.1 RAM Structure

6.2.1.1 Measurement frame

The measurement frame contains the captured frames (CF) and to each frames an additional capture
header (CH) is added, to specify some information’s about the MP and a time will also be added as the
length of the captured frame. In the measurement header (MH) are some additional informations about
the Measurement frame. The entire packet has finally also an Eth header (EthH). The maximum size of a
measurement frame is the same as an Ethernet frame and it can contain 0-1500 bytes of data (captured
header(s), captured frame(s) and measurement header).

In the following section you can see a measurement frame with all his content and a small description.

| mH | cHi | cFi | cHi+1 | cFri+1
14 bytes 20 bytes 36 bytes 0-1444 bytes 36 bytes - 36 bytes -

We have not drawn the SFD (Start of Frame Delimiter) and the Preamble, since this is really Ethernet-
specific and of course all processing of this is done by the hard coded Ethernet MAC. We will now focusing
on the different sections in the packet/frame and explain the details of them.

Ethernet header

CHi+1 CFi+1

| Eth type
2 bytes

| Eth SRC
6 bytes

6 bytes

Eth DST Ethernet Destination address of the computer, were the DPMI run.
Eth SRC Ethernet Source address from this hardware.
Eth type The Ethernet type depends on which kind of packet we want to sent. For

measurement frames which are only Ethernet based, it is 0x0810 (defined by the
DPMI). For the status frames which are IP based it is 0x0800.

25.03.2008 -22/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

Measurement header

CHi+1 CFi+1

Version
8 bytes 8 bytes 12 bytes 4 bytes
Seqnr Sequence number, which increments each time a full packet is sent.
Pktnr Packet number, says how many captured packets are in the frame.
Flush Indicates the last packet.
Version Here it is possible to indicate the version number for the file format which is used.

Capture header

CHi+1

CFi+1

Caplenght

8 bytes 8 bytes 12 bytes 4 bytes 4 bytes
Cl-id Captured interface id, it identifies the Cl where the frame was caught.
MAMP-id This field identifies the MP, were the frame was caught.
Time The Time field is divided into a 4 bytes value which indicated the time in
seconds and an 8 byte value, which indicates the time in picoseconds.
Lenght Indicates the length of the whole frame.
Caplenght Indicates which length of the frame is being captured.

It has to be mentioned, that the Cl-id and the MAMP-id in this headers are human readable, therefore are
the different fields quite large.

Capture frame

| EthH | mH | cHi | cFi CHi+1 CFi+1 CHj CFj

| Data
0 - 1430 bytes

| Eth type
2 bytes

6 bytes 6 bytes

In this part is a captured packet stored. The preamble, the SOF and also the CRC will be removed. If we do
not want a full frame catch, we store just the number of bytes indicated in the caplen of the filter.

25.03.2008 -23/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

6.2.1.2 Control and Status frames

All control and status frames were sending to the DPMI interface over IP/UDP. The status messages will be
sent from the MP to the DPMI to indicate the current state of the MP.

The control messages will initialize the MP on the DPMI. It provides several status information’s. There exist
other control messages, but because the receiving part of the MArN interface is not yet finished, this
messages are not implemented. In the other control messages can be found several information’s, like flush
buffers, add- , remove- or change filters.

In the following pictures all field are explained in detail, the EthH rests the same as in the measurement

frame.

| EthH | 1Pheader | UDP header | Data
14 bytes 20 bytes 8 bytes 0-1472 bytes
IP header

The IP header has the IPv4 format.

‘ EthH | IP header | UDP header | Data

Version Offset Protokol | Checksum IP source | IP dest
4 bit 4 bit 1 byte 2 bytes 2 bytes 3 bit 13 bit lbyte 1 byte 2 bytes 4 bytes 4 bytes

- Version: IP header version, always version 4.

- IHL: IP header length, length of the header.

- TOS: Type of service, not used here.

- Length: Total length of the entire packet.

- ID: Identification, for reassembling of IP-packets. It is not used here

- Flags: Flags for the reassembling, not used.

- TTL: Time to live, always 128.

- Protocol: Identify the next protocol, in this case udp, value 17.

- Checksum: Header checksum, it is the once complement of the one’s complement sum of the IP
header. It is defined in the RFC 791 standard.

- IP-source: IP source address, little endian.
- IP-dest: IP destination address, little endian.
UDP header

Inside the IP data is a UDP header

IP header UDP header | Data

Destination Port | length | Checksum _

Source port

2 bytes 2 bytes 2 bytes 2 bytes
- Source port: Source port number, always 0.
- Destination port: Destination port number, always 1600.
- Length: Size of the UPD-header and data in octet.
- Checksum: The checksum is the ones complement of the ones complements sum of the UDP-

pseudo header, the UDP header and the data. It is defined in RFC 768 standard.

25.03.2008 -24/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

Fields of the UDP checksum
IP source address
IP destination address UDP pseudo header
IP Protocol UDP length

UDP source port UDP destination port
UDP length Data

UDP header + data

2 bytes 2 bytes

Status messages

Like mentioned above, these messages are send by the MP to the DPMI every second, it indicate the status
of the MP. The information’s are given in the data section of the frame described above.

Msg_type MAMPid No_filters Matched No_ClI Cl_msg
4 bytes 16 bytes 4 bytes 4 bytes 4 bytes 30 bytes
- Msg type: Identification of the message type, for status messages always 2.
- MAMPid: MP id, always “FPGAMPQ”.
- Nofilter: Number of active filters in this case max 2.
- Matched: Number of packets who pass a filter.
- NoC Cl Number of active Cl, max 2.
- Clmsg: An optional message for the DPMI. In this case, it is always “STATUSMESSAGE”.

6.2.1.3 Intermediate frame

Inside the MAC-receiver and -transmitter are dual port buffers integrated, they store the intermediate
frames. All the received packets from MAC-receiver are stored inside the rx-buffer, also the frames ready to
sent will be stored with the same frame structure inside the tx-buffer.

It also adds a frame header (FH) if the packet was received or stored properly or an error header (ErrH) will
be added, if there was an error during packet receiving. There are two different structures, one if the frame
is valid and the other if an error is occurred. At the end of a packet structure or an error structure there is
always an empty header (EH) which represent the frame header or error header of the next packet
structure.

Valid frame structure

FH | Frame data | EH
The valid frame structure contains a frame header, the frame data and an empty header which represent
the space for the frame header of the next frame structure.

Error frame structure

ErrH EH
In this version of the MP the empty header is not intended to use. But in further version it can be used to
know, in how many packets an error was occurred during the sending, or receiving, and also which kind of
error.

Frame header

| Frame length
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit9 -0

Header valid The header valid bit indicate, when the valid frame is ready to read.
Frame length The length of the frame data is stored in these nine bits. It shows the offset to the
next header.

25.03.2008 -25/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

Error header

‘ Header valid | Error name 0 0 | Error number
Bit 15 Bit 14 — 12 Bit 11 Bit 10 Bit9 -0

Header valid The header valid bit indicate when the frame is being processed, but an error is
occurred.

Error name It exist 4 different types of error, which can be
“000” : nothing / “001” : CRC error / “010” : Rx error / “100” : buffer is full

Empty header

Bit15-0

The empty header is always at the end of a structre and represent the space for the next frame header.
Therefore, it is filled with Zeros.

6.2.1.4 Filter data base structure (FDB)

In this buffer the filterrules are stored. The received filterrules will be converted into this structre, which
contains 4 entries per Ram line. Each filter has a value and a mask with a size of 16bits so that it is possible
to read the two buffers at the same time, the buffer must have a databus of 64bits. Each filter has a size of
84 bytes (42 bytes mask and 42 bytes value), therefore both filter occupied 21 RAM lines.
The system is build for an easy enlargement. Because the minimal size of an internal RAM is 2kbyte and we
just use 21 Ram lines in the actual filter, it remains 235 lines in the RAM. Theoretically, if there are two
filters implemented, the first 512bytes of a PDU could be filtered.

Ram line structure

Value filterl | Mask filterl | Value filter2 | Mask filter2

2 bytes 2 bytes 2 bytes 2 bytes
Value This 2 bytes value shows the desired packet content
Mask In the mask is defined, which bits should be checked

6.2.1.5 Dataflow

The data goes through the different blocks, each block adds an additional header to the measurement
frame.

The Rx- and Tx-buffers contains the intermediate frames with the FH or ErrH. The Filter bloc adds the CH
and the Cl-demux bloc adds the MH to the frames and store it into the Filterbuffer.

The control and status messages are generated directly in the sender and will put into the Tx_buffer at the
right time.

In the next picture you can see an overview, when which header will be added.

TSC

Controller — fHy

Receiver

I

\
1
1
1
1
1
1
|
1
! Transmitter
1
1
1
1
1
1
|
1
’

Rx-buffer

FDB Filter-buffer

Tx-buffer
< Fig. 6.7 Bloc diagram of the dataflow inside the FPGA

25.03.2008 -26/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

6.2.2 Top-level

The top-level of the FPGA design contains the entire logical blocks from the MP. Each bloc will be described
in detail in the following section.

The next picture shows an overview about the entire top-level design in the FPGA. It has to be mentioned
that there were 3 different designs implemented. One with the 32 bit input and the other with a 4 bit input
in the Cl. The explained design is with the 4bit version.

Cl-Demux UART output
Capture interface 1 Add CH & MH
Filter Ctrl
buffer 1 filter
—_—
Cl1 Input Synch Receiver Filter
— - Ctrl
| —— f
) ~— ilter 1
| T
1
I
25MHz! 50MHz 1 T
Contra] Output-choice
Conversion Arbiter
Filterrules i
FPI Input Ctrl FDB Ctrl ™ l
FDB FDB
\ — Ctrl
filter 2 |
l sender
1
Filter o h
trl
Capture interface 2 Ruffer 2 filter |
)
—» :
CI2 Input
P Synch Rectleiver Filter e
' 50MHz,25MHz
)
]
|
1
25MHz, 50MHz
RS422 datasignals o TSC Reset

synch

<" Fig. 6.8 Bloc diagram of the capture interface, the demux and the filters

The system is build for an easier enlargement of the number of Cl and filters in another hardware. In the
used FPGA, the number of Cl is fix defined, because of the Interface board which provides two CI. Also the
number of filter cannot be greater than two in the actual FPGA, because the numbers of available internal
RAM’s were limited. To increase the number of Cl it is necessary to adapt the Arbiter, the Cl-demux and just
copy the Cl-bloc.

25.03.2008 -27/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

6.2.3 ResetGen

Because in the FPGA are four main clocks signals, the reset signal has to be synchronized with each clock,
and connected to the belonging blocs. It contains some D-FF with different clock inputs.
In the following table you can see all the signals of this bloc.

| Signal Type (direction, type) Description
Reset input
Reset In, std_logic Reset signal, connected to the reset button
Reset for systemclock
Clock In, std_logic 50Mhz systemclock input
Clk_reset Out, std_ulogic Clock synchronized reset signal
Reset for CI1 interface
Rx_clk_a In, std_logic 25MHz CI1 clock signal
Rx_clk_a_reset Out, std_ulogic CI1 clock synchronized reset signal
Reset for CI2 interface
Rx_clk_b In, std_logic 25MHz CI2 clock signal
Rx_clk_b_reset Out, std_ulogic CI2 clock synchronized reset signal
Reset for transmitter
Tx_clk In, std_logic 25MHz transmitter clock signal
Tx_clk_reset Out, std_ulogic Transmitter clock synchronized reset signal

< Fig. 6.9 Table I/0 signals resetgen

6.2.4 Capture interface

The capture interface (Cl) receives all packets from MArN, perform a CRC-check and store it into an
intermediate buffer. After that, the packets will be filtered and the CH will be added with the exact
timestamp, if the filterbuffer’s are not used by the other Cl, he send the packets to the CI-Demux. A capture
interface can just listen to one channel.

This block contains a synchronization, a Mac-receiver and a filter. The receiver has a two-port buffer which
works like an endless queue. When a packet arrives, the Mac receivers store it into the buffer and perform
the CRC-check.

As soon as the whole packet is stored, a flag in the frame header will be set, that the filter know, the frame
is ready and valid. If the filter buffers are also ready to store a new packet, the filter takes the packet,
performs the filtering and sends it forward to the CI-Demux.

In the following sections, each block will be described carefully.

6.2.4.1 Synchronization

The synchronization-block is to avoid synchronization problems with the data, which are coming from
Interface-board. Like in the CPLD, the signals will synchronized with the receiver clock coming from the
Interface board. All of the following signals will be synchronized.

| Signal _Type (direction, type) _ Description
Data signals
Rx_data In, std_logic_vector(3 DOWNTO 0) 4bit data signals
Control signals
Rx_dv In, std_logic Data valid signal
Rx_er In, std_logic Error signal

< Fig. 6.10 Table Input signals synchronisation

25.03.2008 -28/49 -

| Frame Capturing and Sending in FPGA

Zahno Silvan

6.2.4.2 Receiver

For the Eth receiver it was possible to take a core that was already made by the school in Switzerland. |
made some changes to adapt it to my design and hardware, but the system remains the same. The receiver
takes data from the Interface-board and saves them in a RAM, if the CRC-check was correct. A RAM
structure is created to recognize what is saved. & See chapter 6.2.1.3 Intermediate frames

To read the correct data from the RAM, it is necessary to set the signals: base address and address. It gives
also a start of frame signal to the TSC that he knows, when exactly the frames arrived.

For additional information’s about the receiver, have a look at appendix 7.

<= Appendix 7 SimAP Design report

The changes include the following blocs:
The reset synchronization bloc was moved into the resetgen bloc, in the Toplevel, to combine

all the reset synchronization’s in one bloc

Replaced the Xilinx buffer by an Actel dualport buffer
Some small changes in the nibble_to_byte (4bit => 8bit) and byte_to_word (8bit => 16bit) bloc

to avoid synchronization problems

Add the save_time signal for an exact timestamping

In the next table shows you the I/0O signal of this bloc

Signal

Rx_data
Rx_dv
Rx_er

Address
Baseaddr

Data_out
Save_time

Start_of_frame

Type (direction, type)

From synchronization
In, std_ulogic_vector(3 DOWNTO 0)

In, std_ulogic
In, std_ulogic

To/from filter
In, std_ulogic_vector(9 DOWNTO 0)
In, std_ulogic_vector(9 DOWNTO 0)

Out, std_ulogic_vector(15 DOWNTO 0)

Out, std_ulogic

Out, std_ulogic

Description

4bit data signals
Data valid signal
Error signal

Actual read address of the filter

Boarder address for the write access of the buffer.
The receiver can write till this address

Read data output of the buffer

Signal to indicate that a frame is completely stored
in buffer, and the time can be saved.

To know when the a frames is arrived, It will be set
during the start of frame delimiter (5D)

< Fig. 6.11 Table 1/O signals receiver

A schematic overview about the bloc inside the receiver is given below.

start of frame, save time

Data | _ baseaddress
synch o
)
y |
ddta
4bit RX data Nibble to R ‘ X = Muxram | {ata
eceiver " ;
byte controller — data
RX control address DpP
buffer |
. address
byte ‘} CRC ok '
]
]
CRC32 !
25MHz |50MHz
< Fig. 6.12 Table 1/0 signals receiver
25.03.2008 -29/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

6.2.4.3 Filter

All received packets from the receiver are stored inside the DP-buffer. As soon as a frame is finished, it will
update the frameheader. When the filterbuffers are not used by the other Cl, the filterbloc will read the
ready frame and give it to the Cl-Demux to store it into the filterbuffer. At the same time it will also
perform the filtering as well as the CH will be added if the frame is properly stored.

At the beginning we do not know to which filterbuffer(s) the packet belongs, therefore it will be written
first in both filterbuffers, if the filtering says that is just for one or none filterbuffer, we jump to the
beginaddress in this buffer and the already written frame-part is erased.

In the following pictures you can see the table of I/O signals, the schematic and also the statemachine of
the bloc filter_heart.

~In the next table shows you the I/0 signal of this bloc

Type (direction, type) Description
To/from Receiver

Baseaddr Out, std_ulogic_vector(9 DOWNTO 0) The receiver can write data till he reach this addr
Address Out, std_ulogic_vector(9 DOWNTO 0) Actual read addr of the filter
Data In, std_ulogic_vector(15 DOWNTO 0) Read data-bus from the buffer inside the receiver
Read_en In, std_ulogic Read enable from the buffer inside the receiver
Start_of_frame In, std_ulogic SOF signal to know exactly when a packet is arrived
Save_time In, std_ulogic Signal that say that a packet is safely stored in the

buffer, the SOF time can be saved

To/from Arbiter
Ci_id In, std_ulogic To identify which Cl it is
Req_filter Out, std_ulogic Signal to request a filter and the filterbuffers
Av_filter In, std_ulogic To accept the filter request
End_filter In, std_ulogic Indicate the end of the filtering
Mask1 In, std_ulogic_vector(15 DOWNTO 0) Mask of filter 0
Valuel In, std_ulogic_vector(15 DOWNTO 0) Value of filter 0
Mask2 In, std_ulogic_vector(15 DOWNTO 0) Mask of filter 1
Value2 In, std_ulogic_vector(15 DOWNTO 0) Value of filter 1
Caplen_filter0 In, std_ulogic_vector(9 DOWNTO 0) Capture length of filter 0
Caplen_filterl In, std_ulogic_vector(9 DOWNTO 0) Capture length of filter 1
To/from Cl-Demux

Data_ready Out, std_ulogic Say when data_out can be read
Data_out Out, std_ulogic_vector(15 DOWNTO 0) Data output
Filtermatch Out, std_ulogic_vector(1 DOWNTO 0) Signal to indicate to which filter the packet match

filtermatch(0) => filter O

filtermatch(1) => filter 1
WriteCH Out, std_ulogic Indicate the writing of the CH
End_writeCH Out, std_ulogic Indicate the end of writing the CH
Not_free_Ram In, std_ulogic Indicate that the filterbuffer is full
Packet_error Out, std_ulogic Indicate an error. This signal goes also to the

Arbiter. That he knows that the buffers are not

used anymore.

To/from TSC

Timestamp In, std_ulogic_vector(95 DOWNTO 0) Timestamp

<" Fig. 6.13 Table I/0O signals receiver

25.03.2008 -30/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

address, baseaddress

length | Filter address

registers

f

Filter error =
No match registers

Filter heart

ram_full_error
filtermatch, packet_error

data Header ctrl
_»

mask 0

value 0 Compare
data

data . filterO

writeCH, end_writeCH

req_filter, av_filter, end_filter, caplenfilter0 & 1

mask 1
valuel Compare
—_— g
data filter1 seldata, data_ready data read
data w| Muxdata data_out
- toram —————
timestamp

ci_id, start_of frame, save_time

CH header CH frame
gen gen

Yy

- Header ctrl:

- Compare filter:

- CH header gen:

- CH frame gen:

- Filter addr reg:

- Filter error reg:

- Mux data to ram:
- Filter heart:

< Fig. 6.14 Block schema of filter

Reads the data and control, if the frame- or error-header is valid. If it is a
frameheader, it also reads the length of the packet and gives it to the
filter-address reg and heart.

This block performs the filtering, he takes the data, put the mask on it and
compares with the value. There are two blocks, one for each filter.
Generates the values for the CH frame gen bloc. For the timestamping is an
array of 31 std_ulogic_vector(64 DOWNTO 0) implemented, who works like
an endless queue. If the SOF signal arrive he store the actual time in the
temporary signal, after that if the save_time signal arrive | will be finally
stored into the array to use in the appropriate CH. The array has 31
entrances because there can be max. 31 frames in the receiver buffer.

If the heart indicate to write the CH, he write the whole CH with the values
from the CH header gen.

Because we do not have registers inside the statemachine, for all the
addresses the filter addr reg was created. He manages the actual addr and
the baseaddr for the read access on the buffer inside the receiver. The
heart can perform some actions on the addresses, like increment,
decrement, jumpCH, save_begin, save_end, load_begin, load_end.

This registers stores all errors, if the filterbuffer is full, the ram_full_error
signal will indicate it. If we have no filtermatch, the no_match signal will be
set. In each case, if an error occurred, the packet_error signal will indicate
it to the other blocs.

The filter-heart can select, if the data or the CH_data should go to the ram.
In the filter heart is a statemachine, which controls all the other blocs
inside the filter. He waits for a valid frame, takes it, perform the filtering
and send it to the Cl-demux, at the end a CH will be added. Before he writes
something into the filterbuffer(s) he asks for permission to the Arbiter. In
the following picture you can see the statemachine.

25.03.2008

-31/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

End CH

Load baseaddr

| Read header

rame @@Ild

Error headjdlld
Update baseaddr |,
error header Save frame

Jump header |

\
| \
else \

\Walt end write CH

\
/ Ram fuNl \\
/ | \
[else \
m " Ramful

| End read frame |

Enable
filterbuffers

[Enable read and
filtering

—“**\

< Fig. 6.15 Statemachine filter_heart

available

6.2.5 Conversion filterrules

This bloc converts the given filterrules into a mask and a value, which will be stored in the FDB. To see the
ram structure of this buffer, go to chapter 6.2.1.4 Filterdatabase.

Because the first 42bytes of a packet will be filtered, each filter contains a mask and a value of 42 bytes.
The mask say which bits should be compared with the value. At the moment all the filters are static and
cannot be changed during the runtime of the MP. To change a filter, the FPGA has to be reprogrammed.

6.2.6 Arbiter

In the FPGA are 2 Cl implemented which are using the same filters and filterbuffer’s. Therefore it is
necessary to have a system that choose which Cl can be active and have the permission, to write into the
filterbuffer’s. In this case in the arbiter-bloc is a round-robin algorithm implemented. When just one Cl
request for a filter, the arbiter gives him the permission, but if both ClI wants to use the filterbuffer’s he
choose the active Cl with the round robin algorithm. We have an internal register, where is stored which Cl
got the permission before.

If a Cl is active the arbiter reads the filterrules from the FDB and gives the masks and the values of both
filters to that Cl. To see the FDB buffer structure look at chapter 6.2.1.4 Filterdatabase.

On the figures below you can see the I/0 signal table and the statemachine of the arbiter.

25.03.2008 -32/49 -

| Frame Capturing and Sending in FPGA

Zahno Silvan

Signal Type (direction, type) Description
To/from Filterrule-buffer
RD In, std_ulogic_vector(15 DOWNTO 0) Databus of the filter database
REN Out, std_ulogic Read enable signals of the filter database
RADDR Out, std_ulogic_vector(9 DOWNTO 0) Read addrbus of the filter database

From Conversion_filter

Caplen_filterl

In, std_ulogic_vector(9 DOWNTO 0)

Capture length input of filterl

Caplen_{filter2

In, std_ulogic_vector(9 DOWNTO 0)

Capture length input of filter2

To/from Capture interface 0 & 1

Req_filter_ci0 In, std_ulogic With this signal the CIO can request the filterbuffers
Av_filter_ci0 Out, std_ulogic To give the write permission for the filterbuffers to CIO
End_filter_ci0O Out, std_ulogic To indicate the end of the filtering for CIO
Req_filter_cil In, std_ulogic With this signal the CI1 can request the filterbuffers
Av_filter_cil Out, std_ulogic To give the write permission for the filterbuffers to CI1
End_filter_cil Out, std_ulogic To indicate the end of the filtering for CI1

Mask1 Out, std_ulogic_vector(15 DOWNTO 0) Mask of fiterl

Mask2 Out, std_ulogic_vector(15 DOWNTO 0) Mask of fiter2

Valuel Out, std_ulogic_vector(15 DOWNTO 0) Value of fiterl

Value2 Out, std_ulogic_vector(15 DOWNTO 0) Value of fiter2

Caplength_filterl

Out, std_ulogic_vector(9 DOWNTO 0)

Capture length of filterl

Caplength_filter2

Out, std_ulogic_vector(9 DOWNTO 0)

Capture length of filter2

Packet_error_ci0 In, std_ulogic Indicate an error during filtering in CIO
Packet_error_cil In, std_ulogic Indicate an error during filtering in CI1

To/from Cl-Demux
Buffer_ready In, std_ulogic This signal indicate that the filterbuffers are not used

by any CI.

Seldata Out, std_ulogic_vector(1 DOWNTO 0) These 2 bit indicate the active Cl
< Fig. 6.16 Table 1/0 signals arbiter
ach end filter or Buffer ready
packet error
else
Tread data Buffer ready
Pagket error
CI2 reglest
Read data
< Fig. 6.17 Statemachine arbiter
25.03.2008 -33/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

6.2.7 Cl-demux

If a Cl is active, the data and the CH will be sent to the Cl-demux. Which forward it to the appropriate
filterbuffer(s). After a successful copy in the filterbuffer, he checks, if there is still enough space for another
frame of a caplength size with the belonging CH. If one or both filterbuffer’s are full, he adds the MH at the
beginning and sends the flush_buffer signal to the sender. He will take the data and sends a flush_ok back.
After that the buffer is ready for new packets from the Cl. In the next pictures, you can see the I/O table
and an overview about the sub bloc’s in the Cl demux, they will be explained in detail below.

Because two filterbuffer’s are implemented in the system, the Cl-demux has for each filterbuffer a separate
address register and an error register to store the different addresses and errors

Type (direction, type) Description
To/from Arbiter
Buffer_ready Out, std_ulogic This signal will be set if the filterbuffer are not used
Seldata_arbiter In, std_ulogic_vector(1 DOWNTO 0) Indicate which Cl is active bitO for CI0 and bit 1 for CI1
Caplen_filter0 In, std_ulogic_vector(9 DOWNTO 0) Capture length of filterO
Caplen_filterl In, std_ulogic_vector(9 DOWNTO 0) Capture length of filterl
From Capture interface 0
Logger_data_ci0 In, std_ulogic_vector(15 DOWNTO 0) Data from CIO
Data_ready_ci0 In, std_ulogic Say when the data is ready to read
writeCH_ci0 In, std_ulogic To write the CH
endCH_ci0 In, std_ulogic End of writing CH
Filtermatch_ci0 In, std_ulogic_vector(1 DOWNTO 0) That that Cl-demux knows in which buffer the data has
to be forwarded
Packet_error_ci0 In, std_ulogic If an error occurred this signal will be set
From Capture interface 1
Logger_data_cil In, std_ulogic_vector(15 DOWNTO 0) Data from CI1
Data_ready_cil In, std_ulogic Say when the data is ready to read
writeCH_cil In, std_ulogic To write the CH
endCH_cil In, std_ulogic End of writing CH
Filtermatch_cil In, std_ulogic_vector(1 DOWNTO 0) That that Cl-demux knows in which buffer the data has
to be forwarded
Packet_error_cil In, std_ulogic If an error occurred this signal will be set
To Filterbuffer 0
WEN_filter0 Out, std_ulogic Write enable of filterbuffer0
WADDR_filter0 Out, std_ulogic_vector(9 DOWNTO 0) Actual write address of filterbufferO
WD _filter0 Out, std_ulogic_vector(15 DOWNTO 0) Data lines of filterbuffer0
To Filterbuffer 1
WEN_filterl Out, std_ulogic Write enable of filterbufferl
WADDR_filterl Out, std_ulogic_vector(9 DOWNTO 0) Actual write address of filterbufferl
WD _filterl Out, std_ulogic_vector(15 DOWNTO 0) Data lines of filterbufferl
To/from Output Choice (forward to sender)
Flush_buffer Out, std_ulogic_vector(1 DOWNTO 0) Indicate which buffers has to be flushed by the sender
Flush_ok In, std_ulogic_vector(1 DOWNTO 0) Confirmation of buffer-flush
Not_free_ram Out, std_ulogic Error signal if buffer in sender is full
End_addr_filter0 Out, std_ulogic_vector(9 DOWNTO 0) End of the data in filterbuffer0
End_addr_filterl Out, std_ulogic_vector(9 DOWNTO 0) End of the data in filterbufferl

<" Fig. 6.18 Table I/O signals ci-demux

25.03.2008 -34/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

caplen_filterl WADDR_filter0
end_addr_filterQ

caplen_filter0 Addr registers Error registers

filter0O filter0

' WADDR_filterl
Addr registers end_addr_filterl
filterl o

f

Error registers
filterl

buffer_ready ay
- -demux

heart

control signals ci0

control signals cil ;'

flush_buffer, flush_ok, not_free_ram

seldata_arbiter seldata
logger_data_ci0 + WD_fiI’FerO
data_ready_ci0 Mux CI data_ci, data_ready_ci o{ bl WEN_filter0

logger_data_cil

filter WD_f|Iter1
data ready cil MH header ~#——1— MH frame | —— WEN_filter
gen filter0 ~e——"T— gen filter0

MH header ~#————* MH frame
gen filterl —~e————— gen filterl

< Fig. 6.19 Block schema of Cl-demux

- MuxCl: Because there are 2 Cl implemented, the Arbiter choose, which one should
be active, he set also the seldata_arbiter to forward the right data lines to
the buffer.

- Demux filter: The heart choose with help of the filtermatch signal, in which buffers the

data should go, it can be just one or both filterbuffer’s at the same time.
With this bloc we choose also which input we want to store. It can be the
data from the Cl or one of the MH-data.

- MH headergen filter0 & 1: In this bloc all the values of the MH will be generated. If a new
Measurement frame will be created the MH_frame_gen bloc
indicate with a signal to increment the sequence-number, and the
Cl-demux_heart set a signal to indicate to increment the number of
packets.

- MH framegen filter0 & 1: If a filterbuffer is full, the heart set the writeMH signal. This bloc
take all the values from the MH headergen bloc and write it in the
filterbuffers, after finishing, the end_writeMH signal will be set, so
that the heart can go on and flush the buffer.

- Addr registers filter 0 & 1: Due to not have registers inside the statemachine, for all the
addresses, the addr registers were created. It will save the begin-,
end- and actual addresses, it is also responsible to check if there is
enough space in the filterbuffer for another packet of the caplength
size. For each filterbuffer we have one address registers. The heart
can perform some actions on the addresses, like increment,
decrement, jumpCH, jumpMH, save_begin, save_end, load_begin,
load_end, load_MH and en_check_space.

- Error registers filter 0 & 1: If the filterbuffer is full, it receives the ram_full_error signal from
the address register and if the error is enabled by the heart, it will
be stored and sent to the heart.

25.03.2008 -35/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

- Cl-demux heart: The heart contains a statemachine, which controls all the other bloc’s in the
Cl-demux, he will fill the filterbuffer’s, add the MH if it is full and send the
flush signal to the sender. In the following picture you can see the
statemachine.

End fvrite MH
else

Write frame

Packet error

Load end packet

Packet error

Get next addr CH

else N\,
o
Check ram used Data ready

End frame

)

< Fig. 6.20 Statemachine Cl-demux_heart

6.2.8 Output-choice

To have an easier debug possibility in the MP, the Output-choice bloc was created. By pushing the button0
on the board, the output format can be changed from Ethernetframes to UART. It has to be mentioned,
that the UART is not that fast as the Ethernet output, therefore the MP will not work on fullspeed, the
performance will be much lower and some frames can be lost, due to the UART transmission which takes
more than 800 times longer than the 100Mbps Ethernet. The output-choice button should just pressed in
case of a restart of the system, it may gives some errors, if the button is pressed during the MP is running.
In the table below you can see the I/O signal table of this bloc.

| Signal _Type (direction, type) _ Description
From Button

switch In, std_logic To change between UART- and Ethernet-output

1 => Ethernet (default)

0 => UART

To /from Cl-demux
Flush_buffer In, std_ulogic_vector(1 DOWNTO 0) Indicate which buffers should be flushed
Flush_ok Out, std_ulogic_vector(1 DOWNTO 0) If the flush is done, flush_ok <= flush_buffer
To Filterbuffer0

RADDR_filter0 Out, std_ulogic_vector(9 DOWNTO 0) Read address of filterbuffer0
REN_filter0 Out, std_ulogic Read enable signal of filterbuffer0

25.03.2008 -36/49 -

Frame Capturing and Sending in FPGA Zahno Silvan

To Filterbufferl

RADDR_filter0

Out, std_ulogic_vector(9 DOWNTO 0) Read address of filterbufferl

REN_filter0

Out, std_ulogic Read enable signal of filterbufferl

To/from UART transmitter

Flush_buffer_UART

Out, std_ulogic_vector(1 DOWNTO 0) Indicate which buffers should be flushed

Flush_ok_UART In, std_ulogic_vector(1 DOWNTO 0) If the flush is done, flush_ok <= flush_buffer
RADDR_filter0O_UART In, std_ulogic_vector(9 DOWNTO 0) Read addr of filterbuffer0 from UART transmitter
REN_filter0_UART In, std_ulogic Read enable of filterbuffer0 from UART transmitter
RADDR_filter1_UART In, std_ulogic_vector(9 DOWNTO 0) Read addr of filterbufferl from UART transmitter
REN_filterl_UART In, std_ulogic Read enable of filterbufferl from UART transmitter

To/from Sender

Flush_buffer_sender

Out, std_ulogic_vector(1 DOWNTO 0) Indicate which buffers should be flushed

Flush_ok_sender In, std_ulogic_vector(1 DOWNTO 0) If the flush is done, flush_ok <= flush_buffer
RADDR_filter0_sender In, std_ulogic_vector(9 DOWNTO 0) Read addr of filterbuffer0 from sender
REN_filter0_sender In, std_ulogic Read enable of filterbuffer0 from sender
RADDR_filterl_sender In, std_ulogic_vector(9 DOWNTO 0) Read addr of filterbufferl from sender
REN_filter1l_sender In, std_ulogic Read enable of filterbufferl from sender

6.2.9 Sender

< Fig. 6.21 Table 1/0 signals output-choice

The sender flushes the filterbuffer’s if the signal flush_buffer is set, all the data from the filterbuffer will be
copied in the transmitter-buffer as well as the Ethernetheader (EthH) will be added. The EthH is statically
and cannot be changed during runtime of the MP. After that, the flush_ok signal will be set, to indicate to
the Cl-Demux, that the filterbuffer’s are empty and can used for new packets. In the figures below, you can
see the 1/O signal table and a schematic overview about the different subblocs in the sender.
The sender has for each accessed filter an address register, for the transmitterbuffer is also an errorregister
added to store the ramfull error.

| Signal Type (direction, type) Description
From Cl-demux
End_addr_filter0 In, std_ulogic_vector(9 DOWNTO 0) Last used address in the filterbuffer0
End_addr_filterl In, std_ulogic_vector(9 DOWNTO 0) Last used address in the filterbufferl
Incr_matched In, std_ulogic Increment number of frames who passed a filter
To/from Phy (Toplevel)
Tx_error In, std_logic If an error occurred during transmitting the phy will set
this signal
Tx_clk In, std_logic 25MHz transmitting clock from the phy
Tx_reset In, std_logic Reset signal who is synchronized with the tx_clk
Tx_enable Out, std_logic To enable the phy for transmitting a packet
Tx_data Out, std_logic_vector(3 DOWNTO 0) Data lines for the phy

To/from Output choice

RADDR_filter0

Out, std_ulogic_vector(9 DOWNTO 0) Read address of filterbuffer0

REN_filter0 Out, std_ulogic Read enable signal of filterbuffer0
RADDR_filterl Out, std_ulogic_vector(9 DOWNTO 0) Read address of filterbufferl
REN_filterl Out, std_ulogic Read enable signal of filterbufferl
Flush_buffer In, std_ulogic_vector(1 DOWNTO 0) Indicate which buffers should be flushed
Flush_ok Out, std_ulogic_vector(1 DOWNTO 0) If the flush is done, flush_ok <= flush_buffer

From Filterbuffer0
RD_filter0 Out, std_ulogic_vector(15 DOWNTO 0) Data lines of filterbuffer0

From Filterbufferl
RD_filterl Out, std_ulogic_vector(15 DOWNTO 0) Data lines of filterbufferl

<" Fig. 6.22 Table I/O signals sender

25.03.2008 -37/49 -

Frame Capturing and Sending in FPGA

Zahno Silvan

end_addr_filterl

~_RADDR_filterl

end_addr_filter0
~_RADDR_filter0

R

= Addr registers Addr registers

filter0O filterl

Addr registers
transmitter

~_REN_filter0 & 1, flush_ok
flush_buffer

Transmitter

f

RD_filter0
RD_filterl

Eth-Header
gen

i—lv Y

Incr_matched ' Status-message
gen

(o

- Addr registers filterO & 1:

- Addr registers transmitter:

- Error register transmitter:

- Eth-header gen:

- Status-message gen:

- Mux data to ram:

- Transmitter:
- Transmitter controller:

o ‘ Controller

seldata
| |

I control tx_data

» Transmitter

-

Mux data data tx_control
to ram

Error registers
transmitter

Y

Fig. 6.23 Block schema of sender

For each filterbuffer an address register, for the read access was
created. The transmitter controller can perform the increment or
reset of the address registers.

For the Tx-buffer in the transmitter, an address register was created
to store the actual-, begin- and end-address of a frame. The
transmitter controller can perform some actions on the addresses,
like increment, decrement, save_begin, save_end, load_begin,
load_end.

If the Tx-buffer is full, it receives the ram_full_error signal from
the address register and if the error is enabled by the controller, it
will be stored and sent to the controller.

This bloc generate the Ethernet header. The Ethernet destination
and source addresses are fixed. The value of the Ethernet type
depends on which frame will be sent. For a measurement frame
0x0810 and for a status frame 0x0800.

This block generates the UDP/IP headers fields and the data for the
statusmessage, each second it will indicate to the controller that he
will write the message into the Tx-buffer. The IP and UDP checksum
will dynamically calculated, if something changes in the message.
The transmitter controller can choose which data should go to the
Tx-buffer. It can be the Ethernet data, the filter 1 data, the
filter 2 data or the status message data.

Further information see Chapter 6.2.9.1 below.

Inside the transmitter controller a statemachine is implemented,
which controls all the blocks inside the sender. First, the Ethernet
header will be written into the Tx-buffer then he will wait for a
message to send. This can be either a measurement frame or a
status message. In the following picture you can see the
statemachine of the transmitter controller.

25.03.2008

-38/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

Save addr

\Write valid header|

Jump to header

Write
er Lstatusmessage

Set
statusmessage

Ram\ full error

Ram full error Ram full error

End filter
ead filterdata
else ‘

Reach end

End filter

Write filterdata

Get next addr
filterdata

nd statusmessage

< Fig. 6.24 Statemachine transmitter_controller

6.2.9.1 Transmitter

The transmitterblock is made by the school in Switzerland, like in the receiver, | made just some
adaptations for my design. For additional information’s about the transmitter, have a look at appendix 7.
Inside the transmitter is a dualport buffer, which stores all the Ethernet frames to send. To see the
structure of this buffer, have a look at Chapter 6.2.1 Intermediate frames.

<= Appendix 7 SimAP Design report
The changes include the following blocs:
- The reset synchronization bloc was moved into the resetgen bloc in the top-level to combine all
the reset synchronization’s in one bloc.

- Replaced the Xilinx buffer by an Actel dual port buffer.

In the next table shows you the I/O signal of this bloc

25.03.2008 -39/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan
Signal Type (direction, type) Description
To/from Phy (Toplevel)
Tx_error In, std_logic If an error occurred during transmitting the phy will set
this signal
Tx_clk In, std_logic 25MHz transmitting clock from the phy
Tx_reset In, std_logic Reset signal from the phy
Tx_enable Out, std_logic To enable the phy for transmitting a packet
Tx_data Out, std_logic_vector(3 DOWNTO 0) Data lines for the phy

To/from transmitter controller

End_of_frame

Out, std_ulogi

ic Indicate the end of transmitting of a frame

Not_set_ram

Out, std_ulogi

If the data should not taken from the buffer but from
the datalines directly

IC

Write_ram In, std_ulogic Enable write signal for the transmitter-buffer
To/from address registers
Address In, std_ulogic_vector(9 DOWNTO 0) Actual write address of the transmitter-buffer
Base_addr Out, std_ulogic_vector(9 DOWNTO 0) Address till the transmitter controller can write new
packets to send
To/from muxram to data
Data In, std_ulogic_vector(15 DOWNTO 0) Write data-lines for the transmitter-buffer

o F

ig. 6.25 Table I/0 signals transmitter

A schematic overview about the bloc inside the receiver is given below.

base address
~if———

data
write ra
address

Data

base address

synch

_/

Data
synch

A

Tx data

Byte to
nibble

‘| Transmit

controller

data

Tx control
address

50MHz, 25MHz

end of frame, not set ram

i TCrC32

CRC3

The sent packets from the transmitter was captured by a PC
22

< Fig. 6.26 Block schema of transmitter

0000

with the program Wireshark
22 10 00 00 .
EthH
MH
CH

Data

eieii. ..5.%.0
Ethernet testfra

Ethernet
me / 57

< Fig. 6.27 Received filterbuffer

25.03.2008

- 40/49 -

| Frame Capturing and Sending in FPGA

Zahno Silvan

6.2.10 UART

By pushing the button0 on the Controller-board during restart, the output format will be changed from
Ethernet to UART. In the UART case, all the data from the filterbuffer, who has to be flushed, will be send
through the RS232 Interface, no additional data will be added. In the following pictures, you can see a
schematic overview, about the sub bloc’s inside the UART, the I/O signal table and a flushed filterbuffer
with a MH, a CH and 1 packets received by a PC, with a serial port terminal.

It has to be mentioned that the UART output is just used as debug output, because the speed is limited to
115Kbps, during the flush of the filterbuffer’s, some packets will be lost if the traffic on the Cl’s is too high.

Signal

End_addr_filter0
End_addr_filterl

X1

RADDR_filter0
REN_filter0
RADDR_filterl
REN_filterl
Flush_buffer
Flush_ok

RD_filter0

RD_filterl

Type (direction, type)

From Cl-demux

In, std_logic_vector(9 DOWNTO 0)
In, std_logic_vector(9 DOWNTO 0)
To/from Phy (Toplevel)
If an error occurred during transmitting the phy will set

In, std_logic

Out, std_ulogic

Description

Last used address in the filterbuffer0
Last used address in the filterbufferl

this signal

To/from Output choice
Out, std_ulogic_vector(9 DOWNTO 0)

Out, std_ulogic_vector(9 DOWNTO 0)

Out, std_ulogic
In, std_ulogic_vector

(1 DOWNTO 0)

Out, std_ulogic_vector(1 DOWNTO 0)

From Filterbuffer0

Out, std_ulogic_vector(15 DOWNTO 0)

From Filterbufferl

Out, std_ulogic_vector(15 DOWNTO 0)
< Fig. 6.28 Table I/0 signals UART

end_addr_filter0 & 1,
|

RADDR_filter0 Data
e B ——

synch

RADDR_filterl Data
——

synch

~ REN_filter0 & 1, flysh_ok

RADDR_filter0
—~f—— e

UART

RADDR filterl | addr registers

UART hea

flush_buffer

Read address of filterbuffer0

Read enable signal of filterbufferQ

Read address of filterbufferl

Read enable signal of filterbufferl
Indicate which buffers should be flushed

If the flush is done, flush_ok <= flush_buffer

Data lines of filterbuffer0

Data lines of filterbufferl

UART control

RD_filter0

RD_filterl

50MHz clock

Data
Synch RD_fIltero
:
Data RD_filterl
synch
\
UART UART_clk

clock gen | To all bloc’s

1
50MHz!114.83Khz

L N

Y

Mux dat
to send

—

UART

< Fig. 6.29 Block schema of UART

TX1

25.03.2008

-41/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

00000000:
00000010:
00000020:
00000030:
00000040:
00000050:
00000060:
00000070:

00
00
41
00
B9
76
EO
20

MH

00
05
4D
00
20
CE
7E
2F

- Data synch:

- UART addr registers:

00
00
50
00
CC
co
55
20

- UART clock gen:

00
00
30
00
3F
A8
41

35

- Mux data to send:

- UART:

- UART heart:

00 OC 00 00 SRR RN =~ccccccncnce
43 49 31 20 52 58 20 20 2D 46 50 47CI1 RX -FPG
00 00 00 00 00 00 00 77 F6 B1 2B EO AMPO: - oviies wo=+a
32 00 00 00 FF FF FF FF FF FF 00 19 e w o SN
08 00 45 00 00 35 13 88 00 00 64 11 . 1?,_g’¥¥y¥¥¥d,
A5 11 CO A8 AS FF 13 88 00 35 00 21 VIA ¥.A ¥y, ".5.]
52 54 20 74 65 73 74 66 72 61 6D 65 a~UART testframe
33 20 62 79 74 65 73 CO 32 AC EE EE / 53 bytesA2-11
CH Data

<" Fig. 6.30 Received filterbuffer

Because the UART-sender works with a different clock, all signals
which change during transmitting, has to be synchronized with the
UART-clock. In this case, there are the address- and data-lines of the
filterbuffer’s.

The UART bloc accesses both filterbuffer’s, the addresses are stored
in the addr registers.

The UART interface is a serial transmission through RS232, the speed is
much lower than the Ethernet. To achieve a baud rate of 115200bps the
tx_clock has to be 115.2kHz. The nearest approach to this, with a 50MHz
systemclock, is 114.83Khz. The clock is created in this bloc.

Depending which filterbuffer’s has to be flushed, the heart can choose
which data lines should be connected to the UART core.

This core was taken from a website which provides free IP cores. It is
called = www.opencores.org. Because just the transmitting part was
needed, the core was adapted, and the receiving part has been deleted.
The heart controls all the other sub blocks in the UART-sender. If a
filterbuffer has to be flushed, the data will be taken and forwarded to
the UART core, which sends it over the RS232 interface to a PC to
display it. The statemachine of the UART-heart is given in the following
figure.

else

Wait flush

flushed

idle2

< Fig. 6.31 Statemachine UART_heart

25.03.2008

-42/49 -

http://www.opencores.org/

| Frame Capturing and Sending in FPGA Zahno Silvan

The configuration of the UART is given in the table below.

UART configuration

Baud rate 115200bps
Data bits 8

Parity type None

Stop bits 1

Flow control Off

< Fig. 6.32 Table UART configuration

6.2.11 TSC

The Time Synchronization Client provides us the possibility to have a more accurate timestamping. In the
actual version of the MP, the timestamp is a relative value, by pressing the reset button, the time starts
from 0 in picoseconds with an accuracy of 20ns.

A previous diploma work was already made in this topic, it is called Time and frequency synchronization,
see appendix 8. Unfortunately the hardware that was already made for the timesynchronization was not
ready to use. Therefore there is no absolute timestamping and not all of the features could be tested.

In following section you have an explanation how the time synchronization works.

<= Appendix 8 Time and frequency synchronization

The device structure for the time synchronization network, is a Master — Slave — Client architecture. The MP
made in this project, is used as client for the RS422 Network, this is obvious in the following picture.

Master
FPGA
Slave FPGA
Y Y Y
Client Client Client
(MP)
FPGA FPGA FPGA

< Fig. 6.33 Time synchronisation network

To have an exact time, 3 Points have to be considered.

- Prevent the internal clock from drifting

- Calculate the delay of the time transmission

- Take the actual time from the GPS antenna (not implemented)
There were 4 signals from the RS422 transceiver to implement this feature.

25.03.2008 -43/49 -

Frame Capturing and Sending in FPGA Zahno Silvan

Type (direction, type) Description
To Cl 1&2
timestamp Out, std_logic_vector(96 DOWNTO 0) Relative time in picoseconds
To/from Output choice
PPS In, std_logic The PPS signal is a 1Hz clock from the GPS antenna,
with this clock you prevent the internal clock from
drifting
Delay_in In, std_logic With the delay in and out signal it is possible to
calculate the delay between Client-Salve or Client-
Master
Delay_out Out, std_logic See above
Time In, std_logic This signal should give the MP the actual time but

unfortunately this could not implemented

< Fig. 6.34 Table 1/0 signals TSC

In the following figure you can see a schematic overview about the sub blocks in the TSC.

time - | Pico counte. timestamp=

Threshold for 1sec
Update threshold

Delay_in .
; # Delay calc _ Delay in ps
' Delay_out
< Fig. 6.35 Block schema of TSC
- Clock drift correction: If a rising edge of the PPS-signal arrives, a counter is started till the
next rising edge, to know the number of systemclock pulses for
1 sec.
- Pico counter: He has a 96bit counter to count the time in picoseconds for the CH.

The threshold from the clock_drift_correction-block gives the
number of counts, till 1sec is passed.

- Delay calc: To calculate the delay, a small statemachine is used. He sends a 1
on delay_out and starts a counter, till the 1 appears on the signal
delay_in. The counter has than the time of the delay. It has to be
divided by 2, to know the one way delay. The statemachine is given
below.

else

Send signal on
delay_out

Delay in=1

Receive signal on
delay_in

< Fig. 6.36 Statemachine delay_calc

25.03.2008 -44/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

7 Tests

In this part, the hardware tests | made, are explained in detail. Before the FPGA could be programmed, the
design has to be verified in the simulations. But because the two boards was from different manufactures,
one with a CPLD from Xilinx the other with a FPGA from Actel, it was not possible to simulate the behavior
between the two boards, therefore, | could test just partially in the simulation. There were a lot of
problems with the synchronization of both boards. After that was solved, the hardware tests could be
made.

The implementation was tested with a Frame generator program where it is possible to define the content
of a packet and the time between 2 packets. A constant frame rate could be generated. In the last week we
also made together with Arlos Patrik, a test run where the custom MP could be compared with a real MP.

The following issues were tested:
- Receiving: The packets received properly on both Cl. At the end also the CRC-check
went fine and worked as expected. The receiving works with a 100Mbps
and also with the 10Mbps connection.

- Filtering: The filtering was successful tested. In the actual version it is possible to
filter the first 42 bytes of a packet.
- CH/MH: The capture- and measurement-header will be added with the right

values. There is a problem with the bit ordering of some fields, in the CH.
It should be easy to solve.

- Timestamping: The time of the frame is taken when the start of frame signal is detected,
that is what we expected. Also here the bit order was not compatible with
version 0.6 of the DPMI interface.

- Statusmessage: The status messages are sending every second with the right content.

- Switch UART-Eth output: As long as the button is pressed before restart, the switch between the
two outputs worked well. But if it is pressed during the MP is running, it
may be able to lose some packets. In each case the UART output has not a
good performance, some packets will be lost if the traffic is too high.

8 Actual state

The MP was developed, but the system is not ready for the market, there are some implementation left,
like the Control messages, to and from the DPMI interface. But since the last version of Gubler Olivier,
some improvements could be made.

Interface

The Interface was programmed and tested in the 32bit and 4bit version. In the last week in Sweden the
Interface board was damaged (VCC and GND are connected), and could not further used. | implemented a
demonstration MP with the 2 Ethernetplugs of the Dev-Board. One acts as Cl and the other as connection
to the MArN.

Controller

Not all of the goals were reached. We made some simplifications, that | could finish the project. One
problem was, that the Arm Core could not use as indented. The actual version has two Cl with two working
filters. The capture length is adaptable from none to fullframe catch and also the filterlength can be
changed from 42bytes to 512bytes per filter. The communication with the DPMI Interface worked, but not
all the control messages could be implemented. The receiving part of these messages like add/remove
filter, flush buffer are missing.

25.03.2008 -45/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

9 Further work

| would like to make suggestions for the further development of the project:

Finish further development of the Interface-board
o Mount the optical receivers on the Interface
o Test the Interface
Build of a Interface with other Input Sources, like 1000Base-TX
Build a proper RS422 transmitter for a real timestamping
Build of the Controller Board with an Actel Core MP7 FPGA
o In this project was a prefabricated board used as Controller, the next step would be to
make the own board with just the necessary functions.
Better use of the ARM Core
o Interface between ARM and FPGA logic
o In this Project the ARM Core was not used as intended, in the further development it
could be used more intensive as now, this could be done by an interface between the
Arm-core and the FPGA logic.
Implement new functions in the Controller
o Optical capture interface
o MP with more than 2 capture interfaces
o Optical & Twisted pair converter
o Implement Control frames (flush buffer, add/remove filter)

25.03.2008

- 46/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

10 Conclusion and remarks

During the semester project and the diploma work, | could see how a prototype is growing from the
beginning. At first, the conception of the board, choose the right components and testing. After that, |
could start with the programming of the FPGA and the CPLD. Because the chips on the boards were from
different manufacturer, Actel and Xilinx, | had to work with the corresponding programs it was really
interesting to see the advantages and disadvantages of each program.

In the project | improved my acknowledge about VHDL, hardware conception and project management. It
was a challenging project, a lot of problems occurred during the development of each step. Now at the end,
| would handle some things in a different way, so | look forward to my next project.

| had to work together with many people, without those, it would not have been possible, to progress so far
in this project. Thanks to everyone, who was helping me. Your support, ideas and comments were very
helpful.

Unfortunately, | did not reach all goals of the project, because of the lack of time. In further projects, it
should be possible to have closer look at those points.

These 5 months opened my horizon and gave me the chance to get in contact with new people, a new
culture and an interesting country. The BTH school is very international, there work peoples from
everywhere of the world. | hope that it will always be possible to do such exchanges for students, to show
them new fields in science and to open their mind for other countries and cultures. To make new
connections in the world.

Zahno Silvan: M‘

25.03.2008 -47/49 -

| Frame Capturing and Sending in FPGA Zahno Silvan

11 Glossary

MP
FPGA

CPLD

Dev-Board

Phy
MArN

MArC
Eth

cl

MH
CH

SOF

TP
VHDL
ITAG

10BaseT
100BaseTX

100Base-FX

RJ45

PCB

CRC

RTC

UART

Measurement Point

Field Programmable Gate Array, is a semiconductor device containing programmable
logic components and programmable interconnects.

Complex Programmable Logic Device is a programmable logic device. The building
block of a CPLD is the macro cell, which contains logic implementing disjunctive
normal form expressions and more specialized logic operations.

Development Board from Actel, this is a Board which allows to develop different kind
of application. In this paper it is also called Controller-board.

Physical, this IC representing the first layer of the OSI-model.

Measurement Area Network, network which analyzes and tread the sent
Measurement frames.

Measurement Area Controller, this device controls the MP.

Ethernet

Captured Interface, a MP can have different Cl, each can capture one line, in this
project there exist 2 Cl

Measurement Header, on each sended packet are a MH added to give the DPMI
some additional informations

Capture Header, on each captured frame is a CH added, which provide some
information about the captured frame

Start Of Frame, a Ethernet packet starts with the preamble (0x5) and after that the
sof delimiter (0x5D), it indicates the begin of a Ethernet packet.

Twisted Pair, is a form of wiring, this cables are used to connect the MP to the MArN
Very High Speed Integrated Circuit Hardware Description Language, is a
programming language to describe hardware

Joint Test Action Group, is the usual name used for the IEEE 1149.1 standard entitled
Standard Test Access Port and Boundary-Scan Architecture for test access ports used
for testing printed circuit boards using boundary scan

10Base-T is a form of medium speed Ethernet, providing 10Mbit/s

100Base-TX is the predominant form of Fast Ethernet, providing 100 Mbit/s Ethernet.
It introduces an additional, medium dependent sublayer, which employs MLT-3 as a
final encoding of the data stream before transmission

100Base-FX is a version of Fast Ethernet over optical fiber. It uses two strands of
multi-mode optical fiber for receive and transmit

Registered Jack (RJ) is a standardized physical interface for connecting
telecommunications equipment or computer networking equipment. The standard
designs for these connectors and their wiring are named RJ11, RJ14, RJ45, etc.
Printed Circuit Boards are used to mechanically support and electrically connect
electronic components using conductive pathways, or traces, etched from copper
sheets laminated onto a non-conductive substrate.

Cyclic Redundancy Check (CRC) is a type of function that takes as input a data stream
of unlimited length and produces as output a value of a certain fixed size. The term
CRC is often used to denote either the function or the function's output. A CRC can
be used in the same way as a checksum to detect accidental alteration of data during
transmission or storage.

Real-Time Clock is a computer clock that keeps track of the current time. Although
the term often refers to the devices in personal computers, servers and embedded
systems, RTCs are present in most any electronic device which needs to keep
accurate time.

Universal Asynchronous Receiver/Transmitter, is usually an individual (or part of an)
integrated circuit used for serial communications over a computer or peripheral
device serial port. UARTs are now commonly included in microcontrollers.

25.03.2008

- 48/49 -

http://en.wikipedia.org/wiki/Semiconductor
http://en.wikipedia.org/wiki/Programmable_logic_device
http://en.wikipedia.org/wiki/Programmable_logic_device
http://en.wikipedia.org/wiki/Programmable_logic_device
http://en.wikipedia.org/wiki/Programmable_logic_device
http://en.wikipedia.org/wiki/Disjunctive_normal_form
http://en.wikipedia.org/wiki/Disjunctive_normal_form
http://en.wikipedia.org/wiki/Disjunctive_normal_form
http://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers
http://en.wikipedia.org/w/index.php?title=Test_access_port&action=edit
http://en.wikipedia.org/wiki/Printed_circuit_board
http://en.wikipedia.org/wiki/Boundary_scan
http://en.wikipedia.org/wiki/MLT-3
http://en.wikipedia.org/wiki/Optical_fiber
http://en.wikipedia.org/wiki/Multi-mode_optical_fiber
http://en.wikipedia.org/wiki/Computer_networking
http://en.wikipedia.org/wiki/RJ11%2C_RJ14%2C_RJ25
http://en.wikipedia.org/wiki/RJ11%2C_RJ14%2C_RJ25
http://en.wikipedia.org/wiki/RJ45
http://en.wikipedia.org/wiki/Electronic_component
http://en.wikipedia.org/wiki/Conductor_%28material%29
http://en.wikipedia.org/wiki/Signal_trace
http://en.wikipedia.org/wiki/Industrial_etching
http://en.wikipedia.org/wiki/Laminated
http://en.wikipedia.org/wiki/Checksum
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Clock
http://en.wikipedia.org/wiki/Time
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Server_%28computing%29
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Serial_communications
http://en.wikipedia.org/wiki/Serial_port

| Frame Capturing and Sending in FPGA

Zahno Silvan

12 References

Books:

“On The Quality Of Computer Network Measurements”
Patrik Arlos

Bleckinge Institute of Technology

Doctoral Dissertation Series No. 2005:05

“VHDL-Synthese. Entwurf digitaler Schaltungen und Systeme*“
Jurgen Reichardt, Bernd Schwarz

Oldenbourg, 2007

Manufacturer:

www.actel.com

www.xilinx.com

www.|Intel.com
www.belfuse.com
www.magjack.com
www.nationalsemiconductor.com

Distributors:
www.elca.se
www.distrelec.com
www.silica.com
www.farnell.com
www.reselec.ch
www.msc.ch

Informations:
www.wikipedia.com
WWW.0pPencores.org
www.fpgadfun.com
www.wireshark.org
and much other sites...

13 Appendix

Appendix 1: Report Semester project

Appendix 2: Schematic Interface

Appendix 3: Schematic Converter

Appendix4: CoreMP7 development kit users guide
Appendix 5: Datasheet CoreMP7

Appendix 6: Passive measurement infrastructure
Appendix 7: SimAP Design report

Appendix 8: Time and frequency synchronization

25.03.2008

- 49/49 -

http://www.amazon.de/exec/obidos/search-handle-url?%5Fencoding=UTF8&search-type=ss&index=books-de&field-author=J%C3%BCrgen%20Reichardt
http://www.amazon.de/exec/obidos/search-handle-url?%5Fencoding=UTF8&search-type=ss&index=books-de&field-author=Bernd%20Schwarz
http://www.actel.com/
http://www.xilinx.com/
http://www.intel.com/
http://www.belfuse.com/
http://www.magjack.com/
www.nationalsemiconductor.com
http://www.distrelec.com/
http://www.silica.com/
http://www.farnell.com/
http://www.reselec.ch/
http://www.wikipedia.com/

| Frame Capturing and Sending in FPGA Zahno Silvan

Appendix 1: Report Semesterproject

25.03.2008

Systems Engineering: Infotronic
Semester project
Part | of the Diploma Work
- Frame Capturing and Sending in FPGA -
Author Zahno Silvan
Under guidance of Corthay Francois and Gubler Olivier
Version v1.0
Sion, 13.01.08

d
v,

Frame Capturing and Sending in FPGA Zahno Silvan

Table of contents

R VU | 1 0o) PSPPSRI 4
N o =T - SR PR 4
7250 R 1 11 0o 11 o 4o o ST SO 4
A Y o o] oo | TP U PSP PR PPT PP 4
2.3 SErUCTUIE OF ThiS PrOJECT....c.eiiiiiiiiieiie sttt et 4
231 g LT 1= 11 T o PSP RO 4

K O 1= -SSP R 5
O o Fo T (0 Y7 1P 6
4.1 Problem analysis and SOIUION @PPIOACNES.........c.uciiiiiiiiie et 6
A | 1 (= - 1ot S SRR 6
421 ACHVE ETNEINMETTAPvievieiiieiii ettt ettt sttt 8
4.2.2 PaSSIVE ETNEINMET TAD. ... ecvieiiieitie ettt 8
4.2.3 Sending the Data from the plug to the PRYcooiiiiiiiii e 11
424 PRYSICAl INTEITACEc.uiiiiiiiiieciie bbb 13
4241 SEIAP OPTIONS ...ttt ettt ettt et 13

425 Sending of the packets to the CONTIOIIETcccoiiiiiiiiii e 15
4251 ChoiCE OF the CPLD ...ttt e anaeas 15

4.2.6 R Y1 0] (=T o = Tol PSP 16
4.2.7 (000 o] 0= ox (0] QU P PR OTPRP 17

G T 0o 11 (0]] PSSP RTRRTR 18
43.1 ChoiCe OF tNE FPGA ... e e e e e e enes 18
4.3.2 DESIGN TIOW ...ttt 20

4.4 CONVEIEr-DOAIdooi i 21
441 Pin assignment on the CONTIOHIETooiiiii i 21

5 Construction Of the NAIAWAIEcuiiiiiiii et 22
TR 1 1 (=] = 0T O = ST PRR 22
I 0] 01V (=T o - S PP PP PR 22
5.3 List of order for Project Frame Capturing and sending in FPGAccccooviiiiiiienie s 22

LG A Vor 1D F- LS = = R SOTR 24
A = U1 1 =T o] o GBS 24
8 CONCIUSION BN FEMIAIKS. ... vtttk ettt ettt e nbe e nb e 25
S 1[0 ST 1 T PO P T OTRUPT PP PP 26
10 BiBHOGIAPINY ..ottt 27
Y o] o= o | TP T P PP PP OPTOPRO 27

13.01.2008 -2/27 -

Frame Capturing and Sending in FPGA Zahno Silvan

Table of figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

2.1 Time table diagram Of the PrOJECTccvviiiiiieiii e 4
4.1 Bloc diagram Of the INTEITACEoiiiiiieiie e 7
4.2 Active tap bloc diagram of the INTEITaCecviiiiiiii e 8
4.3 High-IMPEUANCE-DIOC ..ottt ettt 9
A4 OFFSEE CITCUIT ...ttt ettt b bbbt ekt e s be et ek s b bt e bt e bt e sbb e e beenbe e 9
4.5 Passive tap bloc diagram of the INTErfaceccvoiiiiiiiiii s 10
4.6 Worse passive tap of the fIDer-NeIWOrK...........ccooiiiiii s 10
4.7 Termination circuit for RJ45 and construction of the RI4A5-PIUGcccvvvviriiiiiiiiiee e 11
4.8 Termination Circuit for fIDEI-PIUQG..........ccviiiiiiiii e 11
4.9 ZTool to calculate the liN€ IMPEUANCEc.eeiiiiiiiie s 12
4.10 ApPliIcAtioN OF The PRYcueiiiieee et 13
4.11 Table Of MOUE OPTIONSviiiiiiiieiii ettt ettt ettt e b s 14
4.12 Table of MAC INTEITACE OPTIONSeevieiiiiiieitie ittt ettt ettt 14
4.13 Table Of Led MOGE SEIECT.........coeeiiieieeii ettt 14
414 CPLD-PINTADIE ...ttt 15
4.15 RSA22 NETWOIK OVEIVIEW........eiiiieiiiietiesie ettt ettt ettt s ettt 16
4.16 Bloc diagram Of the RSA22 INTEITACE.........iiuieiie ittt 17
4,17 CPLD-PINTADIE ...ttt 17
418 FPGA CNOICE TADIE ...ttt be s 18
AL MPT FPGA-COIE ...tttk b bbbt st b bttt b et e bttt et 18
4.20 Actel CoreMP7 DeVvelopemMENT Kitccviiiiiiiiiieii e 19
4.21 Schema Of the deSigN TIOWooiiiiii s 20
4.22 Blocdiagramm of CONVErter-NOAIocviiiiiiiiiiei s 21
4.23 Pin asSigNMENT TADIEooiiiiiei s 21
ST] 0] 0] o =] G TSP T VP UPTOPROURUPROP 23

13.01.2008 -3/27 -

Frame Capturing and Sending in FPGA Zahno Silvan

1 Author
Zahno Silvan
2 Preface

2.1 Introduction

This Semester project should be the first part of my diploma work, which | will continue in Sweden,
Blekinge.

The subject of the Diploma Work will be “Frame capturing and sending in FPGA”. In this part of the project,
| will develop the Hardware, or a part of it, for the work in Sweden. It is the sequel of the Diploma work of
Oliver Gubler, who also made his work in Sweden.

In fact, in this part, | will develop a more powerful Hardware than | usually need. For my specific diploma
work, | don’t need Hardware with so many I/0 Interfaces, but to extend the project for future students, it’s
good to have some expansion capabilities in the Hardware.
In consideration of this reason, my board should contains the following I/0 Interfaces:

- 10/100Base-TX Copper Ethernet RJ45

- Fiber Ethernet 100Base-FX

- RS 422 for time synchronization

- LCD display

- USB 2.0 Interface

- SD-Card-Reader

- JTag Inferface

- Led’s

2.2 Appendix

Some articles and parts of the work are given in appendix. They can be found at the end of the report. The
appendixes 2-10 are just given on the enclosed CD.

2.3 Structure of this project

2.3.1 Planification

S ﬁ!‘!k Mwwn]l Waekl Newez Viwek s Viesk D Wesk b dVesic 5 Viswk o Wess 5 Wk 10 Vemit 21 Wews 14 Wewk 1 Viwed 29 Wb 25 Vews 15 deek 10| Cunonus
. TR AT T 0 ATOT O IF000F TN ST OOF MEET TRR T SOT FUOAE T ET WM OT A0 PN GA0RW 0 AT 17 6T In

I ask e |ERERAT DRI B0 184307 230EL0 DO3OT LSO 30N0F 208MAT RO DMORID LLIBLE LROBOY REASF Q10600 JEDEF 1EOEDT| Lwwdan

=Lrasza iracsche

= Lok i v bl o

BLVE TR T Bt

Interiare

Clwwew o ve npure e

- U-da- 2 the compsaants

emrma ndpn

=limrn
MH
- Burad =CB ek e

=~Te N

Cenliulier

Sl e Jee- s
Code o the Lo Juad

= lars o ha Leac-llond

§ omnerrter

£l azma Dodgn

il

L[

- Lnamn
Ll
=luid T
Tr=RF
Implementation
-
F3Rr,

Evad S twa b o isjwtl

C Fig. 2.1 Time table diagram of the Project

13.01.2008 - 4/27 -

Frame Capturing and Sending in FPGA Zahno Silvan

3 Overview

The goal is to build a hardware, called Measurement Point (MP). Such a device does packet capturing, then
the captured data will be filtered and a time stamp will be added on each packet. The new packet will be
buffered. After all, this packet will be sending in data packets in a measurement frame with defined sizes.

I will realize this MP with a FPGA, which can implement a microprocessor as an IP soft-core or a hard-wired-
core.

The Ethernet input connections are:
- 10/100 Copper Ethernet RJ45
- fiber Ethernet 100Base-FX

Because a MP is a passive device to the Ethernet input, it must be invisible to the Measurement Area
Network (MArN). To do a serious time stamp, an exact time synchronization is needed. Therefore a RS422
Interface is added to synchronize with a master’s clock.
The captured data will also be sent with a 10/100 Copper Ethernet RJ45. The programming interface of the
board will be done via JTAG interface and it is possible to store the program in the FPGA as well as in a
Smardcard-reader (SD), which is also integrated in the board. Other additional I/O’s for further work are:

- USB Interface

- LCD Display

- Led’s

- Optional optical input

It should also be possible to exchange the Interface with a different one, so that the input sources can be
enlarged again, for example, to implement Giga Ethernet, or other Transmission mediums. For this project,
it is sufficient to have a 10/100Base —TX or a FX support.

The functional specifications were discussed with Mr F.Corthay and O.Gubler. The meeting documents are
given in the appendix.

C Appendix 1 Meeting document

Converter

Interface Controller
Eth
JTAG
fiber 1 RAM JTAG
CPLD | , FPGA
Eth
fiber 2
Eth TP 1J EthTP 2 RS422 USB Eth TP LED

13.01.2008 -5/27 -

Frame Capturing and Sending in FPGA Zahno Silvan

4 Hardware

The Hardware is divided into three main parts:
- Interface to the MArN
- Converter between Interface and Controller
- Controller to generate the captured packets

4.1 Problem analysis and solution approaches
The tasks of the MP to be developed can, be summarized in the following central problems.

Interface:
- Passive Ethernet tap
- Active Ethernet tap
- Sending the Data from plug to the Physical Layer (Phy)
- Physical Interface for 100Base-TX, 10Base-T and 100BaseFX
- Sending of the packets to the Controller
- RS422-Interface
- Oscillator
- Connector
Converter:
- Connector
Controller:
- FPGA
- RAM module
- Power over Ethernet
- Synchronization with a masters-clock
- JTag Interface to store in SD-Card or directly in the FPGA
- Additional I/0O Interfaces

These points must be analyzed, so that they can be converted in practicable solutions.

4.2 Interface

This part of the hardware submits the captured packages of the MArN-Network to the Controller, without
changements of the content. The network entrance can be carried out via a 100Base-TX twisted pair, a
10Base-T twisted pair or a 100Base-FX fiber.

This Interface can be used for the following tasks:

- Activetap: Both input-lines go directly to the physical Interface (Phy)
without any influence.
- Passive tap: Both Rx-Channels are connected through the high-impedance

tap to the Phy, because we are just listening, we don’'t need
the Tx-Channels

In the active case it's possible to attach either the twisted pair (TP) or the fiber. There are the following
possibilities:

- TPIRATP: Both twisted pair inputs are used

- TPr3&fiber: One twisted pair and one fiber are used (TP — FX conversion)

- fiberr3 &fiber: Both fiber inputs are used

13.01.2008 - 6/27 -

Frame Capturing and Sending in FPGA Zahno Silvan

In the passive case it’s only possible to attach the twisted pair. It is not possible to listen complete passively
to the fiber-network.

- TPIRATP: Both twisted pair inputs are used
With Jumpers it is possible to switch the input-line between the RJ45 and the optical fiber input, as well as
for the switch from the active to the passive tap.

The routage of the conducting paths was realized by a specialist of the school. The construction of the
printed circuit board (PCB) couldn’t be realized at school because the board owns 4 different layers.
Therefore, the production of the PCB was passed on to an external manufacturer by a quantity of 1.
Unfortunately, at the end of the semesterproject, the board wasn’t completed, therefore it was impossible
to mount the components on the board and to test it.

Power
Supply

4
14

o
CHLD

1.PHY-Port
T

Rx

Data

Data
Interface

4RX + 4T

o)
18

Disable
High impedance buffer|

High imped:

<b7_ Sb MDIO
To Plug Fibel Management |—/3—— CPLD 5|
Interface
PortLed’s 332
To Plug Ethernef Aéﬂdr;esls /5 | /32— Plug
ontrol
/32—
2PHY-POt pam | B |
Tx ARx + 4TX 8
Data /
Rx Interface 8 L 3—1
qi SD MDIO
To Plug Fibel Management ——/3——

To Plug Ethernet

PortLed’s

Interface

Address
Control

Xilinx XC95288XL

/81

L /3—1

51

National Semiconductor DP83849ID PHY o o
HB HIB

Jumper for passive (P)
or active (A) tap

RS422 Transeiver

/8 differential

Plug Fiber Plug Fiber Plug R145 Plug RJ45 Plug RJ45

ITP nelerkI ITP netWDrkI
C Fig. 4.1 Bloc diagram of the Interface

Fiber network

I

Fiber network

| I—

RS422 network

Remark: We have moved the RS422 Interface for the synchronization with the master’s clock of the
Controller board to the Interface, so that we have the possibility to attach a controller without a RS422-
Interface. Because the time for the completion of the Controller is not sufficient, an Actel Development-
Board without a RS422 Interface is used as Controller (C see 4.3 Controller).

13.01.2008 -7/27 -

Frame Capturing and Sending in FPGA Zahno Silvan

4.2.1 Active Ethernet tap

The active Ethernet tap gives us the possibility to use the MP also as converter between the TP and the
optical fiber. This is also very useful to “turn off" the MP and to connect the 2 MArN lines with each other.
Through this, no cables have to be changed. The Rx and Tx lines go directly to the Phy without going
through the high-impedance buffer. Of course, we can also put TP[3ATP or fiberf3 &fiber together.

For this feature, we have to send the packets to the CPLD by the Phy and mix up Rxf3&Tx there. After, the
packets will be sent back into the other Phy-port again.

B
Data |0 v atx /32—
1.PHY-Port
Data | —/8—1
T Interface 8 8
e MDIO
Management | /3 | 33—
< Sb Interface
To Plug Fiber|
N Address | /5 | /5
PortLed’s control CPLD
To Plug Ethernef ® Plug
Data - | | for
ARX +4Tx 132 ribbon
2PHY-Port Dt /8| | g | cable
T* Interface
(e MDIO
Management | —/3— 3
< Sb Interface
To Plug Fiber|
o Address /5 /5
< bi ort Led’s —— 5|
il Xilinx XC95288XL
Tx To Plug Ethernet
Jumper for switch Power i
from TP to Fiber | TXRX || Supply -

Jumper National Semiconductor DP83849ID PHY

Plug Fiber Plug Fiber Plug RJ45 Plug RJ45

Fiber network Fiber networlc

I TP nelworkl ITP nelworkl
C Fig. 4.2 Active tap bloc diagram of the Interface

4.2.2 Passive Ethernet tap

To capture the data traffic on an Ethernet connection, the signals must be tapped off by the lines. Not to
influence the line and the connection to the next device, the tap has to be carried out with high-
impedance. So the impedance of the line is not changed fundamentally. A high-impedance buffer is added
between the RJ45 plug and the Phy (C see Fig. 4.3 High impedance Buffer).

This problem was already solved in an earlier diploma work and will serve us as a template. (C Decoding of
100Base-TX signals).

They have used a Voltage follower, so that the seen impedance from the MArN-Network is very high and
therefore, we won't disturb it. In reality, we still have some capacitive disturbances from the lines and from
the operation amplifier (OP)-input (=2pF), in addition, the OP has an input resistor of 100kQ and a resistor
to set an operating point.

The lines to the OP have no DC-offset of 1.65V (g), the decoupling will be done by a capacitor, therefore, a
resistor of 10kQ adds a DC-offset of 2.05V to the line. These resistors should, however, influence the line
only insignificantly opposite the capacities.

The OP, which is used for the DC-offset, is internally already connected with resistors, with which
reinforcements of 1, 2, -1 can be caused. We only use them as buffer with reinforcements of 1. Since the
amplifiers as RGB drivers are conceived, they can deliver sufficient current and reject a frequency range of
over 200MHz. Moreover, they can be activated or deactivated with an additional line(TXEN) (C see Fig. 4.4
Offset circuit).

13.01.2008 - 8/27 -

Frame Capturing and Sending in FPGA Zahno Silvan

Offset =2V

losav| * Offset ~2V

RJ45-Input

H_,m

~{TPROP_A/FXRDP_A

-Etl“x_\
v
fam|
e L
w
|,~ —{ THEN Buffer enable

Decoupling cap

C Fig. 4.3 High-impedance-bloc

C Appendix 2 Datasheet OPA3692ID (only on CD)

||

Y+ 8

[sl ool 185
T_ —3|N+ £ —t

[
i+

it
T e

C Fig. 4.4 Offset circuit

'
ou |
1

Because the MP only listens to the Ethernet, it knows no difference between the Rx and the Tx line. To be
able to select the line to be measured, the physical interface must be able to capture both lines at the same
time or change between the two lines.

If we judge both solutions, it is obvious, that a 2-port Phy is the best choice. Because the MP has 2
independent passive Ethernet taps disposes, both lines can be captured when required. Fortunately, there
already exist some good Phys on the market, like the National Semiconductor DP83849ID Transceiver,
which offer a 2-Port Phy with fiber and twisted-pair support.

13.01.2008 -9/27 -

Frame Capturing and Sending in FPGA

Zahno Silvan

High im ped

18
Data — F,0 ' a1 /32—
1PHY-Port paga 8 /3|
Tx Interface
Rx MDIO
Management 3 /3—1
qi sb Interface
To Plug Fibel
. Address L /5 CPLD —/5—
PortlLed's control Convert 4 databit to 32 ;52
To Plug Ethern: = % databit per channel 9
ata - 1 i [/30|
ARy + 4Tx 144-208 1/0 132
2PHY-Pot pata /8 /8|
Tx Interface
Rx MDIO
Management |— /3| —/3—
qi sD Interface
To Plug Fibel
<)7 Potleds et | 5| 15
ortleds — Control Xilinx XC95288XL [19|
Disable Disable To Plug Ethern
iance buffer, High impedance buffer| Boar l M
Supply

National Semiconductor DP83849ID PHY

Plug Fiber

Fiber network

Jumper for switch
from TP to Fiber | T Rx

Jumper

Plug Fiber

Plug RJ45 Plug R 45

Fiber network

ITP rvetworkl ITP networkl
C Fig. 4.5 Passive tap bloc diagram of the Interface

Because the fiber-plugs do already transform the light pulses into electrical signals, we cannot listen
passively to the fiber-network. The lines between the connector and the Phy have their own impedance
network: The signals first go through an entrance impedance, match the network near the plug and after,
through an output impedance and match the network near the Phy. The transmission lines between the 2
networks have an impedance of 50Q.

The passive tap of the fiber-network doesn’t work, because the 2 fiber-plugs are connected through 2
entrance impedance matching networks. The following figure illustrates this case.

Phy

Output
impedance
matching

Entrance Entrance
impedance impedance
matching impedance matching
network network

fiber-plug

fiber-plug

C Fig. 4.6 Worse passive tap of the fiber-network

13.01.2008

- 10/27 -

Frame Capturing and Sending in FPGA Zahno Silvan

4.2.3 Sending the Data from the plug to the Phy

Between the RJ45 and the fiber-plugs, the packets are still available in an analogous form. It can cause
some disturbances or reflections on the line, therefore, we have to add a termination circuit, which
includes an entrance- and output-resistances-circuit and in addition, the lines can have a line impedance of
50Q in case of the fiber termination circuit. Hereinafter | would like to explain the sending for the 2 possible
entrance inputs.

Ethernet RJ45-plug

In the following figure, you can see the required resistors. We also need two RJ45 plugs with a 1:1
transformer to achieve a DC-decoupling. RJ45 plugs, with integrated magnetic, are available at school and
fit perfectly to this application.

In addition, it still has to be mentioned that these RJ45 plugs have some short-circuited pin’s (4, 5, 7, 8) and
are directly connected to the mass.

: LEDH 45
=l T =
[. \ yelbow 28]
S e \ CoRYI II0E CHOKES 3 - %
e : Wi B= SEILIRET. e s
; . ; -
L r | O+ 2 S P [
i ° i 1 4+ 3 e 4t == -
L I _J I T: 3 '—; I_I— (. *
- ! Pt 4
TD=CF o o —%—L—:
IR oo ul 1ET 4 l
Ph : : RO RO+ 4 L — . =| 3 RX+
y Tiope " g s I L :
T L EER R S A T L [i W
oo Tt 1848 RCT & |
0L Y Bl ™
) ' " L1 =]
b = 0.IuF ! presn .\qli/ R & gr:‘."
eni T RJ45-plug o Y 33
-|_- ; LEDD? ;._._. _1_I. g
=R 1 -;k..‘:
=

C Fig. 4.7 Termination circuit for RJ45 and construction of the RJ45-plug
C Appendix 3 Datasheet MagJack 0801-1X1T-03 (only on CD)
Ethernet fiber-plug

For the fiber connection we must have a termination circuit. That means, entrance-, output-resistors and a
line impedance of 50Q. The line is therefore well-defined and no disturbances can appear on it.

Entrance 50Q Output
Sber ol o iMpedance line impedance Ph
e matching impedance matching y
network network

C Fig. 4.8 Termination circuit for fiber-plug

Because the fiber plug is designed for future diploma works, we will neither order nor put together these
plugs at the board.

C Appendix 4 Datasheet Agilent AFBR-5903Z (only on CD)
Calculation of the 50Q line-impedance:

The Calculation of the impedance of the line can be done via the program ZTool (C see CD).
In the following figure, you can see an example of 50Q line impedance.

13.01.2008 -11/27 -

Frame Capturing and Sending in FPGA Zahno Silvan

Frescal Fararatng

POE Disleaise Careiant Ef
Diievtesci: Thckness H jmis]
Drishesiens Thechansss H [z
Tithin s o il

Tamote Theckrati: T s

Cllleishaisa lals PET
G e e iy Bing Ened

b 5 inghe B redeed | rmpedance [ELE:-1 T

™ 5 biphrw Madw lanbedded behvan planeal Y " T
P Wicsainp b ods [nusface rsoes| Dl N
Duck Hiz
Lard: W Firges Ly E gy

ifdiagy Lakas Prif Mg

', FLAE HIG COM [I00G

C Fig. 4.9 ZTool to calculate thne impedance

National Semiconductor offers a scheme of a Development board that exactly is adapted to the Phy. On this
scheme, neither the fiber-network nor the TP-network has a line impedance of 50Q. Because this board is
done by specialists, we decided to take it as a template and we didn’t adapt the line with 50Q. However, we
had to place the Phy as close as possible to the plugs, to minimize the reflections on the lines between the
plug and the Phy.

C Appendix 5 DP83849 Dual Phyter Demo Il Stump Jumper scheme (only on CD)

13.01.2008 -12/27 -

Frame Capturing and Sending in FPGA Zahno Silvan

4.2.4 Physical Interface

The decoding of the physical layer of the 100Base-TX and also of the 100Base-FX signals are very complex.
With a 100Base-TX hardware the raw bits go through a 4B5B binary encoding to generate a series of 0 and
1 bits, clocked at 125 MHz; the 4B5B encoding provides DC equalization and spectrum shaping. Just as in
the 100Base-FX case, the bits are then transferred to the physical medium attachment layer, using NRZ
encoding. However, the 100Base-TX introduces an additional, medium dependent sublayer, which employs
MLT-3 as a final encoding of the data stream before transmission.

But as already mentioned above, there exist IC’s, which offer these functionalities. The chosen 2-Port Phy is
the National Semiconductor DP84839ID. It offers a Dual Port 10/100Mbit/s Ethernet Layer Transceiver with
FX support. One of the reasons why | chose this Phy, is, that mostly the packing unit is up to 400 pieces per
order. But by National Semiconductor, there is the possibility to order samples in a quantity of 1-5 pieces. |
would like to thank to National Semiconductor for giving me 4 examples of this Phy for free to use in this
project.

This is more than sufficient for this work.

10BASE-T
A—-
Tl ar
RAEF-TH
CPLD CPI3848ID
ol 0RASE-T
* ALl » - ar
THIBSEE-TH
& WHz
Source LED:

C Fig. 4.10 Application of the Phy
C Appendix 6 Datasheet National Semiconductor DP83849ID (only on CD)

4.2.4.1 Strap options

The Phy uses many of the functional pins as strap options. The values of these pins are sampled during
reset and used to strap the device into specific modes of operation.
A 2.2kQ resistor should be used to pull-down or pull-up to change the default strap option.
All strap options can also be set through a register access.
In the following part | will give you an overview of the possible options:
- Mode options: With the 4 pins (FX_EN, AN_EN, AN1 and ANO) we choose the mode of our
Phy for port 1 and 2.
-FX_EN & fiber enable
- AN_EN & Auto-Negotiation enable
- AN1/ANO & Control the forced or advertised operating mode
The default is 0111 since FX_EN pin has an internal pull-down and the Auto-Negotiation
pins have internal pull-ups.
To choose the different options, jumpers are added to these pins to force 0 or 1.
So we have 3 configuration possibilities (see in following table).

13.01.2008 - 13/27 -

Frame Capturing and Sending in FPGA

Zahno Silvan

FX_EN | AN_EN| AN1 | ANO Forced Mode
0 0 0 0 [10BASE-T, Half-Duplex
0 0 0 1 |10BASE-T, Full-Duplex
0 0 1 0 [100BASE-TX. Half-Duplex
0 0 1 1 |100BASE-TX, Full-Duplex
1 X X 0 [100BASE-FX. Half-Duplex
1 X A 1 |100BASE-FX. Full-Duplex
FX_EN|AN_EN| AN1 | ANO Advertized Mode
0 1 0 (10BASE-T, HalffFull-Duplex
0 1 0 1 100BASE-TX, HalfiFull-Duplex
0 1 1 0 10BASE-T Half-Duplex
100BASE-TX. Half-Duplex
0 1 1 1 |1T0BASE-T, HalffFull-Duplex
100BASE-TX, Half/Full-Duplex

C Fig. 4.11 Table of mode options

With the 2 pins (MII_MODE and SNI_MODE) we determines the
operating mode of the MAC Data Interface

- MIll_MODE & disable MMI mode

- SNI_MODE & enable SNI mode

The default operation is 0 (MIl mode) because the MII_MODE pin has an internal pull-
down resistor

- MAC Interface mode:

MII_MODE | SNI_MODE MAC Interface
Maode
0 X MIl Mode
1 0 RMII Mode
1 10 Mb SNI Mode

C Fig. 4.12 Table of MAC Interface options

- LED configuration: With the 2 pins (CRS_DV and CRS) several functions can be multiplexed
onto the three LED’s using three different modes of operation. In our case
we don’t need the LED_SPEED
The default mode is “model” the LED_CFGJ[1] register is only controllable through the register
access and cannot be set by a strap pin.

Mode | LED_GFG[1] | LED_GFG[0) LED_LINK LED_SPEED LED_ACTILED_GOL
1 don't carg 1 Cd for Gaaod Link Oiin 100 Mbs | O for Activity
CFF for M Link OFF in 10 Mb's | OFF far Mo Activity
2 [0 O for Good Link CINn 100 fbis | QN for Gollisian

ELIMK tar Activiby

CIFF in 10 Mbv's

CIFF tar Mo Callision

3

1

Y

Ofd for Goad Link
BLIME tar Activily

CIM iy 100 Rk
CIFF in 10 Min's

C Fig. 4.13 Table of Led mode select

Mt Full Didples
CIFF tar Hal! Duples

13.01.2008

- 14/27 -

Frame Capturing and Sending in FPGA Zahno Silvan

4.2.5 Sending of the packets to the Controller

One of the problems of the ancient Diploma work was, that the sending of the packets from the Interface
to the Controller Board caused some errors in the CRC-Check. Because of this, some frames were lost.

To prevent the lost of a package, we have to reduce the speed of the data between the Interface and the
Controller.

The maximal speed of a 1000Base-TX Ethernet on the 4 Phy-Output lines is:

D 16h /s

= = 2R0MIIz
nbridflines 4lines

Fmaoxy =

We have chosen to use 32 lines/channel, this gives a maximal speed of:

D 16b /s

nbrOfLlines 32lines

Fmax = =3120MHz

For the assignment about a ribbon cable or hard plug, 31.25MHz does not represent a problem.

Therefore, we add a complex programmable logic device (CPLD), which has the following tasks:
- Enlarges the number of data lines
- Adapts the control signals
- Realizes the transformation TP3 &fiber
- Disables the high-impedance buffer
- Transmits the RS422 master’s clock to the Controller

4.25.1 Choice of the CPLD

The choice of the CPLD is carried out with the required pin. In the following table, all needed I/0 are listed
with the number of pin required:

Pin from Interface
Description Number of pins | Direction
Rx-Data lines 8 Input
(Port A and B)
Tx-Data lines 8 Input
(Port A and B)
Control-signals 18 170
RS422 Interface 4 I/0
High-impedance buffer disable 2 Output

Pin to Controller

Description Number of pins | Direction
Rx-Data lines 64 Output
Control-signals 18 1/0
RS422 Interface 4 I/0
High-impedance buffer disable 2 Input
Reserve 5 I/0
Total Nbr of Pins 129

C Fig. 4.14 CPLD-Pin table

13.01.2008

- 15/27 -

Frame Capturing and Sending in FPGA Zahno Silvan

With this table it is obvious that we need a CPLD with 129 pin supported. We considered to use the Xilinx
XC9500XL family. This CPLD was already used often and it is a low energy device with up to 5V 1/0
capabilities. The numbers of the available user 1/0 can be selected between 34 — 196 Pin’s. In this case we
took the CPLD with 168 User pin in a PQ208 package.

C Appendix 7 Datasheet Xilinx XC95288XL (only on CD)

4.2.6 RS422 Interface

The RS422 Interface is needed for exact time synchronization with a master’s clock and for the time stamp,
which we add in each captured packet. This problem has already been solved in an earlier diploma work (C
Time and frequency synchronization). The MP made in this project, is used as client for the RS422 Network,
this is obvious in the following picture.

The slave calculates the delay from master to slave (tys) and add this to the time, which was sent by the
master. The client will now calculate the delay from slave to itself (tsc) and adds this to the time, that was

sent by the slave too. After this process, the result has the exact time and can be used further for the time
stamp of the packets in the Controller.

S
| GPS

FPGA

Delay Master-Slave
tvs —

Slave —~—— FPGA

Delay Slave-Client
tsc

Client Client Client
(MP)
FPGA FPGA FPGA

C Fig. 4.15 RS422 network overview

13.01.2008 - 16/27 -

Frame Capturing and Sending in FPGA

Zahno Silvan

|
A differantis
|

F"Elu [

REA2E retwork

| —

RS422 Trangeiver

C Fig. 4.16 Bloc diagram of the RS422 Interface

4.2.7 Connector

The decision, which connector we take, depends on the number of required pins. In our case, it is better to
install a hard Plug and not to work with a ribbon cable. One of the advantages is, that the disturbances will
be minimized. At the completion of all parts (Interface and Controller), the components should be
connected fix through the connector without using a Converter-board.

We decided to take a 96 pin (3*32) male-female connector.

Which signals are connected to the Connector is obvious in the following table

Pin from Interface
Description Number of pins | Direction
Rx-Data lines 64 Input
(Port A and B)
Control-signals 18 1/0
RS422 Interface 4 I/0
High-impedance buffer disable 2 Output
Power signals 3 Input
Reserved 5 -
Total Nbr of Pins 96

C Fig. 4.17 CPLD-Pin table

13.01.2008

-17/27 -

Frame Capturing and Sending in FPGA Zahno Silvan

4.3 Controller

The Controller part will receive all the Rx packets. These packets will be filtered and a time stamp will be
added. After this, the packets will be reorganized and saved in RAM-Modules. To send the filtered packets
to a Computer, a Ethernet connection is used. On the Computer we have a DPMlI-Interface which is
developed by Arloos Patrik, this interface will analyse the captured packets who was sended by the
Controller. This board contains the additional 1/0 interfaces for the further diploma works.

Unfortunately, the Controller can’t be realized in this semester project, because time is restricted and not
sufficient.
Itis inevitable, to take an already prefabricated development board, which is used as Controller.

The development board should contain the following features:
- Connector to the Interface
- RJ45-Ethernet plug
- Power supply (also for the interface)
- RAM-modules
- FPGA which can implement a IP soft-core or hard-wired-core
- Other additional Interfaces

4.3.1 Choice of the FPGA

First of all, it is necessary to choose the FPGA to use in the Controller. The features that can be
implemented are a microprocessor, such as an IP soft-core or a hard-wired-core. It should also support
enough 1/0’s for all the interface signals. In addition, the same FPGA should also be available as low power
FPGA and as one time programmable (OTP). The following table shows the chosen possibilities:

Items Integrated Prozessor FPGA Licence Code / Example Avail. | DevBoard DevTools
SoftCore HardCore
- Spartan-3A Starter Kit
- Spartan 3 (HW-SPAR3A-SK-UNI-G) $199
XC351000-4FG456C $60 - Spartan-3E 1600E MicroBlaze
- Spartan 3E Development Kit (DO-SP3E1600E-DK- - ISE™ Foundation
Xillinx Spartan No XC3S100E-4CP132C $30 | SoftCore needs EDK Yes UNI-G) $599 DS-ISE-END
Virtex-4 FX HardCore Free - There exist PowerPC & Microblaze Starter Kit $2500
° FX not available SoftCore needs EDK some example No DO-ML403-EDK-ISE-USB-EC $895 - The Embedded
2 - 32-bit MicroBlaze™ - Microblaze Dev Kit (EDK)
3 soft processor Embedded PowerPC HardCore Free codes are PowerPC Starterkit - Real View Dev
Xilinx Virtex It use 800-2600 LUTs 405 (PPC405) core The Virtex™-11 Proy SorftCore need EDK availabe Yes XC2VP20-5FF896C $360 Kit $2000
The CoreMP7-1000 are available on May
COREMP7-1000-DEV-KIT-FP3 $600 - Design Software
- MP7 soft core, impl. - M7 ProAsIC3 - 1 example with Programmer FP3 ($100). Libero® DIE Free
ARM7TDMI-S. $30<$150 # Core MP7 - WebServer #Fusion Starter Kit - CoreConsole for
Available for all M7 - M7 Fusion - SoftCore codes are # ProASIC3 Starter Kit configuration
Actel MP7 devices for free No - M71GLOO Free for M7 devices available for free Yes # ProASIC3E Starter Kit - SoftConsole free

C Fig. 4.18 FPGA choice table

In this Project, | decided to take the Actel MP7 FPGA. In this FPGA we have the possibility to implement one
(or more) ARM7TDMI-S microprocessor as IP soft-core. The ARM7 Core is the most widely used
architecture in 32-Bit microprocessors. We chose the Actel Development board with a MP7A3P1000 FPGA
chip. With this chip, we have sufficient user 1/0’s for our Interface board.

RAMFIFD PLLICCE
) j B VersaNets
VersaTile -
—. Charge
Fro 10 Purnps
! L]
ISP AES FROM ITAG

Hy'M

Decryption

C Fig. 4.19 MP7 FPGA-Core

ISP

C Appendix 8 Datasheet ProASIC3E Flash Family (only on CD)

13.01.2008 - 18/27 -

Frame Capturing and Sending in FPGA Zahno Silvan

The board consists of the following:
- Wall-mount power supply connector with switch and LED indicator
- Switches to select from 1.5V, 2.5V, and 3.3 V (I/0 Bank) voltages on banks 3-4
- 10-pin, 0.1"-pitch programming connector compatible with Altera connections
- 48 MHz oscillator and 32kHz oscillator for real-time clock (RTC) calculations
- Eight LEDs driven by outputs from the device
- Jumpers allowing disconnection of all external circuitry from the FPGA
- One monostable pulse generator switch
- Eight switches providing input to the device
- Two RS-232 serial interfaces
- Two 10/100 ethernet interfaces
- One Controller Area Network (CAN) 2.0B serial interface
- One USB 1.1 serial interface

C Appendix 9 CoreMP7 development kit users guide (only on CD)

CoreMP7 is a soft IP-core implementation of the popular ARM7TDMI-S microprocessor. The CoreMP7
microprocessor has the following features:

- 32-bit ARM instruction set for maximum performance and flexibility

- 16-bit Thumb instruction set for increase code density

- Inified bus interface

- 3-stage pipeline

- 32-bitALU

- Fully static operation

C Appendix 10 Datasheet CoreMP7 (only on CD)
Remark: A reason why | chose this Dev-Board is, that the FPGA works with a 50MHz oszillator. The packets

leave the Phy with a speed of 25Mhz, so we have a certain surplus and can work without problems on the
data in the FPGA, otherwise, we could have an anti-aliasing effect.

Connect to Interface-Board

e e Power supply / On/Off Switch
Actel FPGA e : ._

Buttons/Leds

2*RS232 Interface

2*RJ45 Ethernet

CAN Interface USB 1.0 Interface

C Fig. 4.20 Actel CoreMP7 Developement Kit

13.01.2008 -19/27 -

Frame Capturing and Sending in FPGA

Zahno Silvan

4.3.2 Design flow

In the following picture you can see the Design flow of a program, the individual evolutionary steps can be

subdivided into 3 groups:
Design creation/verification

In this step, the VHDL code will be generated (HDL-Editor) and simulated (ModelSim). The
VHDL code of the MP7-Core will also be generated out of the SmartGen Core Generator.
After this, the synthesis will be made with PALACE.

Design implementation

In this step, the code will be compiled and to conclude, the program files will be generated.

Programming software

The FlashPro 3 programmer will now program the FPGA with the generated program files.

SmartGen L HODL Editor I
| Core R_i-eneratvr
S-ﬁthii_s Synplify® synthesis
J ; e
\“'I:E”a_"f-s""' Design Synthesis and
Optimization s —_-——I-I
ViewDraw" L A

| Schematic Entry

MultiView Mavigator

| Synthesis

Performance Optimization

|

WavaFormar

;

Ak User
| Line
Testhssni
| Testhemch Bt |
StamiLlug Generataon
+ +

Functional Simulation

Modelsim®
| Eimul_.:l:nr

Tirreng Simulation

smartTime |
and Timer |

fe
|

Compila
PinEditor

- Static Toming Analysts and
V0 Asshgrirmerits

e
Optimizatlan and DAL Consiratnis Editor

ChipPianner Layout SmartPower |
|

Hnnrplan-r-i-r.g.! -

IO Attribute |}
Editor 4

Select KO Standards

T
Timing-Brveen Place-and-Route

4|._—: Back-&nnolate
|

Program File Back-Annotated Timing
Generation far Simulation

e

Power Analyss

NetlistVieweser —

Design Schematic Viewer

Cross-Probing

ChainBuilder

(Flash Families] Silicon Explorer

_ (arifuse Families)
FlashPro . B
{Flash Families)
Silicon Sculptor "

{armifusafFlash Families)

C Fig. 4.21 Schema of the design flow
In the last week of the project, | began to program the dev-board with a tutorial project, which was given
with the development kit. | tried to implement the ARM7TDMI-S IP soft-core in the FPGA. During the step
“place & route”, | had a compile error which | couldn’t eliminate until the end of the semesterproject.

Error: CMPO73 power found on external GND pin NET: ‘GND’

| have contacted Actel, to inform about this error in the tutorial project. Unfortunately, my request was not
solved till now.

13.01.2008 - 20/27 -

Frame Capturing and Sending in FPGA Zahno Silvan

4.4 Converter-board

We need a Converter-board so that our Interface-board is able to connect to the Controller-board.

This converter has on one side a 96Pin connector for the connection with the Interface and on the other
side three 40Pin connectors to attach the Controller. The connectors on the Controller-board also offer
several powerlines, like 5V, 3.3V and GND, therefore, we don’'t need the external 5V connector in the
Interface, the power can be directly taken from the Controller.

Converter 40Pin |
Connector N

Interface 96Pin 40Pin | Controller
=/ Connector T — Connector ™

40Pin
Connector

—

C Fig. 4.22 Blocdiagramm of Converter-board

4.4.1 Pinassignment on the Controller

With the help of the Converter-board, the signals of the Interface, which belong together, can be
summarized on one or several 1/0 Banks of the Controller. Later, the different signals can simply be
accessed and mistakes are avoided.

The pin assignment of the different signals are shown in the following table

Pin from Interface

Signal description | Number of pins | Pin of the Header | 1/0 Bank of the Controller
Header J11 (control)

RES 1-5 5 [4..8] Bank 0[3..5] &Bank 1[0..1]
RS422 Interface 4 [11..14] Bank 1[4..5] &Bank 2 [0..1]
Control signals of port B 8 [17..24] Bank 2 [4..6] & Bank 3 [0..4]
Control signals of port A 8 [27..34] Bank 3[7..11] & Bank 4 [0..2]
MDIO Interface 2 [37..38] Bank 4 [5..6]

High impedance buffer disable |2 [39..40] Bank 4 [7..8]

Header J12 (data port B)

Bank 4 [9..23] &
Data signals of port B 32 [1..32] Bank5[0..5] &
Bank 6 [0..10]

Header J13 (data port A & power signals)

Data signals of port A 32 [5..36] Bank 7 [0..31]
5V 1 [38] -

3.3V 1 [37] -

GND 1 [39..40] -

Total Nbr of Pins 129

C Fig. 4.23 Pin assignment table

13.01.2008 - 21/27 -

Frame Capturing and Sending in FPGA Zahno Silvan

5 Construction of the hardware

5.1 Interface PCB

The construction of the Interface PCB cannot be realized at school, because the board owns 4 different
layers. Therefore, the production of the PCB was passed on to an extern manufacturer.,

Because the routage of the schema will be very complicated, it will be done by Steve Gallay of the
electronic section. The final electrical scheme and PCB layout are given in the Appendix 10. | also want to
thank Steve, for his time spent on this project.

C Appendix 11 Electrical and PCB layout of the Interface board

5.2 Converter PCB

The Converter board contains 2 layers. The routage was done by me, because the different lines were, with
some exceptions, directly connected to the Controller. Therefore it was relatively simple to realize the PCB
layout. The final electrical scheme and PCB layout are given in the Appendix 11.

C Appendix 12 Electrical and PCB layout of the Converter board

5.3 List of order for Project Frame Capturing and sending in FPGA

In the following table, you can see a complete list of all components | ordered. It includes all components
for the Interface-board, the Converter-board and the Development-board. The total costs of my project
were 1150SFr. One of the reason, why this amount is so high, is, that we had not the time to build the
Controller-board, therefore we had to buy an Actel Development-board, which has a price of more than
780SFr.

Price/unit | Price total

Quantity | Order number | Name Material CHF CHF Contact
No Distrelec
2 644127 VX3MH-5000 Oszillator 50Mhz 50PPM SFr. 7.00 SFr. 14.00
1 640916 XC 95288-20PQ208C Xilinx CPLD XC9500XL SFr. 84.00 SFr. 84.00
1 121776 154963 3x 32 Female 3X32Pin Connector SFr. 7.10 SFr. 7.10
6 110831 NFE31PT2227Z1E9L Filter SFr. 1.72 SFr. 10.32 Distrelec
2 513096 3801-40 Ribbon cabel 40-Pol SFr.10.11 SFr.20.22 Www.distrelec.ch
10 121674 0918 540 6813 Female Plug 2*20Pol SFr. 4.52 SFr. 45.20
Total Distrelec SFr. 180.84
SFr. 180.84
No Farnell
3 1207055 OPA3692ID-G4 Texas Instrument OPAMP SFr. 7.95 SFr. 23.85
2 1106047 TPS54316PWP Texas Instument Buck-Boost SFr. 10.10 SFr. 20.20 Farnell AG
2 1188060 MAX811LEUS+T Ma>.<|m DaIIas_ Manual Reset SFr. 4.60 SFr. 9.20 Brandschenkestr.
National Semiconductor 178
2 9487956 DS26LS32ACN RS42_2 guad Receiver SFr. 2.50 SFr. 5.00 Postfach 1703
Maxim Dallas _ ch-8027 Ziirich
2 9724516 MAX483ECPA+ RS422 single transmitter SFr. 6.70 SFr. 13.40 www.farnellinone.ch
Total Farnell SFr. 71.65
SFr. 252.49

13.01.2008 -22/27 -

http://www.distrelec.ch
http://www.farnellinone.ch

Frame Capturing and Sending in FPGA Zahno Silvan
Price/unit | Price total
Quantity | Order number | Name Material CHF CHF Contact
MSC
Developement Kit Actel MSC Suisse SA
1 - CORE-MP7_1000-DEVKIT + Flashpro3 Programmer $600.00 $600.00 Avenue Nestle 14
1 - M7A3P1000-FG484 Actel FPGA 1M gates $85.00 $85.00 CH-1820 Montreux
Montreux@msc-
Total MSC $685.00 ge.com
SFr.1'013
National Semiconductors
Dual-Port Ethernet .
1 - DP83849CVS Transceiver SFr. 0.00 SFr. 0.00 %W
Total National Semiconductor SFr. 0.00
SFr.1'013
Various resistors
Various condenser
Various inductances
16 Jumpers
1 JTAG Connector
1 3*32Pin Male Connector Available material
1 RJ45 Connector without magnetics in school
2 MagJack 0810-1X1T-03 RJ45 with magnetics
3 SMD-LED
1 5V-Power Plug
3 2X20Pin Connector
1 Reset-Button
Total school SFr. 0.00
| Total price SFr. 1'013.24
C Fig. 5.1 List of order
13.01.2008 -23/27 -

http://www.national.com

Frame Capturing and Sending in FPGA Zahno Silvan

6 Actual state

Interface

The Interface electrical scheme and also the routage is done. Within the last weeks of school, the PCB
scheme was submitted to the external manufacturer. Until the end of the project, the board couldn’t be
completed. Therefore, it was not possible, to put the ordered components all together and test the
interface board.

Converter
The Converter was completed on time and the components were put together. Because the Interface
couldn’t be finished completely, we could test this board only conditionally.

Controller

The Development board was ordered. The enclosed programmes were installed properly. The
development-kit include a tutorial project, | have tried to implement this project on the dev-board. But we
had an error while place & route. | would have needed a bit more time to eliminate this error.
Nevertheless, | could still read some documentation and get an overview of how the board works.

7 Further work

I would like to make suggestions for the further development of the project:
Finish and test the Interface-board
0 Mount the components on the Interface
0 Testthe Interface
- Build of a Interface with other Input Sources, like 1000Base-TX
- Build of the Controller Board with an Actel Core MP7 FPGA
0 See points | listed on 4.1 Problem analysis and solution approches
- Implement the CPLD-functions
0 Split the 4 Data-signals per port to 32 Data-signals per port
0 Adapt the control signals
0 Create the 25Mhz for the Phy
0 Transmit the RS422 Signals
o Transmit or control the high-impedance buffer disable
- Understanding how the Development board works
0 Implement the tutorial
- Programming of the Development board
o Implement the controller functions
0 Implement the time synchronization for the time stamp

13.01.2008 - 24/27 -

Frame Capturing and Sending in FPGA Zahno Silvan

8 Conclusion and remarks

One interest of this project was to realize a work, which should be a simplified diploma work, a kind of a
small introduction. Because this project took also place in cooperation with Patrik Arloos, it should be
possible for him to read this report. This was also one of the reasons, why | wrote this report in English.

| also improved my knowledge in project management and project planning. In advance, | wrote a time
schedule, which | tried to follow, as much as possible. It was also necessary to correct it. | had to work
together with many people, without those, it would not have been possible to progress so far in this
project.
I would like to thank everyone, who tried to help me in this project. Your support, ideas and comments
were very helpful. Special thanks go to:

- Corthay Francois, supervisor of this project

- Gubler Olivier, for giving me his Diploma work as a help

- Steve Gallay, for designing the PCB of the Interface and all the library components | needed

- Sartoretti Pascal, for helping me with the Pcad and to order all the needed components

- Pignat Marc, for helping me to drawn the electrical scheme

- Biner Hans-Peter, for giving me useful tips for the high impedance buffer and high frequency

transmissions
- All of my student colleagues

This project was very challenging for me. | learned a lot in electrical engineering and how to build a PCB. An
important point is also to choose the right components. The first weeks were just gathering of the required
information and looking what | had to do, after that, | could really start working seriously on the project.
During this semester | could work in many different topics: Hardware, Software

Unfortunately, | didn’t succeed in finishing the whole project, because of the lack of time. | still must
complete and test the unit till the Begin of the diploma work in Sweden.

Zahno Silvan:

13.01.2008 - 25/27 -

Frame Capturing and Sending in FPGA

Zahno Silvan

9 Glossary

MP
FPGA

Phy
MArN
Eth
TP
VHDL

JTAG

SD Memory Card

10BaseT
100BaseTX

100Base-FX
4B5B

MLT3

OTP

OoP

RJ45

PCB

NRZ-encoding

CPLD

CRC

RTC

Measurement Point

Field Programmable Gate Array, is a semiconductor device containing programmable
logic components and programmable interconnects.

Physical, this IC representing the first layer of the OSI-model

Measurement Area Network

Ethernet

Twisted Pair, is a form of wiring, this cables are used to connect the MP to the MArN
Very High Speed Integrated Circuit Hardware Description Language, is a
programming language to describe hardware

Joint Test Action Group, is the usual name used for the IEEE 1149.1 standard entitled
Standard Test Access Port and Boundary-Scan Architecture for test access ports used
for testing printed circuit boards using boundary scan

Secure Digital Memory Card, is a digital storage medium, which is based on the
princip of the flash technologie

10Base-T is a form of medium speed Ethernet, providing 10Mbit/s

100Base-TX is the predominant form of Fast Ethernet, providing 100 Mbit/s Ethernet.
It introduces an additional, medium dependent sublayer, which employs MLT-3 as a
final encoding of the data stream before transmission

100Base-FX is a version of Fast Ethernet over optical fiber. It uses two strands of
multi-mode optical fiber for receive and transmit

4B5B is a form of data communications line code. It works by mapping groups of four
bits onto groups of 5 bits

MLT-3 encoding is a line code (a signaling method used in a telecommunication
system for transmission purposes) that uses three voltage levels. An MLT-3 interface
emits less electromagnetic interference and requires less bandwidth than most other
binary or ternary interfaces that operate at the same data rate

One Time Programmable are devices which have a memory which can be
programmed just ones.

An Operational amplifier, usually referred to as an op for brevity, is a DC-coupled
high-gain electronic voltage amplifier with differential inputs and, usually, a single
output.

Registered Jack (RJ) is a standardized physical interface for connecting
telecommunications equipment or computer networking equipment. The standard
designs for these connectors and their wiring are named RJ11, RJ14, RJ45, etc.
Printed Circuit Boards are used to mechanically support and electrically connect
electronic components using conductive pathways, or traces, etched from copper
sheets laminated onto a non-conductive substrate.

Non-Return-to-Zero (NRZ) line code is a binary code in which can represent just two
conditions, “0” and “1”

Complex Programmable Logic Device is a programmable logic device. The building
block of a CPLD is the macro cell, which contains logic implementing disjunctive
normal form expressions and more specialized logic operations.

Cyclic Redundancy Check (CRC) is a type of function that takes as input a data stream
of unlimited length and produces as output a value of a certain fixed size. The term
CRC is often used to denote either the function or the function's output. A CRC can

be used in the same way as a checksum to detect accidental alteration of data during
transmission or storage.

Real-Time Clock is a computer clock that keeps track of the current time. Although
the term often refers to the devices in personal computers, servers and embedded
systems, RTCs are present in most any electronic device which needs to keep
accurate time.

13.01.2008

- 26/27 -

Frame Capturing and Sending in FPGA

Zahno Silvan

10 Bibliography

Manufacturer:
www.actel.com
www.xilinx.com

www.Intel.com

www.belfuse.com

www.magjack.com

www.nationalsemiconductor.com

Distributors:

www.distrelec.com

www.silica.com

www.farnell.com

www.reselec.ch

www.msc.ch

Informations:

www.wikipedia.com

and much other sites...

11 Appendix

Appendix1: Meeting Document

Appendix 2: Datasheet OPA3692ID

Appendix 3: Datasheet MagJack 0801-1X1T-03

Appendix 4: Datasheet Agilent AFBR-5903Z

Appendix5: DP83849 Dual Phyter Demo Il Stump Jumper scheme
Appendix 6: Datasheet National Semiconductor DP83849ID
Appendix 7: Datasheet Xilinx XC95288XL

Appendix 8: Datasheet ProASIC3E Flash Family

Appendix9: CoreMP7 Development Kit Users Guide

Appendix 10: Datasheet CoreMP7

Appendix 11: Electrical and PCB scheme of the Interface board
Appendix 12: Electrical and PCB scheme of the Converter board

13.01.2008

- 27/27 -

http://www.actel.com
http://www.xilinx.com
http://www.Intel.com
http://www.belfuse.com
http://www.magjack.com
http://www.nationalsemiconductor.com
http://www.distrelec.com
http://www.silica.com
http://www.farnell.com
http://www.reselec.ch
http://www.msc.ch
http://www.wikipedia.com

Frame Capturing and Sending in FPGA Zahno Silvan

Appendix 1: Meeting Document

13.01.2008

Appendix A 4

HEVs Echéancier du projet de semestre FO 1.2.02.04.0B
e Semesterprojekt : Termine mam/31/03/2006

Filigre ¢ Studiengang Année scolaire | Schujahr No PS /AW F3

Systémes industriels — it 2006107 Sr2007M3

Systamtachnik

Mandant £ Auftraggaber Mandataire | Beauffragler Lieu d'exécution # Ausfihungsort

Silvan Zahno HEVs, DSl

Resp.d unité / Leiter Einfigit Enselgnant / Cozant

Pierre Pamplli Frangois Corthay

Titre: / Tifal

Carte FPGA pour mesures da trames athernet
Objectf # Ziel

Le but de ce travall est de raallser une cara servant da paint de mesure pour des trames ethemet. |l s'inscril dans
la collaboation avec Pr. Patrik Arloas, Blekinge Institube of Technology, Karlskrona. Les travaux du Pr. Patrik
Arpos pemmettent de metire en ceuvre un systéme capable de mesurer e rafic sur un réseau ethemet.

Le clrowit se divise en 3 bloes :

* Le awire-tap» qui sert da rallonge ethamet of copie les signaux vers une aulre sorie
s+ La care d’interfaca physique qui transforme les signaux ethemet en signaux logigues indépendants de

la ligne ethemat

= la carte confrbleur avec une FPGA qui recoil les trames e une information de temps pour les
estampillar. Calle carle ransmet le résultat des mesures sur une ligne ethemet.

Le travall de semestre congistera principalement & faire le schéma et la circuit imprimé de ces cartes. Une partie
da la loglqua programmable sera développée en paralléle avec [a réalisation des circuils imprimés.

Visa du responsable de |'unité / Visum Leifer der Elnhait ‘:) /L (L

Délais / Tarmmine Attibution du théme

Ausgaha des Aufirags

—t

Femise du rapport de I'&tudiant

Abgabe des Schiussbarichis

Défense orale

Mondiiche Verfechiung

21.02.2007

08.06.2007 —17.00

13 - 15.06.2007
aelon programme ! gamidss Programm

Rapport final regu le

Schiussbancht erhalen &M e

Signature de I'enseignant

Uintarschnhft des Dozenien

Appeaciix A4

Hesgranert fnt [7

Wie-Tap

HP Cophre. Htrpee

F
" Vi)

(=~ (ED B

_S_rf__;. c o '.'LCC* || ﬁ@./

= AV ng.c_:p, g 5 @Mﬁg !

| — mm

Frame Capturing and Sending in FPGA Zahno Silvan

Appendix 11: Electrical and PCB scheme of the Interface board

13.01.2008

INDEX OF PAGES FOR THE INTERFACE (RJ45 and Optical)

NUMBER NAME DESCRIPTION COMMENTS
1 Index Description of sheets This is this page 8
2 Ethernet Input Input connectors Contains the RJ45—plugs and fiber—plugs
3 Input switching Input switching from RJ45 to Optical This is the Jumper page to switch fiber<—>RJ45 ...| -
4 Buffer / PHY High Impedace Buffer and PHY Contains the Ethernet Phy
5 CPLD Connector CPLD and Connector 3*32 Pin Contains the connection to other board and the CPID|
6 Power Supply Power Supply Parts Contains the power parts 5V, 3,3V
7 Divers Clock, JTAG, RS422 Contains Clock generation, JTag, RS422 and Board Res¢

Interface

Frame capture board DES | 28.03.07 zas

Index | REV | V1.0

HAUTE ECOLE VALAISANNE 177 | R esen

4 5 6

7 8 9

1 _ 2 _ 3 4 _ 5 8 _ 7 _ 8 9 10
Ethernet RJ45 input 7 Ethernet optical fiber input
== Port A Optical fiber input
N == Port B Caution, all Capacitors and Resistances close to
Caution, all blue lines should have a the Connectors
line impedance of 108/58 Ohm. 7
=Y Decoupling Caps 7
Close to RJ45
C74 C75 %oo_loossoonol
0.1u 2.1u 73 Pround VEE_TX—
J7 <mmum‘_u\r
7e1)] ferouno] lwowel <——— or mass? 7 =L 5§D
T+ ™2+ RO1= yam aloe N
TD- X2~ 7 RD1+ M
RD+ RX2+
RD— o 7 1+ 3
01—
RCT 2
LED1_K 165 LED_ACT_B, 7
LED1_A B
RG2 1 2
LEp2_K ReT P23 e 7 NIERERRE]
LED2_A —1+—Ff x||o | (o g]|o
11 165 Set_ If_ FX__Disabled
[srouno] 7
] Optical-Connector1
M [crouND]
7 - d#oa_sn VEE_TH—
_ il
=Y Decoupling Caps 7
Close to RJ45 o= Ro- z
C67 C66 7 oz = Fo+ A
L3
% 0.1u 0.1u - 5 _Mc+ vee_™— | 2 o B3
101 50 o) =T 7 2= o vee_Rd— Tu ! 2 |
™+ E u7 \»V 1u
§L8sLlg
™= o= ~-To~TO
RD+ RX1+ '] < ©
RD- o 7 bS] S P>, S Q S
RCT
LED1_K 165 LED_ACT_A 7
LED1_A =)
LED2_K To o2 wwa : B
= e B sLloglssln leslnsl
11 165 Set_ If_ FX_ Disabled The decoupling capacitors are placed on o -® -o - S m% N S m
the bottom layer and 1|_|C1|_|C 1|_|C 1I_|C1I_IC 1I_|C
ferouno] close to the fiber—plug’s ———> F
Frame capture board DES | 28.83.07 zas
Interface Ethernet Input | rev | vie
HAUTE ECOLE VALAISANNE 27 | e esch
1 2 3 4 5 5 _ 7 _ 8 9 10

N

5 _ 6 _

7 _ 8

RXT+

oY
o~

JP1
JP9

K
3
Lo
rO

TPRDP_A/FXRDP_A

RX1=

oY
o—

JP2
JP10

K
g
Lo
rO

TPROM_A/FXROM_A

Ethernet input switching

High impedance buffer

Here you can switch from TP to optical

and from active to passive tap.

the Jumpers should be all together on a place
structured!!!

buffer for passive tap
For OS2V see last page

®
c

)
|

o
N
w

JP3
JP11

El
H
Lo
540

TFTDP_A/FXTOP_A)

-
c

)
|

<+ o C24
Lo, 2og
2 S
o= 3 %
N
|
A | A N
| | | | \
| 5 & |) ! |
! e s | = ! I
| - %% | !
L 2% s3iz 23 s :
5 £ o 23S 2% 8 g
S 3 5 2RI go2p 2
< 2 % LOIlEL8 2 2
') =) > | @ > € ‘B >
< - @ 5 £, < o O g
>] 20l & e] °
[:2 S £ Hr_meHO 2 S
| a O 501 98T o | |
| o v Lwlvpc> |
| | £, 6315857 ! |
B | “
B3 o 9 c
v I 38361562856 J v
|
\2
RX2+ P nr TPROP_B/FXRDP_B
0 2]
25—
Qo 0%
- S
SN B
=) I TPRON_ &/
© <
2 -
Lo 0%qg
- S
SR B
0.1u

!

(]
(&)
N

J

JP7
JP15

E
Lo
50

TPTOP_B/FXTOP_B,

-
c

19
T

(9]
(¢
>

J

JPB
JP16

TPTOM_B/FXTOM_B

TPRDP_A/FXRDP_A

TPROM_A/FXROM_A

TPROM_B/FXROM_B,

[1==50 Ohm Line Impedance or plug very close to PHY

TPROP_B/FXROP_B)

Frame capture board DES | 28.83.87 zas
= Interface input switching/ Buffer | rev | vi.e
HAUTE ECOLE VALAISANNE 37 | {Rath ek
1 _ 2 5 6 _ 7 [8 9 10

1 _ 2 _ 3 4 5 8 7 8 9 10

Ethernet transceiver (PHY)

TX_CLK_A & B and RX_CLK_A & B
must be longer than other signals

on MIl and routing of the 25MHz line
is critical. K

Phy Matching Network

This resistors should be close to the PHY

_LUNK_B
IRDOWN_INT_B
g

R27 R30

l22xCB_HD 2.2k FX_B_ON

o 2 :
5
Conn 0S2V

N = = S
: H a ERER @) o
Power Feedback Circuit T, 95 3 mnmmmm o 5
2 &
JP24 3R
. . -
Countion these Caps should be placed Conn 3.3V 1 m
~ - [\ © [+, 5| 0|~ || ol ||~ ||on| |
close to the correspond Phy Pin o B (B B 2| B M 53 Mo X[
(PFOUT, PFB), see Datasheet p15 & 38 RO SR <% <&
gf28RRRT5SEEE 008",
" 46 Iz x % 81
! TPROM_B/FXROM_B, v 40 ww_mmn_uam m__m__n”u : ° RX OMWIM “ @
.du .1ul .du du .1ul ® TPROP_B/FXROP_B TPROP_B — £ RX_CLK_ B[
@.1uf_0.1uf_ @.1uf_0.1uf 0.1uf ' e g cu ol &3
& +m 37 ND2 IOGND3| 5
c1i] c12] co [c13]cr4] © s s IEipe-8 @ R , -
G 35 leraing wDC|-2Z {uog]
F R6 32 ANAGND3 % CLKUACTES
4.87k 5 [rreow g5 ceser W71 =
gl 2 P R A
@——29 {pranz Q T00[-Z
LY) 28 11pTDP_A o sl 2%
PO A/FXTON A 27 I1pTOMC A TRSTN|-Z %
+—28coanoi ToI1-Z
TPRDP_ A/FXROP_A 4 TPRDP_A < IOGND4 78
TPROM_A/FXROM_A 5 {TPROM_AL ! 10VDD4 [-5g—3)
2 JANAGNDY 1< Z RX_CLK_Af—g5 {Rx_cx_a)
(ED_ACT_A} T|LED_ACT mK_N_ << - < RX_DV_AF—Rvm
MNWAAAA _K_.|1AA.|mAAAR_A
O e e E (1 -
R RRRr kB3R R38R 3%S
Decoupling caps for PHY, please control!!! S|/l ol
N - N [2]
%] ME% MEM NE% MDM ~ 3 &
ml_lmml_ln.ml_l..mlﬁs.mulsml_ls B m@%@@u d Ll |e
Bl Bl il Bl ey B0
% 2
Decoupling caps
R36 i
The decoupling capacitors are placed on 22kFX A HD —
the bottom layer. Close to Phy . — | 2.2k FX_A_ON R38
R37
2.2k CLK2MAC_ DIS
For RJ45, close to PHY For fiber, close to PHY £ g E
T i ,m_
algaln m.l_lw %lﬁ.o.. mlﬁm ml_l..w Frame capture board DES | 28.83.07 zas
® | ©9e | © ~fe-To-TO-TC6 Interface PHY | rev | vi.e
Path
! HAUTE ECOLE VALAISANNE 477 | Dortace.soh
1 _ 2 _ 3 _ 4 5 5 _ 7 _ 8 9 10

1 2 3 _ 4 _ 5 9 10
-
96—Pin Male Connector| Gecan ¢
= b~
. 33zlal3] [33ls]slz] [2[s] [3]3]3 R o
All Routing of the 5@Mhz crystal m m mmmmmmmm—. ofalal |alalelalel |alol |o]ald |ofala] |a R Ao o
T H i ol | { lglc|slzlx) |ole)s]e [ox_ax_A_our) £
and 25Mhz signals is critical. |3 naalllaass e o 6 Woar 30
[CRS_A_OUT,
g ﬂ 3 @ 2 5 oL o) o
(PWROOWN _INT_A_ouT}
i ==&
JX_EN_B_OuT]
— oK B d
2mmmmmmm297979 974 9787 787870 | 77777 [RX_ER_B_OUT, WW
C0ZOL0000000000000000000000000029 [ems_B_our o
SZOSZSSSSSSSSSSSSIZSSSSSSSSSISSzZ [eo_8_oo——E
°Q | © C_ C_ &F INT_B_ouT] Www
2y £t =
B fove_ar—— 2
5 €= Hvee_io (@ _our 5
GN [RXD8_A_OUT)
| 4 ororss o10_A_our) & o
RXEN 1/
. . 5|, Fd
Disable Highimpedance buffers |> o M m“w\ﬂw» ﬁ L_U‘_mm uw
X—F{voretsi 29 w013 _A_oun) 1 = >
| oo 170 T E— LN G o o <
Serial Management Interface |> = M“m\oﬁn MM Iﬁ Gt ww
— e vee_ INT L oo L
CCKA 170 vy [R016_A_ouT) [Do_A_our <
, ON 3 o0ts_A_oum) 01 _A_our &
| (DN, 170 {Rx20_A_out) [Rx2_A_ou C
(moe_ 170 [RxD21_A_ouT, [RxD3_A_ouT) =
| (™1 21170 [RXD4_A_ouT MW
7 (™02 8 ““m 39 [RxD5_A_0OUT)- =e
(DO3_ |} [RxD6_A_0UT,
[y 120 38 fooe_Aour o
c | e 170 37 foos_A-our ¢
[rxD0_A) 170 [rx0e_A_out)
MAC Data Interface PortA |> @ 1”0 ww ove-a- o %w
[Rx02_) 170 [RD11_A_out) 5
| | 24 1\p 33 Po12_A_ouT, 26
| msm—f—210o Ut T [pots_A o X
| @05y fvec o ED oo =g
7 'HE 28 {,/0 XC95288XL—-PQ208 129 orap oo <
B | e s 77 @ =
| R Eill 713 28 Sosar Bowaam 18
| G $vo > Re_oux_6_um) ooze_a_oury 8¢
(Txoe, vml [RxD21_A_auT)-
| (o1, 3 170 .W [RD22_A_oUT WMW
7 (Tx02, 36170 1 {Rx_er_8_our) [Rx023__out) 19c
| o 3719 20 fows_5_oun) [0zt A Om 5%
Ca i som ooz _Aour,—— 229
D o — &0 2 ooas a_om——23%
[RXD3_B)———— 170 [Rx027_A_our
MAC Data Interface PortB |[> [roz, 1,70 M [RXD28_A_oUT, mw
7 [RxD1, w 170 = [RXD28_A_0UT) S
| $Hono : e 1
[Rxve_B) 1, [RxD31_A_ouT)
| Gounzy——|—441/0/6cK1 3 o
L . [cRs_B)———— 2679 1 [Rxoe_s_our) nﬂ
| BOMhz clk to divide into 25MHz |>RCex A +7]170/6CK2 ° [RXD1_B_our’ e
| mwe— 4o Hie | woom o0r_s_our o
PWRDOWN_INT_g] 970 Mos T oo [rx03_8_our ¢
| [foommy— mo 170 Her [RXD4_8_our, e
fous} | T e (T s
From RS422 Interface 1 V_Hmwau 51 ““m [1es [Saar oo oo b
| 52 16N 85 3 [Rx07_8_owr, 4o
D8_B_OuT, nmmw
ponean 25
E] . 260>
. D
Decoupling Caps for CPLD, please control
From RS422 Interface 2 |
DE
©8) f,v 3 |@ > BezE B39
— LJ [RXD26_B_OUT,
[RXD27_B_OUT, 31b-
< o £ [e] 3 ~ @ (7 aeﬁ.-:g m ¢
STESTEETS 4 1 Hsme o =
STEETERTS 7 4 R =i
| Ny AP C
JTag Reserve Pins|96Pin Conn Reserve Pins
F Frame capture board DES | 28.83.07
m;lmmplumlﬂl%mpl% mplﬂmplmm@lw m@lmmplm mplnzu mplsm;lm CPLD/Connector3*32 | rev | vi.e
ST ESTISTOSTESTESTISTESTESTESTSSTERTS TPath]
HAUTE ECOLE VALAISANNE 5/7 | Interface.sch
3 _

IS

Power Supply Parts

Is this R sufficient?

PWRGD = @ V < 9o
PWRGD = HI-Z V >= 90
o R8
input 5V 1.5k GREEN (3.3V OK) Output (1)
by Controller NFE31PT222 vo Led p
] , ! LC2 5 25uF Ceramic 20 [v il 3.3V @ 1A
o 0 9 lrseL vseNse[-2 7
JP21 IN out l_l l_l e ol 3 X NFE31PT222
Conn 5V :T ce1 c38 o&r c N»l VA 15 s
; o T 4.7uF Ceramic = E3 v PH w 10uH IN ouT JP17
input 5V 47nFl10enF] i3 {eoN PHI _IC39 1euH ,ic4o o
P , N .0 47nF 33uFESR ° 3.3V ok
by plug 2| purpag It "
R9
|_|_+|_o 02 100k TPS54316
JP20 R11 \
— Plug 5V —1 LA
= ﬁ)i)i R "
Output (2)
NFE31PT222 5V ._..m_._nmq.ma
T .
lo o%—@m
IN ouT JP18
& 5V ok
Frame capture board DES | 28.63.07
Interface Power supply | Rev | vi.e
HAUTE ECOLE VALAISANNE o7 | St ech
1 2 3 4 5 6 _ 7 _ 8 9 10

>30_O@ OﬂOCDQ %o_amm ﬁoovoo::maﬁoq
Analog Ground for a c8o

offset of ~1.2V 100n
Caution OP in SMD Versior|! "

Board reset us

B3 {vDC OUT| - Eauz)

This IC is NOT decoupled
by a capacitor, to detect

|
7 2,
small power fault.

[CTRL GND L\ 7

MHz 50PPM max
C3

The reset button resets
the board and the JTAG.

30pF
Caution Quartz with +—50PPM,

Y Us

L._.>O OODDOO.HOq. %O_me to JTAG Connector

- - - C79
Caution, are the right pin’s

connected??? H@Qs

By J2 7
1
(st —————2-C .
D ~ [Rs422 Client bloc
S ~r
e E|mnu 7 The led shows the transmit and receive
[T00) i actions.
@ KB 7 Normal: 1-2 Port C; 3—4 Port D; 5—6 Port A
_\|n 7 Done: 1-2 Port A; 3—4 Port B; 56 Port C
ﬂ u12
8lvcc RrOH—X %
- = 7 B RE 2
7 6, cmt
7 u1e \Tuozc | e —
MAX485CSA
7 7 ETH3
n1
2|
Ground 7 7 - ool -
FB2 | 14
B2 7 4 I 15 outs-3) Led R
signal oS::axﬁIHumm ground 7 s .
feRomg] ﬂ W 7 outcl2——)
12 fiND+ S
7 wm_zcu outp ¢ x
7 : gy Is this R sufficient?
. 2
7 ﬂ DS26L.532CM OUTA = 2.7—-4.2V if transmit
7 oo OUTA < 8.4V if no transmit
7 Frame capture board DES | 28.83.07 zas
Interface Divers | rRev | vi.e
Path
HAUTE ECOLE VALAISANNE 777 | Rt esch
1 2 6 _ 7 _ 8 9 10

Frame Capturing and Sending in FPGA Zahno Silvan

Appendix 12: Electrical and PCB scheme of the Converter board

13.01.2008

1a — 11b = Control

11c = 220 =

22b — 32¢c =

RX_A

RX_B

EEEERRR BEEEE

c
<12a
<12b
<12c
<13a
<13b
M c
atl
{RC_A_7)
b locas)
A —mao
Ji5b s
<15c _HSP?U
<16a Az
<i6b A1)
e ﬂmﬁ =
7 arrw
7 A
Tﬁ@
O ST
Bc RX_A_20
9a RX_A_21
e W)
N
c 20
0a [RX_A_25
0b [RX_A_26,
Gc RX_A_27
& meam
b e
C e

6 | 7 8 o 10
e
=
E|WHAA
§|mlww
(R oA—32—(
%ﬁ J11
Eacs—a (. PIN[4,8] =RES 1-5
24 ?
G —HC. PIN[11, 14] = RS422
ety —55C PIN[17 , 24] = control B
ﬁ%ﬂ‘“ (. PIN[27 , 34] = control A
me PIN[37 , 38] = MDIO interface
o —Ta PIN[39 , 4@] = High impedance buffer enable
e W others = not used
R
=l
fress) £
iy
ontrol
- J11
e
=TT
PT2
J13
[% PIN[1, 2, 39, 40] = GND
oy < PIN[3, 38] =5V
B < PIN[4 , 37] = 3.3V
Bz y mﬁ\ others = RX_A
T, . in order 31, 30, 29, 28, 27, 26, ...
e mM
Bz, 5 J12
e PIN[1, 32] = RX_B
PT3 @L@w : in order 29, 30, 31, 26, 27, 28, 23, 24, 25, ...
ND 3 others = not used

X _~A/Power <] ~ @]
s e
Halals e
%uuwmmvmumxnmw

i

i

}_,hh}_,}_xT

Interface to Controller Converter—Board DES | {Date} zas
Converter Converter | Rev | vie
HAUTE ECOLE VALAISANNE 22 | ot

2 3 5 6 | 7 | 8 9 10

I
3IV0S ON

\%

9
ww g
HONI L

SeesaaaaaaaaaRatatstRnns

D
>

AR [)) A

y

COO0CO
VVVOTOLLOVVVOVLVLVLOOCO

o

>

(o] (][

FPGA Card for measure the ethernet packets
Converter Boord — Zahno Silvan 25.05.2007

O OHH LD

(L

Lele)

19)

3ANNVSIVIVA 31003 31NVYH

PIDOgG—IoHOAOD)

[s3@>00d jausayia ay} ainspaw Joy pInd ¥od4]

AN
S3

qod*1apaAu0)
\leviva

QA
LO°S0'SZ

I
3IV0S ON

\%

9
ww g

HONI L

CO00OCOCOCOOCOCOCOOCOOOOOOCOOCOCOO
C0000O0C0O0C0O000O0COCOO0CO0O00000C0O0OCO0CO0O
cooccoccocooccococooccocooc0o0ocooccocooO

o
o.

= s <
8 g o:
CO00O00OC0O0O0O0O0O0O0O0O0O0O0O0OCO 0000000 C0O0O00O0CCO0O0O0OO0O 000000000000 0O0O0O0O0O0O0O0
CO0000OC0O0OC0OO0OOOOOOOOCO OOOOOOOODOOOOOODOOOO; 0000000000 0O0C0OO0OO0OO0OO

FPGA Card for measure the ethernet packets
Converter Boord — Zahno Silvan 25.05.2007

3ANNVSIVIVA 31003 31NVYH

PIDOgG—IoHOAOD)

[s3@>00d jausayia ay} ainspaw Joy pInd ¥od4]

qod*1apaAu0)
\leviva

A

s3a

@A

LO°S0'SZ

T 000

J13

FPGA Card for measure the ethernet packets
Converter Boord — Zahno Silvan 25.05.2007

J12

” 1 INCH
10 mm
NO SCALE

[FPGA Card for measure the ethernet packets] DES | 25.05.07

Coverter—Board REV | V1.0
DATAQ1\

HAUTE ECOLE VALAISANNE Converter.pcb

3 4 5 | 6

7 8

J1

J13

| (S

FPGA Card for measure the ethernet packets
Converter Boord — Zahno Silvan 25.05.2007

J12

10 mm
NO SCALE

[FPGA Card for measure the ethernet packets] DES | 25.05.07

Coverter—Board REV | V1.0
DATAQ1\

HAUTE ECOLE VALAISANNE Converter.pcb

7 8

I
3IV0S ON

\%

9
ww g

HONI L

@] O
I—, CO00OCOCOCOOCOCOCOOCOOOOOOCOOCOCOO
C0000O0C0O0C0O000O0COCOO0CO0O00000C0O0OCO0CO0O
cooccoccocooccococooccocooc0o0ocooccocooO

oo

(=]

o
. . -3
0_‘

N [

CO00O00OC0O0O0O0O0O0O0O0O0O0O0O0OCO 0000000 C0O0O00O0CCO000O0O0 000000000000 0O0O0O0O0O0O0O0

CO0O0O00OC0OOC0OO0OOOOO0OOOCO 000000OCCOOOOOCO0O00OO0D| C |OOOOOCOOOOOOCOOOCO00O0
T

Converter Boord — Zahno Silvan 25.05.2007

FPGA Card for measure the ethernet packets | °

3ANNVSIVIVA 31003 31NVYH

PIDOgG—IoHOAOD)

[s3@>00d jausayia ay} ainspaw Joy pInd ¥od4]

qod*1apaAu0)
\leviva

A

s3a

@A

LO°S0'SZ

| Frame Capturing and Sending in FPGA Zahno Silvan

Appendix 2: Schematic Interface

25.03.2008

INDEX OF PAGES FOR THE INTERFACE (RJ45 and Optical)
NUMBER NAME DESCRIPTION COMMENTS

1 Index Description of sheets This is this page

2 Ethernet Input Input connectors Contains the RJ45—plugs and fiber—plugs

3 Input switching Input switching from RJ45 to Optical This is the Jumper page to switch fiber<—>RJ45 ...

4 Buffer / PHY High Impedace Buffer and PHY Contains the Ethernet Phy

) CPLD Connector CPLD and Connector 3*32 Pin Contains the connection to other board and the CPID

6 Power Supply Power Supply Parts Contains the power parts 5V, 3,3V

7 Divers Clock, JTAG, RS422 Contains Clock generation, JTag, RS422 and Board Re
Frame capture board DES | 28.03.07 zas
Interface Index | Rev | vi.@
HAUTE ECOLE VALAISANNE 17 | artace.sch

1 2 3 4 5 6 7 8 9 10

1 _ 2 _ 3 4 _ 5 6 _ 7 _ 8 9 10
Ethernet RJ45 input 7 Ethernet optical fiber input
1 Port A Optical fiber input
2 —= Port B 7 Caution, all Capacitors and Resistances close to
Caution, all blue lines should have a the Connectors
line impedance of 100/50 Ohm. 7
Y s3] Decoupling Caps
Close to RJ45
C74 C75 %oo_loo::mo»ol
2.1u 2.1u 7 13 Ground VEE_TX 7
J7 ’ <mm|mxw
Ter) [erouNg] [ROUN] < ——— or mass? 7 3 PP
TD+ X2+ RD1— 7 D— N
TO- Tx2— 7 RD1+ 5 D+ AN
mN_U+ o TD1+ !
RD— RX2— 7 6
RCT o 2
LED1_K 165 Eb_ACT_ B 7
LED1_A 2
R62 1 2
LED2_K R6T M_UNW LED_LINK_B ~ © M © Mnlu ®
LED2_A H || || | |®
11 165 Set_ If_ FX_ Disabled
[crouND) 7
7 S Optical—Connector1
feroune) YP
M
7 - ﬂmaocsn VEE_TX—
(502} 3 D
B B Decoupling Caps 7
Close to RJ45 o= koo <
C67 C66 7 RO2+ RO+ AN
L3 -
6 0.1u 0.1u — I P 2 - S
TcT N [crouno] [crouno] 7 02— o VCC_R) 3 Tu 1] 2
u7 Tu
o clweg % ©
- Xi— 7 S N e N
- (G o [&]
RD+ RX1+ o © < ® © ®
RD- iR 7 Sl Sl [0 & |©
RCT
LED1_K 165 LED_ACT_A 7
LED1_A B
R57 1 2 . B
LED2_K o O LED_LINK_A,
o RA7T %o Decoupling caps ye
— - .)) HF5UP6 nlﬁ./ nlﬂlﬁ uIﬁ./ nl_lcu
11 165 mm._n|_.ﬁ| _.|X| Disabled The decoupling capacitors are placed on (S - - — [S) INES) SRS N
the bottom layer and 1|-|C1|_|C 1|_|C 1|_|C1|_|C 1|_|C
forouno) close to the fiber—plug’s ———> p\
Frame capture board DES | 28.03.07 zas
Interface Ethernet Input | rev | vie
Path
HAUTE ECOLE VALAISANNE 2/7 _Msalwom.mo:
1 2 3 4 5 6 7 8 9 10

5 | 6 |

7 _ 8

10

b4
IR (R A

TPRDP_A/FXRDP_A

Ethernet input switching

High impedance buffer

84

TPRDM_A/FXRDM_A

Here you can switch from TP to optical

and from active to passive tap.

the Jumpers should be all together on a place
structured!!!

buffer for passive tap
For OS2V see last page

—_
c

ST

SRS G,

TPTDP_A/FXTDP_A

(=

TPTDM_A/FXTDM_A

TPRDP_A/FXRDP_A

N
| T
0 W 0 A
, Lo~ e 5 , ,
L8 £ E_ | |
! 2 g m =2 o9 : ”
- = a8l aw o
2 L 2 o%leacd £ g
- 2 % o Ol W Lo o v o
) - 5 >l 9 >c ‘® 2
M s = ER I 2 o) 5
o S E S LI ETCS & °©
, 2 ° o rm” °2%% | ,
(o] “ D >
” - w < 7 - “ m = 7 W TPRDM_ B/FXRDM_B
| I 552218 A= , |
| | $2az [5 c , |
v W 535153285) J
|
\2
R , TR
o,
Qo20x%
Qo5 a
o
RD2+ % 45
RO B E
RX2— o TPROM_B/FXRDM_B
D
§°2 °a
RD2— % 45 ® A
Au
j %‘|‘_ __” TPTDP_B/FXTDP_B
b
N , 0 C32
°72 "%
- =
TD2+) % 45
0.1u [] == 50 Ohm Line Impedance or plug very close to PHY
a . ——” TPTDM_ B/FXTDM_B,
© ©
0’ 5 © C34
Loz °qa Frame capture board DES | 28.03.07 zas
SR G, Interface input switching/ Buffer | Rev | vie
Path
HAUTE ECOLE VALAISANNE 37 | RO e sen
1 2 5 6 7 8 9 10

1 _ 2 _ 3 4 5 6 7 8 9 10

Ethernet transceiver (PHY)

TX_CLK_A & B and RX_CLK_A & B
must be longer than other signals

on MIl and routing of the 25MHz line
is critical.

PWRDOWN_INT_B|

LED_LINK_B

{coL_g

Phy Matching Network
This resistors should be close to the PHY
R27
fosad :
N P 2.2k FX_B_HD
n [72]
N . 5 .m nnu N EEEEtle @ EEE | [
Power Feedback Circuit T .2 95 E | e B R
JP24 © e -
3 o|E]
. Conn 3.3V
Countion these Caps should be placed - © © o 1 5]
close to the correspond Phy Pin QB Bz |8 Z||B o i X ~
= —
(PFOUT, PFB), see Datasheet p15 & 38 mH_H_..w_H_H_w_M_H_“_mmH_mmm_wﬁ_wﬁ_ - o
I o x
@ el AL =
TPRDM_B/FXRDM_B ® M X \" W _Dv_8
0.1uf @.1uf @.1uf @.1u S.A% _.rl_le TPROP_B/FXROP_B 39 |ropop= < RX_CLK_ B[-83
o i o
— TPTDM_B/FXTDM_B 32> 3.3V
o._ ._|_| O._M|_| O@lh‘ OA&'O._AH TPTDP_B/FXTDP_B WM ._._u._._u_uHm W MDIO| Mw MDIO
R6 Pra) 34 |PFBIN a MDC & {woc]
$3ANAGNDS S CLKZMACI g5
—/— ~a X
e 32 lprBOUT I 5 xi[-z i
4.87k = 31| ANA33VDD « RESET_N| 2] g
5o JANAGND2 TCKI5%
@FR)——53-{PFBIN2 & 00 WA&
TPTDP_A/FXTDP_A 27 TPTDP_A a Ewﬂ%
TPTDM_A/FXTOM_A TPTDM_A TRSTN 76
6 CDGNDT oI
PRBE AT A 5 IPROP_A < 10GND4 (2L
TPRDM_A/FXRDM_A M TPROM_ A ! _0<DD¢3\@
3 IANAGNDT 1< Z RX_CLK_A[-22 T
(Eo_AcT_ T LED_ACT 8. << - < RX_DV_ AR OV A)
WWWA.A.A.A_N_W_.n1A_A_1WA_A_AR_A
288585 082885858 4y
HHERRRRXXCOZEESEEIES
Decoupling caps for PHY, please control!!! S| 20| e 0/~ (@l ¢y —
N — I M
Q [[[
i 3= 2|z 2]]» 8] P
nl_|1nlﬂl2 nlﬂl.lnlﬂlqanlﬂlSnl_lS BHRENNEREN | [
(] N N Mo Mo Mo M N EE E E 3 I E
mlem e e e e Te e
H HlE
Decoupling caps
mum 3.3V|
The decoupling capacitors are placed on 99 —
.2k FX_A_HD —
the bottom layer. Close to Phy N | 2.2k FX_A_ON R38
R37
2.2k CLK2MAC_ DIS
For RJ45, close to PHY For fiber, close to PHY g @ @
5 3.3V] m,
5| oo | . |_|8 @lg lﬂlg |_|@ DES | 28.03.07 zas
c=—=3==3 §1-2 8§12 §-L8 §--8 Frame capture board
® ® |_| |_| |_| |_| Interface PHY | Rev | vi.o
Path
J HAUTE ECOLE VALAISANNE a7 | R e
1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 _ 8 _ 9 _ 10

CPLD

TXEN_OUT

. 5
96—Pin Male Connector oot} ——1
b

D25_B_ouT

YYYYYYY

A |l Routing of the 5@Mhz crystal
and 25Mhz signals is critical.

RXD7_A_OUT
RXD8_A_OUT

1_B_ouT
1_B_ouT

D2_B_OuT.

RXD2_B_ouT

RXD22_B_OUT
RXDS_A_OUT

3.3V

P\ 33813
T I
C00000000000000
////////N/////I_
(s}
o
>
S 1vec_io GND|128
B 3oN 170 M _A_OUT)
X—¢170/6Ts3 1/0f—2% 10_A_0UT)
(KGN 5 VCC_INT35— G
Disable Highimpedance buffers > X m ““w\w_ %
170(-122 [R013_A_oUT)
| Wbio 170| Mm 14_A_OUT)
Serial Management Interface [> ““w\ 7 @
— EEY 170 m 17_A_outy
[o A 170 . 18_A_outy [Fx0e_A_out, <
i 170 u 19_A_outy [Fxo1_A_our, 2ar
| (e 170 D20_A_ouT) [Rxo2_A_ouT 2b>
(o0 170 A o) [RXo3_A_ouT cr
| oo GND| Rx0a_A_ouT a-
i TXD2_ 170 _A_OUT)
03 17ol132 Ao
| o or A 170|138 Rooze_a_oury
c | w2 17032 xozs_a_our) ¢
00_A) 170|138 o)
MAC Data Interface PortA 7 RXD1_AY 170522 —A_our)
| BeED 17033 xcza__our)
70| 13 oz Aour)
| [Fo_A) : u11 VCC_ 103 3.3
i (Ev)y— > o_’\.w m _A_our)
f [28| XC95288XL—PQ208 onp| 1297
] | o 23] Vo2 L meaom
(PArooWN_NT_A} 170|127 [_cix_s_our)
1= s CIECNCY
f /o[123 o s om)
vee_INT|124 T
| 17023 B ov_8)
f 170122 xCesoun)
Lo 170121 D)
D | 170122 o5 oD
| = vo-H2 S50
170 I_o_aovD)
MAC Data Interface PortB |> 40 vol-17 TX_EN_A_out]
| 41 170|118 Cov_2_om)
y 42] 170113 CcL_a_our)
f 4 170114 pea_o)
| 4 o113 Rs_s_oum)
L N 5 170|112 GoL_A-our)
| PoMhz clk to divide into MUZIN 6 170 M PWRDOWN_INT_A_OUT|
f voldle [feoom
FHRDOWN_INT_ 8 woldee I Gecou
f o 4 GND[H28
From RS422 Interface 1 |> _% 5 170/ 06 RXEN_oUT
5 170 05 TXEN_OUT’
f - vee_ 1o €EY
E 9 E
. 5
Decoupling Caps for CPLD, please control m
From RS422 Interface 2 |
(DE) f
N el [N 3ecr
- > B (|6 g8 ERLLLLE o, Sl
c c c @m, 35 [0y o _our sier
© [e2] N~ = [als (2 slele]= [Rx0z8_s_our, o
% n % e} % [T} o EE|E 333 [RxD29_8_ouT, m n_W
® (S (S [3) R x50 6_out 3
Bl == 250 A [Rx0a1 5 our 32¢-
JTag Reserve Pins|96Pin Conn Reserve Pins
By
F Frame capture board DES | 28.03.07 zas F

Interface CPLD/Connector3*32 | rev | vi.e
HAUTE ECOLE VALAISANNE 5/7 _ﬁwﬁom.wo:

9

vosm—t wc bb—% vo ﬂlﬁm Is this R sufficient?

PWRGD = @ VvV < 90z
PWRGD = HI-Z V >= 90z

. R8
input SV 1.5k GREEN m.% OK) Output (1)
by Controller] nNFE31PT222 Us ted P
]) 1 LC2 3 22uF Ceramic 20 [o7 prevy B 3.3V e 1A
= o o , ! 9 FSEL VSENSE[—2 D7
JP21 N out _r _r g T NFE31PT222
Conn 5V g1 C41 c38 O&V c7 8 luN BOOT|—2 , LS, 1 L3 s
o T 4.7uF Ceramic A N 3 IN ouT -
input 5V 470F[10onF| [l HD _lc39 10uH ,jc4o WH JP17
, Ulpeno PHT® 47nF 330uF ESR °© 3.3V ok
by plu e u «
Y plug 21 | pwrPad
+ Ly o2 ook TPS54316
. JP20 R11 /,
" — Plug 5V — S
1 1 @R /
Output (2)
NFE31PT222 5V filtered
., Lt
1 o o 2)
N out JP18
2 5V ok
o~
Frame capture board DES | 28.03.07 zas
Interface Power supply | Rev | vie
Path
HAUTE ECOLE VALAISANNE 677 _Mawlwow.m%
1 2 3 4 5 6 7 8 9

| _U_J __A 7 >_JQ_O© O_\OC_JQ ExClose to OP Connector
y C
w Q .ﬂ 7 Analog Ground for a Cae
oar rese 7 us oiwm‘ﬁ of 24.‘M<) 100n
This IC is NOT decoupled 4 [vpe ouT|-eme) 7 Caution OP in SMD Versior|!
by a capacitor, to detect 7 2
small power fault. CTRL GND|-“¢ 1

the board and the JTAG.

The reset button resets 7 3.3V 50MHz 50PPM max 7

7 30pF 7 =
S1 EET us Caution Quartz with +—-50PPM, 7
4 vee
x[< 2 |\
¢ ° 3 IR RESET - - w-% _z<c¢m -
eset Button 1 =
GND C83
I 7 82 Ucreo1p C73L LS
MAXB11 AN 100n 10u
3]
- 7 10Qu 10@n
B Cl to JTAG C Lv
JTAG Connector oseto onnectr
_ — c79 7
Caution, are the right pin’s
connected??? H@@: 7
HE_ J2 |
D — < RS422 Client bloc
E‘MAIK 7 The led shows the transmit and receive
@ (uracRes——(8 “\f actions.
(o} _w —C Normal: 1—=2 Port C; 3—4 Port D; 5—6 Port A
L\|A 7 Done: 1—2 Port A; 3—4 Port B; 5—6 Port C
MAX485CSA
7 7 ETH3
Ground 7 7 2 W s o
3
FB2 |
)] 7 4 [13)
signal ground case ground 7 s e ®
o) 7 M‘ W outcl2——— i)
7 7 1 3¢ m
8
7 Is this R sufficient?
9
7 _U DS26LS32CM OUTA = 2.7-4.2V if transmit
7 o0 OUTA < @.4V if no transmit
7 Frame capture board DES | 28.03.07 zas
Interface Divers | Rev | vi.e
Path
HAUTE ECOLE VALAISANNE 777 _Mim%wom.m%
2 3 4 5 6 7 8 9 10

| Frame Capturing and Sending in FPGA Zahno Silvan

Appendix 3: Schematic Converter

25.03.2008

1a — 11b = Control
J11

PIN[4,8] =RES 1-5

PIN[11, 14] = RS422

PIN[17 , 24] = control B

PIN[27 , 34] = control A

PIN[37 , 38] = MDIO interface

PIN[39 , 4@] = High impedance buffer enable
others = not used

RESZ]

| B

I
>H>

2

G ool =

g

PT1
Bv

Bav
PT2

d

oloTe 6 Te0|T|alo
I \Q
> o= {1 1> 1> [

alaig
El

g

>

lo>
4
Q\
>
o
al=

6c -

3
i
i

11c — 22a = RX_A

>

I~
o
I

>

RX_A_18

i

RX_A_20

©|

]
I
i

©|
o]
I
>
I

AAAAAAAAAAAAAAAAAAAAAAAAS
2
)

X_A_23

i

RX_A_25
RX_A_26
RX_A_27

J13

PIN[1, 2, 39, 40]
PIN[3, 38] 5V

PIN[4 , 37] 3.3V
others = RX_A

in order 31, 30, 29, 28, 27, 26, ...

GND

>
>
3

>
>
@

gl oja
I
i

N
N

i

<2
<22
J

:
il itelt

i

NN

ooa|s e (8|0 o
U U
g
' i
' '
BB

U
I
¥
>
I
N
8

J12
PIN[1, 32] = RX_B

= PT3 in order 29, 30, 31, 26, 27, 28, 23, 24, 25, ...

L ND others = not used
f ﬁ, U, H, m, N, n, M, m, N,
:@Mmmmmﬂﬂm

SART X _~A/Power
IO

d

U
I
>
I
w
$

I
"
2lelellslololsluls]=]s
I
>
I
N
8

R

H
)
i
>
0
=

=
Bl
|| OO

22b — 32c = RX_B

4

2

5
o
|
%
3

i

X_B_18

Rx_B_21 % ﬁ % H

A

- 13
Interface to Controller Converter—Board DES | {Date} zas

Converter Converter | Rev | vie

HAUTE ECOLE VALAISANNE 22 | o et

4 5 6 _ 7 _ 8 9 10

©
N
[
Q
ppARAaYAAANARARARRA
~
s
o s
0 b|o]o|o|olo]ololo|olo]a [o) 5|00 olofo]olo olo|o
l DOOLOOLDODOOOO bJj o VOVOOLOLOOVO
o
FPGA Card for measure the ethernet packets (1 °
Converter Board — Zahno Silvan 25.05.2007
z
S
— 8
>
f
s
o 3
3 -
z
o
x
o =
o i)
ElE3
g o
m
EIRE!
= g =
s | a %
g 3
5 2
2 g
z <
—{ ™ -
3
2
3
3
kS
o
-
£
el 3| R
— 33 21
g2
sy
3 s | o
o w
°
~
©
- m o o [+

ocooo
[oXeRoXe]
0000

(s

0000000000000 00000000000000O0
0000000000000000000000000000
0000000000000 00000000000000O0

FPGA Card for measure the ethernet packets
Converter Board — Zahno Silvan 25.05.2007

NO SCALE

1 INCH

18 mm
frrvdere

[FPGA Card for measure the ethernet packets] DES | 25.65.07

Coverter—Board REV | V1.0
DATAR1\

HAUTE ECOLE VALAISANNE Converter.pcb

7 8

J11

00O

J13

FPGA Card for measure the ethernet packets
Converter Board — Zahno Silvan 25.05.2007

J12

1 INCH

[FPGA Card for measure the ethernet packets] DES | 25.65.07

Coverter—Board REV | V1.0
DATAR1\

HAUTE ECOLE VALAISANNE Converter.pcb

7 8

J11

(s

J13

Converter Board — Zahno Silvan 25.05.2007

FPGA Card for measure the ethernet packets

J12

1 INCH
18 mm
NO SCALE

[FPGA Card for measure the ethernet packets] DES | 25.65.07

Coverter—Board REV | V1.0
DATAR1\

HAUTE ECOLE VALAISANNE Converter.pcb

7 8

]

ocooo
[oXeRoXe]
0000

(]

0000000000000000000000000000
0000000000000 00000000000000O0

—
LJOOOOOOOOOOOOOOOOOOOOOOOOOOOO

FPGA Card for measure the ethernet packets
Converter Board — Zahno Silvan 25.05.2007

1 INCH

[FPGA Card for measure the ethernet packets] DES | 25.65.07

Coverter—Board REV | V1.0
DATAR1\

HAUTE ECOLE VALAISANNE Converter.pcb

7 8

| Frame Capturing and Sending in FPGA Zahno Silvan

Appendix 4: CoreMP7 development kit users guide

25.03.2008

CoreMP7 Development Kit

User’s Guide

JActel

Actel Corporation, Mountain View, CA 94043
© 2006 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: XXXXXXXX.X

Release: July 2006

No part of this document may be copied or reproduced in any form or by any means
without prior written consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any
implied warranties of merchantability or fitness for a particular purpose. Information
in this document is subject to change without notice. Actel assumes no responsibility
for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be
disclosed to any unauthorized person without prior written consent of Actel
Corporation.

Trademarks
Actel and the Actel logo are registered trademarks of Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered trademarks
of their respective holders.

Table of Contents

Introduction 5
Document Contents 5
Document Assumptions 5
1 Contents and System Requirements 7
Development Kit Contents 7
System Requirements 7
2 Hardware Components 9
CoreMP7 Evaluation Board oo 9
Detailed Board Descriptionand Usage 9
PLL Parts/Usage on M7A3P/E 11
Programming the Development Kit with a FlashPro3 Programmer 14
3 Setupand Self Test 25
Software Installation Lo o o 25
Hardware Installation 25
Programming the TestFile 25
4 Actel CoreMP7 Design Flow 27
CoreMP7 System Creation 27
FPGA Design Creation and Verification 29
FPGA Design Implementation 30
FPGA Programming Software, 31
Microprocessor Design Creation and Programming 31
5 Quickstart Tutorial L 33
Actel CoreConsole 1.1 34
Actel Libero IDE V7.1o 49
ARM RealView Developer Kit — Actel Edition 86
Running the Reversi Game via the On-Chip Debugger 104

A M7A3PE600 and M7A3P1000 FG484 Package Connections . . 105
484-Pin FGBGA Package 106

CoreMP7 Development Kit User’s Guide 3

‘ Table of Contents

B

Board Schematics 0oL 129
Top-Level View 129
CoreMP7 Schematics oo oo 129
Signal Layers o 143
Product Support 151
Customer Service 151
Actel Customer Technical Support Center 151
Actel Technical Support L 151
Website 151
Contacting the Customer Technical Support Center 152
Index 153

CoreMP7 Development Kit User’s Guide

Introduction

Thank you for purchasing the Actel CoreMP7 Development Kit.

This guide provides the information required to easily evaluate the CoreMP7 intellectual property
(IP) core and M7A3P/E devices.

The CoreMP7 Development Kit software includes a base set of common IP for use in your
embedded system. The CoreMP7 Evaluation Board also includes additional hardware to facilitate
your system development; however, additional purchases may be required to use certain hardware

found on the development board, such as the 10/100 Ethernet, USB 1.1, or CAN 2.0A/B interfaces.

Document Contents

Chapter 1 — Contents and System Requirements describes the contents of the CoreMP7
Development Kit.

Chapter 2 — Hardware Components describes the components of the CoreMP7 Evaluation Board.

Chapter 3 — Setup and Self Test describes how to set up the CoreMP7 Evaluation Board and how to
perform a self test.

Chapter 4 — Actel CoreMP7 Design Flow introduces the design flow for CoreMP7 using Actel
CoreConsole® Actel Libero® Integrated Development Environment (IDE), and ARM® RealView
Developer Kit.

Chapter 5 — Quickstart Tutorial illustrates a sample Verilog design for the CoreMP7 Evaluation
Board.

Appendix A = M7A3PE600 and M7A3P1000 FG484 Package Connections provides a table listing
the board connections.

Appendix B — Board Schematics provides illustrations of the CoreMP7 Evaluation Board.

Appendix C — Signal Layers provides illustrations of the six signal layers of the CoreMP7
Evaluation Board.

Appendix D — Product Support describes Actel support services.

Document Assumptions
This user’s guide assumes the following:
* You intend to use Actel Libero IDE and ARM RealView Developer Kit.
* You have installed and are familiar with Actel Libero IDE v7.0 and ARM RealView Developer

Kit v2.2, or later versions of either suite.
* You are familiar with Verilog.

* You are familiar with PCs and the Windows operating system.

CoreMP7 Development Kit User’s Guide 5

1

Contents and System Requirements

This chapter details the contents of the CoreMP7 Development Kit and lists the power supply and
software system requirements.

Development Kit Contents
The CoreMP7 Development Kit includes the following:
* CoreMP7 Evaluation Board
* Actel Libero IDE Gold
* Actel CoreConsole IP Deployment Platform
* Actel SoftConsole GNU-based C compiler with basic debugger and FlashPro3 JTAG support
* CoreMP7 User’s Guide and Tutorial
* CD-ROM with design examples
* Universal 9 V DC power supply providing output up to 2 A
CUI, Inc. Part Number: DTS090220U-P5P-SZ
* Actel FlashPro3 Programmer (optional, depending on kit ordered)
For the CD-ROM contents, review the ReadMe.doc file at the top level of the CD-ROM.

System Requirements
The system requirements for Actel Libero IDE and ARM RealView Developer Kit are as follows:

* 1.0 GHz Pentium-class processor

* 750 MB hard disk space

* 256 MB RAM

* CD-ROM drive

* USB 1.1 (USB 2.0 recommended)

* Windows 2000 SP4 or Windows XP SP2

CoreMP7 Development Kit User’s Guide 7

Hardware Components

This chapter describes the hardware components of the CoreMP7 Evaluation Board.

CoreMP7 Evaluation Board

Figure 2-1 on page 10 shows a top-level view of the CoreMP7 Evaluation Board. The board consists
of the following:

Wall-mount power supply connector with switch and LED indicator

Switches to select from 1.5V, 2.5V, and 3.3 V V1 (I/0 Bank) voltages on banks 4-7 (for the
M7A3PE600) or banks 3—4 (for the M7A3P1000)

10-pin, 0.1"-pitch programming connector compatible with Altera connections
48 MHz oscillator and 32 kHz oscillator for real-time clock (RT'C) calculations
Eight LEDs driven by outputs from the device

Jumpers allowing disconnection of all external circuitry from the FPGA

One monostable pulse generator switch

Eight switches providing input to the device

Two RS-232 serial interfaces

Two 10/100 Ethernet interfaces (only populated on boards with M7A3P1000)
One Controller Area Network (CAN) 2.0B serial interface

One USB 1.1 serial interface

For further information, refer to “M7A3PE600 and M7A3P1000 FG484 Package Connections” on
page 105 and “Board Schematics” on page 129.

Detailed Board Description and Usage

The CoreMP7 Evaluation Board has various advanced features that are covered in later sections of
this chapter. The Development Kit version can be identified as the one that has the FPGA soldered
directly to the board.

A block diagram of the CoreMP7 Evaluation Board is shown in Figure 2-1 on page 10 and will
facilitate understanding of the more detailed schematics shown in “Board Schematics” on page 129.

CoreMP7 Development Kit User’s Guide

‘ Hardware Components

(=
-

Bl

2
qrﬂ
qa:lﬁ-
=] B

[N —

0

e

a
[=FH

= emff =
-

B eFEeEEEaaE

I:: - ﬂé BB &
BB 8-8E 888
gwywyyywﬂﬂﬂ'ﬂ'

Figure 2-1. CoreMP7 Evaluation Board Top-Level View

688
125

10 CoreMP7 Development Kit User’s Guide

| PActel

‘ PLL Parts/Usage on M7A3PIE

Full schematics are available on the Development Kit tutorial CD-ROM supplied with the kit. The
schematics are also available for download from the Actel website. The dedicated electronic version
of the schematics can be enlarged to a far greater degree than can be shown in the printed version of
this manual; hence, the interested reader is referred to the dedicated schematics for the appropriate
level of detail.

PLL Parts/Usage on M7A3P/E

Instructions for PLL Activation on the CoreMP7 Evaluation Board

To use the PLLs on the CoreMP7 Evaluation Board, power must be applied to their respective
analog supply rails. For the west side middle PLL, known as PLF, the VCCPLF line must be
connected to VCC, which is held at 1.5 V. The same is true of VCCPLC for the PLL on the east
side, known as PLC. These voltages are not connected by default on the board for three reasons:

* The PLC analog voltage rails are not available on M7A3P devices, only in the M7A3PE family;
only the west side PLL, namely PLEF, is available on M7A3P devices. On M7A3P devices, the
remaining pins are used as general purpose 1/Os. The same board is used for M7A3PE and
M7A3P devices.

* The aim is to demonstrate the lowest possible power consumption for the part. Perpetually
powering the PLL lines would not achieve the lowest power.

* Itis easy to connect the appropriate pins together when desired. This is why the pins are available
on the jumper-based headers.

A variety of valid connections is possible. Three examples are as follows:

* For PLF, connect pin M6 (VCCPLF) to VCC via jumper JP42.

* For PLC, connect pin M18 (VCCPLC) to VCC via jumper JP44.

* For PLA, connect pin F7 (VCCPLA) to VCC via jumper JP40

Note: PLA, PLB, PLD, and PLE are only available on M7A3PE devices.

To facilitate use, Actel supplies jumpers with selected production versions of the kit to allow users to
quickly connect and disconnect these voltage supply rails. If a user has lost the jumpers or has a kit
without jumpers, it is a simple matter of soldering short, insulated connecting wire to the
appropriate header pins on the corresponding PLL jumper block.

CoreMP7 Development Kit User’s Guide 11

‘ Hardware Components

Power Supplies

A 9V power supply is provided with the Development Kit (Figure 2-2). There are many power
supply components on the Evaluation Board to illustrate the many ways that differing voltage banks
may be used with M7A3P and M7A3PE technology. These voltage banks are not all required for
general use of the M7A3P silicon. They are provided for illustrative purposes only.

+9 V DC Supply

2 A Max.
* Red
o 25V
" | Regulator
SWi1
off O On
33V g
Regulator B o
o 1.5V Core FPGA
Veume " | Regulator Voltage
5.0V USB
" | Regulator Power

Figure 2-2. Power Supply Block Diagram

To use the CoreMP7 Evaluation Board with a wall-mount power supply, use the switching brick
power supply provided with the kit.

The external +9 V center-positive power supply provided to the board via connector J1 goes to a
voltage regulator chip, U1l. As soon as the external voltage is connected to the board, the red “power
applied” LED, D4, illuminates to indicate that an external supply has been connected. As soon as
switch SW1 is moved to the ON position, the disabling ground signal is removed from pin 7 of U1,
and the regulator begins to provide power at its output.

The switching voltage regulator (U1) provides a dedicated 3.3 V supply at its output. The board’s
3.3 V supply is used to feed separate regulators that deliver 1.5 V (via U2) and 2.5 V (via U4). The
1.5 V supply is required for the core voltage of the M7A3P/E family, and the 2.5 V supply is
required for demonstrating LVDS extended 1/0 bank capability.

12

CoreMP7 Development Kit User’s Guide

| PActel

‘ PLL Parts/Usage on M7A3PIE

The presence of these voltages is indicated by the illumination of three green LEDs (D2, D3, and
D7) at the top middle of the board. Each LED is labeled with the voltage it represents and its
component identifier. All three voltages are selectable on 1/0O banks 4-7 on the M7A3PE device.

Note: Only M7 ProASIC3E devices have eight I/0O banks. M7 ProASIC3 devices have four I/O
banks—one per side of the FG484 package.

The 3.3 V supply can also be used to provide the Vpyypip programming voltage. Vpyyp can be
provided to the chip during programming by applying a FlashPro3 programmer to the J10 interface
and selecting Vpyyp from the FlashPro v4.0 (or later) programming software. The Vpyyp voltage
can also be provided directly to the chip from the board. Leave the JP39 jumper in place to apply the
3.3 V supply to the Vpypp pin (U17 on the FG484 package).

Note: If both FlashPro3 and the board are selected to provide Vpyjpp the connection on the board
will override, as FlashPro3 will detect that a voltage is available, issue an information message
in the programming software, and then tristate the Vpyjpp output pin, allowing the board to
provide all the power.

The board must be powered up during programming, as the chip needs its core voltages provided,
and Vjpg must be detected by the FlashPro3 programmer before it can set its JTAG signal voltages
to the correct level.

USB has its own dedicated 5 V power supply, all components of which (including the regulator U3)
are marked on the circuit board in a boxed area to indicate which components on the PCB are
associated with which tasks. A green LED (D5) representing 5 V supply availability is located at the
top middle of the board.

The external +9 V power supply is rated at 2 A maximum. In the first of the schematics shown in
“Board Schematics” on page 129, it can be seen that the 3.3 V supply is rated at 5 A maximum. The
derived power supplies of 1.5 V and 2.5 V are each rated at 2 A maximum, and the USB 5 V power
supply is rated at 500 mA, as shown in Figure B-3 on page 132. As such, the derived supplies cannot
all be working at their maximum current outputs simultaneously. The maximum ratings are given for
the individual regulator ICs and cannot be added together.

Both U1 (LM2678S-3.3) and U3 (LM2674M-5.0) are rated for an input voltage range of +8 V to
+40 V, so a wide range of power supplies can be used with the board with no concern about over-
voltage conditions occurring from inadvertent usage of the wrong power supply. However, the user
should take care to ensure that the voltage provided is positive at the center pin of the J16 connector
and grounded on the outside.

Note: Greater heating of the regulator chips will be observed with higher voltages. It is therefore
recommended that only the included power supply or an equivalent substitute be used with
the Development Kit. The included power supply has been rated for this board, including any
Actel daughter cards that may be attached to the board.

CoreMP7 Development Kit User’s Guide 13

‘ Hardware Components

Programming the Development Kit with a FlashPro3

Programmer

The same board is used for all CoreMP7 Development Kits. The COREMP7-E600-DEV-KIT
board is fitted with a M7A3PE600-FG484 device, and the COREMP7-1000-DEV-KIT board is
fitted with a M7A3P1000-FG484 device. Further, there are two additional variations of the
CoreMP7 Development Kit: COREMP7-E600-DEV-KIT-FP3 and COREMP7-1000-DEV-KIT-FP3.
The only difference between these two is the designator -FP3, which indicates that the kit includes
the FlashPro3 programmer.

Connecting the FlashPro3 Programmer to the Board

To connect the FlashPro3 programmer to the board:
1. Connect the FlashPro3 programmer to your computer via the USB cable.

2. Follow the instructions in the F/ashPro User’s Guide (software v4.0 or later) for installing the
software and connecting to FlashPro3. The amber (yellow) power LED on the FlashPro3 should
be illuminated at this stage. If it is not, recheck the procedure given in the F/ashPro User’s Guide
until you obtain steady illumination of the amber power LED.

3. Make sure the board power switch SW1 is in the OFF position and only the red external power
LED is illuminated on the board.

4. Connect the FlashPro3 programmer to the board via the 10-pin programming cable supplied
with the FlashPro3 programmer. The connector to use on the board is labeled FP3 JTAG (J10)
and has a keyed header. The pin 1 location on the cable, indicated by the red ribbon running
along the side of the cable, will be on the left side as it enters the board.

After connecting the FlashPro3 programmer, you can verify communication by checking Device
Info in the FlashPro software. The M7A3P/E details will be shown in the software log window. If
you suspect a JTAG communication problem, try changing the Vyrpg voltage. To overcome noise,
higher values usually work better, but all values should work with the supplied programming cable
(6" in length) connected to just one board.

Programming or Reprogramming the Example Design

On the Development Kit CD, you will find a Designer directory containing a STAPL file for
programming the target design. Select the TOP M7A3PE6.STP file (for M7A3PE600 parts) or the

TOP M7A3P1K.STP file (for M7A3P1000 parts) from the CD and use that as the STAPL file in
the FlashPro software. Selecting Program will erase, program, and verify the part.

14 CoreMP7 Development Kit User’s Guide

| PActel

‘ Programming the Development Kit with a FlashPro3 Programmer

Jumpers for Isolating Switches, LEDs, and Other Components from the
FPGA

Many jumpers are provided on the board to allow the user to disconnect various switch combinations
and LEDs from the FPGA I/O banks. All such jumpers are shown in the schematic in Figure B-8
on page 137 and are labeled on the top-layer silkscreen as JP*, where * is a number. All jumpers are
also labeled with the FPGA 1I/0O pin number to which they are connected; e.g., JP29, for the TXO0
connection of the RS-232 transmitter to the FPGA, is labeled “F18,” which indicates that it is
connected to pin F18. Similarly, SW4 has a jumper above it, JP3, that is labeled “I'5,” indicating
that SW4 is connected to pin T5 of the FPGA when the jumper is in place.

Disconnecting jumpers JP2—JP9 causes the push button switches (SW3-SW10, respectively) to be

disconnected from the FPGA so that I/O pins T4, T5, R6, R5, U2, U3, P6, and P7 can be used for
other purposes. Disconnecting the eight jumpers, JP10-JP17, causes the eight LEDs (D9-D16) to
be disconnected from FPGA 1I/O pins R4, P5, R2, T2, P2, N2, N6, and N7, respectively.

The push-button switch SW2 (labeled RESET#), meant for applying a reset pulse, is connected to
pin W15, a chip-wide global. Again, all labeling is clearly shown on the silkscreen. This flexibility is
useful for experimentation with designs of your own choosing and in connecting other external
equipment to the board for development purposes.

CoreMP7 Development Kit User’s Guide 15

‘ Hardware Components

LED Connections

Eight LEDs are connected to the device via jumpers. If the jumpers are in place, the device I/O can
drive the LEDs. The LEDs change based on the output as follows:

* A '1l' on the output of the device lights the LED.
* A0 on the output of the device switches off the LED.

* An unprogrammed or tristated output may show a faintly lit LED.

Note: If the I/O voltage of Bank 5 (on A3PE, set by J6) or Bank 2 (A3P, set by J6) is not at least
2.5V, the LEDs will not illuminate. A setting of 1.8 V on the voltage bank will cause
extremely faint illumination.

Table 2-1 lists the jumper and device connection associated with each LED.

Table 2-1. LED Device Connections

LED | Jumper | Device Connection

D9 |[JP17 | U9 pin N7
D10 [JP16 | U9 pin N6
D11 [JP15 | U9 pin N2
D12 |[JP14 | U9 pin P2
D13 [JP13 | U9 pin T2
D14 [JP12 | U9 pin R2
D15 [JP11 | U9 pin P5
D16 [JP10 | U9 pin P4

To use the device I/0 for other purposes, remove the jumpers.

CoreMP7 Development Kit User’s Guide

| PActel

‘ Programming the Development Kit with a FlashPro3 Programmer

Switch Connections

Eight switches are connected to the device via jumpers. If the jumpers are in place, the device I/O
can be driven by the switches listed in Table 2-2.

* Pressing a switch drives a '1' onto the associated device I/O pin. The '1' continues to be driven
while the switch is in place.

* Releasing a switch drives a zero onto the device I/O pin.

Table 2-2 lists the jumper and device connection associated with each switch.

Table 2-2. Switch Device Connections

Switch | Jumper | Device Connection
SW3 |JP2 U9 pin T4
SW4 |JP3 U9 pin T5
SW5 JP4 U9 pin R6
SW6 |JPs U9 pin RS
sw7 | Jpe U9 pin U2
SW8 | JpP7 U9 pin U3
Sw9 P8 U9 pin P6
SW10 |JP9 U9 pin P7

CoreMP7 Development Kit User’s Guide 17

‘ Hardware Components

CoreUARTapb RS-232 Implementation

The CoreMP7 Development Kit includes two RS-232 ports that can be used for communication
between the embedded microprocessor and a common serial port, as found on a PC or other
RS-232-compatible device. To use either of the RS-232 ports, jumpers must be in place to connect
the FPGA to the on-board RS-232 transceiver. The jumpers used for the RS-232 connections can

be found in Table 2-3.

The primary RS-232 port (P2) has lines to support RT'S/CTS flow control in addition to TXD and

RXD.

Note: Currently, CoreUARTapb does not support hardware RT'S/CTS handshaking. If this
functionality is needed, it must be implemented in software. The default configuration has a
jumper shorting RT'SO and CTSO0 together, disconnecting them from the FPGA I/Os and

creating a loopback connection, similar to the implementation found on the secondary

RS-232 port.

Table 2-3. RS-232 Connections

Signal | Jumper | Device Connection
TX0 [JP29 | U9 pin B11

RXO |JP32 | U9 pin G21

RTSO |JP30 | U9 pin K17

CTSO |JP33 |U9 pinJ19

TX1 |JP31 | U9pinCl1

RX1 |JP34 | U9 pin K18

18

CoreMP7 Development Kit User’s Guide

| PActel

‘ Programming the Development Kit with a FlashPro3 Programmer

Core10/100 Ethernet Implementation
Core10/100 is an Ethernet Media Access Controller IMAC) that connects Loocal Area Networks
(LANSs) at data rates of 10 or 100 Mbps (see Figure 2-3). It has a Media Independent Interface
(MII) for physical connection and implements Carrier Sense Multiple Access with Collision
Detection (CSMA/CD) algorithms, per IEEE 802.3. Ethernet is a common standard used in

computer, communications, industrial, and other applications.

Shared Transmit
RAM RAM
A
Y
¢ P
CPU Data Interface Bus
. Core10/100 || PHY
(8-, 16-, or 32-Bit) < - Ml
Interface

Control Interface Bus

4>

b

Address| [Receive
RAM RAM

Figure 2-3. Overview of a Typical Core10/100 System

Detailed Core10/100 information is available in the Ezhernet Media Access Controller Core10/100
datasheet at http://www.actel.com/ipdocs/Core10100 DS.pdf.

The MII interface to Core10/100 works with most Ethernet PHY chips. Due to the analog
requirements of an Ethernet PHY, such cannot be implemented in an Actel FPGA.

The CoreMP7 Evaluation Board supports dual Ethernet connections. An AM79C874VI from
Advanced Micro Devices (AMD) is used for each PHY (U19 and U20). See Table 2-4 on page 20
for details on the connections between the FPGA and each PHY via]J26 and J27, which are
connection/disconnection points for PHY0 and PHY1, respectively.

Note: The dual Core10/100 Ethernet interfaces are only populated on boards based on the
M7A3P1000 device.

CoreMP7 Development Kit User’s Guide 19

‘ Hardware Components

Table 2-4. 10/100 Ethernet Connections

PHY Signal | Jumper | Device Connection (J26/J27)

MDIO 1 U12/U12

MDC 3 T12/T12

TXDO 5 V10/V12

TXD1 7 U9/vi1

TXD2 9 U10/R12

TXD3 11 T10/R11

TX EN 13 AB7/AA9

TX ER 15 AB6/AA10

EXT IN CLK 0 |17 Y7/AA8

RXDO0 19 Y6/AA7

RXD1 21 U9/AB9

RXD2 23 V8/AB8

RXD3 25 AA6/W9

RX DV 27 AAS5/W8

RX ER 29 AB5/Y10

EXT IN CLK 1|31 AB4/W10

COL 33 AA4/U11

CRS 35 Y4/T11

RST# 37 W15/W15

N/C 39 N/C

USB
The CoreMP7 Evaluation Board includes a Fairchild Semiconductor USB1T11AM USB
transceiver. The USB standard specifies support for multiple device connections, allowing up to 127
unique devices. Further, the Fairchild transceiver supports the transmitting and receiving of serial
data at both full-speed (12 Mbps) and low-speed (1.5 Mbps) data rates. Implementation of the
Serial Interface Engine (SIE) is required to use the USB interface present on the Evaluation Board.
Information on the SIE can be found on the USB Implementers Forum at http://www.usb.org.
20 CoreMP7 Development Kit User’s Guide

| PActel

‘ Programming the Development Kit with a FlashPro3 Programmer

CompanionCore CAN 2.0B Implementation

The CAN bus is a communication standard with multi-master capability, error detection and
correction, and broad industry acceptance. The CAN bus was designed for the automobile industry,
but CAN has recently been appearing in non-traditional applications. The CAN bus comprises two
signals to which all networked devices are connected, thus allowing communication between
multiple devices. The reliability and error detection is handled by a series of arbitrations, (not)

acknowledges, and CRC checks.

Table 2-5 details the connections between the M7A3P/E FPGA and the onboard CAN transceiver
(U18). The CoreMP7 Evaluation Board is also equipped with LEDs (D18 and D19) connected to
the TXD and RXD lines of the CAN bus. Therefore, when data is being transmitted or received,
the respective LED will blink.

If network termination is needed (typically for CAN baud rates greater than 100 kbps), shorting
JP38 (CAN TERM) inserts a 120 Q resistor between CAN-H and CAN-L.

Table 2-5. CAN Device Connections

CAN Signal | Jumper | Function / Device Connection

CAN TXD |[JP35 | U9 pin K20

CAN RXD |JP36 | U9 pinJ22

CAN TERM |]JP37 | Enables termination
CAN SHLD [JP38 | Enables shield ground

Clock Circuits
The CoreMP7 Evaluation Board has two clock circuits: a 48 MHz oscillator and a 32 kHz

oscillator.

48 MHz Oscillator

The 48 MHz oscillator on the board is a 30 ppm-—stability crystal module that provides more than
adequate performance and can be connected to a general purpose I/O (pin W12) or a chip-wide
global (pin W17) using a jumper.

32 kHz Oscillator

The 32 kHz oscillator on the board is a 30 ppm-—stability crystal module that will provide enough
accuracy to perform RTC calculations and is hardwired to a chip-wide global (pin V16).

CoreMP7 Development Kit User’s Guide 21

‘ Hardware Components

Memory

Headers

Test Points

Flash

The CoreMP7 Evaluation Board includes two STMicroelectronics M29W800DT Flash memory
chips, totaling 2 MB, which can be arranged in either a 1M x 16 or a 512K x 32 configuration. The
Flash memory is intended for use as executable program storage for the embedded microprocessor;
however, it can also be used as nonvolatile memory for the storage of system constants and
parameters.

SRAM

The CoreMP7 Evaluation Board includes two GSI Technology GS8001BT Synchronous SRAM
modules, totaling 2 MB, which can be arranged in either a 1M x 16 or a 512K x 32 configuration.
The SRAM memory is used for the embedded microprocessor stacks (both hardware and software)
and for dynamic system data.

There are three headers (J11, J12, and J13) present on the CoreMP7 Evaluation Board intended for
use as general purpose I/O. These pins are tied to the various chip-wide global signals in the /0
banks as well as dedicated general purpose I/Os. See the schematics in “Board Schematics” on page
129 for further information.

All test points on the board are fitted with small test loops. These test points are labeled on the
silkscreen as TP1, TP2, etc. All such test points are also labeled on the silkscreen with the voltage
expected to be observed at that test point or the I/O pin to which the test point is connected. Each
voltage will be either 3.3V, 2.5V, 1.5V, or GND. When measuring the voltage at a test point with
a DVM (digital voltage multimeter), the ground lead should be connected to a test point labeled
GND, and the voltage lead should be connected to the voltage to be tested. All voltage labels on the
board are relative to a 0 V ground reference (GND).

Board Layers

The complete board design and manufacturing files are included on the Development Kit CD. The
board file is in Allegro format, which will allow a user to create the appropriate Gerbers and other
board views as needed. Pictures of the board layers are also included in “Signal Layers” on page 143.
For your convenience, high-resolution PDFs of these layers are also provided on the Development

Kit CD.

22

CoreMP7 Development Kit User’s Guide

| PActel

‘ Programming the Development Kit with a FlashPro3 Programmer

The board is fabricated with six copper layers. The layers are arranged as follows, from top to
bottom:

* Layer 1 - Top signal layer

* Layer 2 — Ground plane

* Layer 3 — Signal layer 3

* Layer 4 — Signal layer 4

* Layer 5 — Power plane

* Layer 6 — Bottom signal layer

Refer to the diagrams in “Signal Layers” on page 143.

CoreMP7 Development Kit User’s Guide 23

Setup and Self Test

This chapter outlines how to set up and test the CoreMP7 Evaluation Board.

Software Installation

The CoreMP7 Development Kit includes the Libero IDE software suite (version 7.0). For Libero
IDE software installation instructions, refer to the Acte/ Libero IDE / Designer Installation and
Licensing Guide for Soffware v6.1 at http://www.actel.com/documents/install. pdf.

The CoreMP7 Development Kit also includes the Actel SoftConsole GNU-based C compiler and
debugger, which can be used to program and debug the CoreMP7 program memory through the
FlashPro3.

Hardware Installation

FlashPro3 is required to use the CoreMP7 Development Kit. For software and hardware installation
instructions, refer to the FlashPro v3.3 User’s Guide at http://www.actel.com/documents/
flashproUG.pdf. FlashPro3 is also used with SoftConsole to program and debug the Flash program
memory on the CoreMP7 Evaluation Board.

If you are using the ARM RealView Developer Kit, you will need to use the ARM RealView ICE
Micro Edition (RVI-ME) supplied with it to program and debug the Flash program memory on the
CoreMP7 Evaluation Board. For software and hardware installation instructions, refer to the
documentation included on the ARM RealView installation CDs.

Programming the Test File

To retest the evaluation board at any time, use the test program to reprogram the board. Use the
TEST MT7A3PE6.stp file with an M7A3PE600-FG484 fitted on the board. Use TEST M7A3P1K stp
with an M7A3P1000-FG484 fitted on the board.

The test design is currently implemented for the M7A3PE600 die size. It is possible to recompile
the design for other device sizes. For information about retargeting the device, refer to the Designer
User’s Guide at http://www.actel.com/documents/designerUG.pdf. The design files are available
under Se/f7est on the Development Kit CD.

For instructions on programming the device using FlashPro3, refer to the FlashPro Users Guide at
http://www.actel.com/documents/flashproUG.pdf.

The Flash memory on the board can be programmed using either FlashPro3 (if you are using
SoftConsole) or the RVI-ME (if you are using the RealView Developer Kit). For information on
programming the memory with RealView and the RVI-ME refer to ARM Application Note #110:
Flash Programming with RealView Debugger at http://www.arm.com/pdfs/AN110.zip.

CoreMP7 Development Kit User’s Guide 25

4

Actel CoreMP7 Design Flow

The CoreMP7 design flow consists of the two paths, shown in Figure 4-1 on page 28:
* FPGA development — the creation of the CoreMP7 system based on the Actel M7 FPGAs

* Executable code development — the creation of software programs that will execute on the
embedded microprocessor core

The CoreMP7 design flow has five main components:
* CoreMP?7 system creation

* FPGA design creation and verification

* FPGA design implementation

* FPGA programming

* Microprocessor design creation and programming

CoreMP7 System Creation

CoreConsole is a system-level development tool and IP deployment platform that greatly simplifies
the task of assembling and connecting IP for implementation in Actel FPGAs. It enables you to
select IP components from a database supplied by Actel and graphically “stitch” them together to
build a processor-based System-Level Integration (SLI) design. When the design is complete, the
RTL (and other files needed to implement the design) can be generated and imported into the
familiar and proven design flow of the Actel Libero IDE software. CoreConsole also generates a
testbench for the SLI design that you can build to assist in verification.

Refer to the CoreConsole User’s Guide at http://www.actel.com/documents/CoreConsole UG.pdf for
more information on using CoreConsole.

CoreMP7 Development Kit User’s Guide 27

CoreMP7 System Creation

Subsystem
RTL

System Editor $§s'fb"2§3h

CoreMP7
Black-Box File

Design Creation/Verification

ACTgen -

Synthesis
Libraries

im®
- PALACE™ Physical Modelsim
ViewDraw® Synthesis Simulator

Schematic Entry

Testbench

Synplify® Synthesis

. SmartTime
Compile & Timer

Design Implementation

ChipPI
1/0 Attribute
Editor
Back-Annotate

Program File
Generation

NetlistViewer

Programming Software Microprocessor Design
Creation/Verification

ChainBuilder
(Flash Families) Source Code
Editor
FlashPro
(Flash Families)

Silicon Sculptor
(Antifuse/Flash Families)
JTAG
Emulation

Figure 4-1. Design Flow Paths

28

CoreMP7 Development Kit User’s Guide

YActel

‘ FPGA Design Creation and Verification

FPGA Design Creation and Verification

Design entry consists of writing HDL or capturing a schematic representation of the design and
performing functional simulations with a testbench.

Design Capture

For schematic capture, Libero IDE uses ViewDraw® for Actel, which includes a schematic editor.
The schematic editor provides a graphical entry method to capture designs. ViewDraw for Actel is
the Libero IDE integrated schematic entry vehicle, supporting mixed-mode entry, in which HDL
blocks and schematic symbols can be mixed.

The ViewDraw WIR file is automatically created after using the Save + Check command. This file
is used to create the structural HDL netlist.

For more information on using ViewDraw for Actel, refer to the Libero User’s Guide at http://
www.actel.com/documents/liberoUG.pdf.

Adding SmartGen Macros

Use the SmartGen Macro Builder to instantly create customized macros, then use ViewDraw to add
these macros to a schematic. Alternatively, add the SmartGen macros in the HDL file.

Creating and Adding Symbols for HDL Files

Schematic users can encapsulate an HDL block within a block symbol.

To create a symbol:
1. Right-click the block in the Design Hierarchy window of Libero IDE.
2. Click Create Symbol. Libero IDE generates a symbol for the selected HDL block.

The macro is accessible from the components list in ViewDraw for Actel.

Testbench Generation
To run a simulation, it is necessary to create a testbench and associate it with a project. WaveFormer
Lite™ from SynaptiCAD™ is the Libero IDE integrated testbench generator. WaveFormer Lite
fits perfectly into Libero IDE, automatically extracting signal information from HDL design files
and producing HDL testbench code that can be used with any standard VHDL or Verilog

simulator.

WaveFormer Lite generates VHDL and Verilog testbenches from drawn waveforms.

CoreMP7 Development Kit User’s Guide 29

‘ Actel CoreMP7 Design Flow
Pre-Synthesis Simulation

Functional simulation verifies that the logic of a design is functionally correct. Simulation is
performed using the Libero IDE integrated simulator, ModelSim® for Actel, which is a custom
edition of ModelSim PE integrated into Libero IDE.

ModelSim for Actel is an OEM edition of the Model Technology™ Incorporated (MTI) tools.
ModelSim for Actel supports VHDL or Verilog, but it can only simulate one language at a time. It
only works with Actel libraries and is supported by Actel.

Synthesis and Netlist Generation

After entering the design source, synthesize it to generate a netlist. Synthesis transforms the
behavioral HDL source into a gate-level netlist and optimizes the design for a target technology.
For more detailed information on the above topics, refer to the Libero IDE ©7.0 Users Guide at
http://www.actel.com/documents/liberoUG.pdf.

FPGA Design Implementation

During design implementation, Actel Designer performs place-and-route on the design.

Place-and-Route

Start Designer from Libero IDE to place-and-route the design.

Timing Simulation

Perform timing simulation on the design after place-and-route in Designer. Timing simulation
requires information extracted and back-annotated from Designer.

Optional Tools

The tools listed in Table 4-1 provide optional functions that are not required in a basic design. Use
these tools to perform static timing analysis and power analysis, customize I/O placements and
attributes, and view the netlist. Perform the post-layout (timing) simulation after place-and-route.

Table 4-1. Designer User Tools

Designer User Tool

Function

SmartTime

Static timing analysis

SmartPower

Power analysis

ChipEdit

Customize 1/0 and logic macro placement

PinEdit

Customize I/0 placements and attributes

Netlist Viewer

View your netlist and trace paths

30

CoreMP7 Development Kit User’s Guide

| PActel

‘ FPGA Programming Software

For more information on the tools described above, refer to the Designer User’s Guide at http://
www.actel.com/documents/designerUG.pdf.

FPGA Programming Software

Program the device with programming software and hardware from Actel or with a supported third-
party programming system. Refer to the Designer User’s Guide, Silicon Sculptor User’s Guide, and
FlashPro User’s Guide for information about programming an Actel device.

These guides can be found at http://www.actel.com/techdocs/manuals/default.asp.

Microprocessor Design Creation and Programming

There are a large number of third party ARM?7 program development tools that can be used with
CoreMP7 for the development of software programs that run on the processor. Actel offers several,
including the SoftConsole tools (included with the CoreMP7 Development Kit) and the RealView
Developer Kit (RVDK). SoftConsole is available for free, and the RVDK can be licensed from Actel
for an annual license fee. Although the RVDK has an annual license fee, the RealView C compiler
generates significantly more efficient code for CoreMP7 than the SoftConsole GCC compiler.

ARM RealView Developer Kit provides a fully integrated software solution with leading-edge tools
for creating efficient software to run on any ARM processor. Servicing all major market segments,
RealView Developer Kit provides flexible software tools to meet present and future requirements.

CoreMP7 Development Kit User’s Guide 31

5

Quickstart Tutorial

This tutorial illustrates a Verilog CoreMP7 design for the CoreMP7 Evaluation Board. This design
is created in Actel CoreConsole 1.1, Libero IDE v7.1, and ARM RealView Developer Kit. The

steps involved are as follows:

Actel CoreConsole 1.1
“Step 1 — Creating the Basic CoreConsole Project”
“Step 2 — Building the Subsystem within CoreConsole”
“Step 3 — Reviewing and Generating the CoreConsole Design”

Actel Libero IDE v7.1
“Step 1 — Create a New Project”
“Step 2 — Perform Pre-Synthesis Simulation”
“Step 3 — Synthesize the Design in Synplify”
“Step 4 — Perform Post-Synthesis Simulation”
“Step 5 — Implementing the Design with Actel Designer”
“Step 6 — Perform Timing Simulation with Back-Annotated Timing”
“Step 7 — Generating the Programming File”
“Step 8 — Programming the Device”

ARM RealView Developer Kit
“Step 1 — Creating a RealView Project”
“Step 2 — Compiling the Source Files”
“Step 3 — Debugging: Simulating/Executing the Compilation”

CoreMP7 Development Kit User’s Guide 33

‘ Quickstart Tutorial

Actel CoreConsole 1.1

This tutorial provides step-by-step instructions on how to create a CoreConsole project and generate
a CoreConsole design. The tutorial consists of three steps: “Step 1 — Creating the Basic
CoreConsole Project”, “Step 2 — Building the Subsystem within CoreConsole” on page 43, and
“Step 3 — Reviewing and Generating the CoreConsole Design” on page 46.

Note: Before you begin this tutorial, make sure the CoreConsole software is installed.

Step 1 - Creating the Basic CoreConsole Project

In Step 1, you learn the basic features of CoreConsole by creating a basic CoreConsole project. You
will use the Actel CoreConsole IP Deployment Platform tool to develop a skeleton CoreMP7
system. This system can be simulated and synthesized; however, it is too basic for practical use and
will be extended in “Step 2 — Building the Subsystem within CoreConsole”.

To create the CoreConsole project:

1. Double-click the Actel CoreConsole 1.1 icon on your desktop to start the program, or select
Start > Programs > CoreConsole > Actel CoreConsole 1.1.

2. From the File menu, select New. The New Design window displays, as shown in Figure 5-1.

New Design

Design Name | TutorialMP?

[OK] [Cancel J

Figure 5-1. New Design Window in CoreConsole
3. Enter your Design Name. For this tutorial, name your design “Tutoria MP7”.
4. Click OK to create your design project.

To add components to your CoreConsole project:

1. Under the Components tab, in the “Components available for selection" section, click

CoreMP7.
2. Click the Add button in the "Selected Component's Details" section. The CoreMP7 component

appears in your design.
In the "Components available for selection” section, click CoreMP7Bridge.
Click the Add button in the "Selected Component's Details" section.

5. Following the same process as in steps 4-5, add the component CoreAHB.

34

CoreMP7 Development Kit User’s Guide

Actel CoreConsole 1.1

6. Once all three components have been added to the design, it should resemble Figure 5-2.

YActel

Note: Some of the components are overlapping. To arrange the components neatly, select Auto
Layout from the Actions menu.

CoreMP?

== CoreAHB

CoreMP7Bridge

Figure 5-2. CoreConsole Schematic Window before Auto Layout

7. Following the process in steps 4-5, add the CoreMemCtrl component. When it appears in the
schematic window, you can drag it to the right of CoreMP7 for neater appearance.

CoreMP7 Development Kit User’s Guide

35

‘ Quickstart Tutorial

To connect components within your CoreConsole project:
From the Actions menu, select Auto Stitch. This displays the Auto Stitching window, as shown

1.

in Figure 5-3.

Auto Stitching E

AHB Lite Slave Connections
No components required these connections

AHE Slave Connactions
Mo components required these connections

APB Connections
Mo components required these connections

HCLE Connections
[¥]CoreaHB_00 - HCLK
[¥] CoreMemCtr_00 - HOLK

Reset Conneclions

[¥] CoreAHB_00 - HRESETM

[#] CoreMemCtrl_0D - HRESETN
Miscellaneous Connections

[#] CoreMemcCtrl:aHBslave_flash
[#] CoreMemCtrt: AHBskave_sram
[¥] CoreMP7Bridge: AHBmaster
[“]CoreMP7Bridge:NSYSRESET
[#] CorettP7Bridge:; SYSCLK

[¥] CoremP7Bridge:HOLK
[“]CoreMPT:MPT_SysIF

[siteh | [cancel |

Figure 5-3. CoreConsole Auto Stitching Window

Auto Stitching connects the critical components of the system together. However, you will still
need to connect most of the top-level signals manually. Manually connecting signals gives you
finite control over the microprocessor’s memory map.

Confirm that stitching has been enabled for CoreMP7, CoreMP7Bridge, CoreAHB, and
CoreMemCitrl, as shown in Figure 5-3. Then click the Stitch button.

36

CoreMP7 Development Kit User’s Guide

| PActel

’ Actel CoreConsole 1.1

3. Once Auto Stitching is complete, your design should resemble Figure 5-4.

CoreMP7

MNSYSRESET

CoreMP7Eridge SYSCLK

=Lk)

i

)
m
i
2

CoreAHE Migh=di] HCLE
RESETn

CoreMemCtrl

Figure 5-4. CoreConsole after Auto Stitching

The steps in the next section show you how to manually connect signals to the system’s top level.
The first set of instructions walks you through connecting the ARM7 JTAG interface to the top
level. The second set of instructions brings the memory bus (both data and address) to the top level
to interface with the Flash and SRAM modules.

4. To make additional connections, float your mouse over one of the components, such as

CoreMP7Bridge. An options toolbar appears underneath the selected component, as shown in
Figure 5-5.

11040 | -~
X[3p| o

Figure 5-5. Component Options Toolbar

CoreMP7 Development Kit User’s Guide 37

‘ Quickstart Tutorial

5. Click the Connect icon, the first icon from the left, which resembles a power plug. When you

| have done this, the Configuring Connection dialog box appears, as shown in Figure 5-6.
Configuring Connection El
Connection " o
From: | Coretp7Bridge_00 | Bridge connecting CoreMP7 to
From Pis): (g7 syelf v| | CoreAHB or CoreAHBLite
T0: [Coremp7Bridge_00 v
ToPinds): [pp7_systf v| The CoreMP7Bridge component has two functions:

1.0t converts the native signals from the CoreMP7

]] processor into an AMBA AHB master interface suitable

Cannot connect a pin to itself for connection 1o an AHB bus.

2.1t includes circuitry which deals with clock signals,
reset signals and CoreMP7? debug signals.

Ca ool

Signal Conditioning

Cancel The incoming hardware reset signal is synchronized to the
system clock. Provision is made for handling a watchdog

manaraiad racal in tha caca uwhars s wstehdans samannant s

Figure 5-6. CoreConsole Configuring Connection Dialog Box

38 CoreMP7 Development Kit User’s Guide

YActel

Actel CoreConsole 1.1

6. CoreMP7Bridge should automatically be selected in the From field. If it is not selected, select
it from the drop-down menu. Then select RV ICE If from the From Pin(s) drop-down menu,

as shown in Figure 5-7.

Configuring Connection

Connection Label:

From: corep7mrdge, 00

CoreMP7Bridge

) Bridge connecting CoreMP7 to
From Pins): [y 1ce_if 3 CoreAHB or CoreAHBLite
Tor |EO-MP7_Sysif ginuse) A
o @ Ry ICEIF
To Pirds): '3_0' UITAG The CoreMP7Bridge compaonent has two functions:
& @ AHBmaster (in use) 1.1t converts the native signals from the CoreMP7 <
B-stsax g use) processor into an AMBA AHB master interface suitable E
Interface Carely HCLE. (in use) for connection to an AHB bus.
already in use. | Q- HRESETn (i use) 2.t includes circuitry which deals with clock signals,

[P NSYSRESET (n se) reset signals and CoreMP7 debug signals.

[~ woosres

g WDOGRESN

nIRQ_in 5 i

B~ nF10_in Signal Conditioning
The incoming hardware resel signal is synchronized to the
system clock. Provision is made for handling a watchdog
manaratad racot in thn cnca wharn A watchdos cammnanamnd o —

)
Figure 5-7. Selecting the CoreMP7Bridge RV ICE If Pins
7. Select Top Level in the To drop-down menu.
8. Enter the signal name “RV” for Connection Label and click Connect.
CoreMP7 Development Kit User’s Guide 39

Quickstart Tutorial

9. Click OK. Your schematic should resemble the one in Figure 5-8.

CoreMP7

I

CoreMP7Bridge

CoreMemCrl

Figure 5-8. CoreConsole Schematic after Connecting ARM JTAG Interface

10. Click the Connect icon on the floating options menu for the CoreMemCtrl component.

40

CoreMP7 Development Kit User’s Guide

| YActel

‘ Actel CoreConsole 1.1

11. From the Configuring Connection dialog box, select ExternalMemorylInterface in the From
Pin(s) drop-down menu, as shown in Figure 5-9.

Configuring Connectlion
e CoreMemcCitrl
From: | CoreMemctrl_00 ~ Memory controller for external

FromPot): [sveseve fsh v Flash/SRAM

To:

i HBslave_sram (i wsa)
ToPinds): | ®O- ExternalMemorylnter ace
[D=Howk (i use) CoreMemCtrl is an AHB slave component which supperts
[B- HrESETn i wse) access to SRAM and Flash memary resources.

o~~~

Cannot connec
This component has 2 AHE slave interfaces (for Flash and
SRAM) which should be connected to CoreAHE or
CoreAHBLite. The AHE slave intedfaces should be connected
to appropriate slots. Note that the Remap input on
CoreAHB/CoreAHBLite can be used to swap AHB slave slots
0and1.

Required Connections

| €

ol

Figure 5-9. Selecting the CoreMemCtrl ExternalMemoryinterface Pins

12. Select Top Level in the To drop-down menu.

13. Enter the signal name “Mem” for Connection Label and click Connect.

CoreMP7 Development Kit User’s Guide 41

‘ Quickstart Tutorial

14. Click OK. Your schematic should resemble the one in Figure 5-10.

CoreMP?

Top Level

NSYSRESET
CoreMP7Bridge St
RESETH

+ RY

RESETn

HCLE
CoreMemClrl

Figure 5-10. CoreConsole Schematic after Connecting the External Memory Interface

42 CoreMP7 Development Kit User’s Guide

| PActel

‘ Actel CoreConsole 1.1

Step 2 - Building the Subsystem within CoreConsole

Before you begin Step 2, you should know how to stitch components together, as taught in Step 1.
For more information on stitching components together, review the instructions in “Step 1 —
Creating the Basic CoreConsole Project” on page 34 or the CoreConsole User Guide.

Adding CoreUARTapb to the System

In this section, you will add a common CoreUARTapb component to the subsystem. CoreUARTapb
has an APB interface (as opposed to the high-speed AHB interface); therefore, a CoreAPB

component is required and will be implemented through a bridge.

1. Add the CoreAHB2APB, CoreAPB, and CoreUARTapb components. For neater appearance,
move CoreAHB2APB to the right of CoreMP7Bridge, with CoreAPB below the bridges and
CoreUARTapb below CoreAPB.

2. Connect the components as follows:

* Connect CoreAHB2APB through its AHBslave interface to CoreAHB via the
AHBmslavel2 interface.

* Connect CoretUARTapb through its APBslave interface to CoreAPB via the APBmslave3

interface.
* Connect the CoreUARTapb TX signal to Top Level with the connection name UART TX.
* Connect the CoretUARTapb RX signal to Top Level with the connection name UART RX.

3. Once completed, select Auto Stitch from the Actions menu. Confirm that Auto Stitching is
configured to operate on CoreAHB2APB and CoreUARTapb, then click the Stitch button.

CoreConsole will then connect the HCLK and nRESET pins to the components you added,
and connect Core AHB2APB to CoreAPB as a master.

CoreMP7 Development Kit User’s Guide 43

‘ Quickstart Tutorial

4. Once completed, your CoreConsole schematic should look similar to Figure 5-11.

CoreMP7?

- NSVSRESET
CorsMPTBridge CoratamCl
Coresre M 5 HELE]

i

[T
CoreAHB2APE CEE=Tn |

gl
CoreLlARTaph
UART_To

Figure 5-11. CoreConsole Schematic after Connecting CoreUARTapb

To add the 110 block and system control registers to the system:

1. Add the CoreGPIO and CoreRemap components. For neater appearance, move CoreGP1O
and CoreRemap to the right of CoreUARTapb.

2. Connect the components as follows:

* Connect CoreGPIO through its APBslave interface to CoreAPB via the APBmslave2

interface.

* Connect CoreRemap through its APBslave interface to CoreAPB via the APBmslavel5

interface.

* Connect the CoreRemap CoreRemapDef pin to Top Level using the signal name
ReMapDef.

* Connect the CoreGPIO dataln pin to Top Level using the signal name keyPadIn.
* Connect the CoreGPIO dataOut pin to Top Level using the signal name ledOut.
3. Once completed, select Auto Stitch from the Actions menu.

44 CoreMP7 Development Kit User’s Guide

YActel

Actel CoreConsole 1.1

4. Confirm that Auto Stitching is configured to operate on CoreGPIO and CoreRemap, then click
the Stitch button.

CoreConsole will then connect the HCLK and nRESET pins to the components you added.
5. Once completed, your CoreConsole schematic should look similar Figure 5-12.

CoreMP7

:

CoreMP7Bridge SYSCLK CoreMemCtrl

Top Level

CoreAHB a ¢ HCLK |

HCLK —
CoreAHB2APB =220

CoreRemap

CoreUARTapb ETn CoreGPIO
T RY

i

E
—
>
T |
(=1
O
c
=

Figure 5-12. CoreConsole Schematic after Connecting CoreGPIO and CoreRemap

CoreMP7 Development Kit User’s Guide 45

‘ Quickstart Tutorial

Step 3 - Reviewing and Generating the CoreConsole Design
Even though you can manually view the design connections in a system of this size, this section
explores features in CoreConsole for reviewing your design connections.
To review the CoreConsole design connections:
1. From the View menu, select Connections. The Connections dialog box appears.
2. Examine the connections within the system for accuracy.

3. Click a connection. The appropriate Connection dialog box displays. If necessary, you can make
modifications to the connection.

4. Click OK to close the Connections window.

Displaying Linked Connections

Another useful tool is Show Linked Connections, which enables you to see all of your linked
connections at once. This feature is enabled by default, but you can change this from System
Options > Options.

In the schematic window, position your mouse cursor over HCLK on the Top Level bar and notice
all the highlighted linked connections. You can perform this action with all of the system signals.

46 CoreMP7 Development Kit User’s Guide

| PActel

’ Actel CoreConsole 1.1

Modifying Configuration Settings

Prior to generating the source code necessary for Actel Libero IDE, you must modify the
configuration settings.

1. Position your mouse cursor over the CoreMP7 component and click the Configure button (the
second button from the left, with the binary digits).

The Configuring CoreMP7 dialog box displays, as shown in Figure 5-13.

Configuring CoreMP7_00

Configuration

Component Name: CoreMP7_00

Die: | M74FS600 v/
Debug: | Enabled V
speed grade: | 2 <l

CoreMP7 _00: (Mew Connection) Ay any
CoreMP7_00:MP7_SysIf . CoreMP7EBridge_00:MP7_SysIf

[K] [Cancel J

Figure 5-13. Configuring CoreMP7 Dialog Box

2. From the drop-down menu for Die, select M7A3PE600. This is the device populated on the
CoreMP7 Evaluation Board.

3. Click OK.
Within the Configuring CoreMP7 dialog box, you can disable the JTAG debug interface, which

allows you to select the "fast" version of CoreMP?7.

4. Invoke the Configuration dialog boxes for the CoreMP7Bridge and CoreUARTapb

components.
In the Device family field, select ProASIC3E from the drop-down menu and click OK.
Select the Generate tab within the design manager.

Select the HDL language preference. This tutorial is based on Verilog, so make sure Verilog is
selected.

8. Click the Save & Generate button.

CoreMP7 Development Kit User’s Guide 47

‘ Quickstart Tutorial

Before exiting CoreConsole, wait until both progress bars have reached 100% (Figure 5-14). This
process can take up to 45 seconds, depending on system complexity and PC resources.

| Components | Generate |

HOL Selection
() Generate Verilog
(%) Generate YHOL

License Selection

Generate Results

Progress Bars for Tasks
el o
o ENEEEEEEE)

Figure 5-14. CoreConsole Generate Tab

Once the generation phase has successfully completed, you can import your CoreConsole project
(i.e., HDL source files and the ARM7 black box) into Actel Libero IDE.

48 CoreMP7 Development Kit User’s Guide

| PActel

’ Actel Libero IDE v7.1

Actel Libero IDE v7.1

Step 1 - Create a New Project
This step uses the Libero IDE HDL Editor to enter an Actel CoreMP7 Verilog design.

To create the Libero IDE Verilog project:
1. Double-click the Libero IDE icon on your desktop to start the program.

2. From the File menu, select New Project. This displays the New Project Wizard, shown in
Figure 5-15.

New Project Wizard @

Welcome to the New Project Wizard
9 This wizard creates a new Libero project.

B start
. Project name: |Hevels1'TutmiaI
Select Device
Select Tools
— Project location: |C:\Actelpri\ReversiT utorial Browse...
Finish

_ HOL type: * Verilog
@ " VHDL
Help I

I Next > I Cancel |

Figure 5-15. New Project Wizard in Libero IDE
3. Enter your Project name. For this tutorial, name your project “ReversiTutorial”.

Select your HDL type. For this tutorial select Verilog.

(=

5. Ifnecessary, in the Projectlocation field, click Browse to navigate to C:\Aczelprj. Click Next to
continue.

CoreMP7 Development Kit User’s Guide 49

‘ Quickstart Tutorial

6.

Select your project Family, Die, and Package. For this tutorial, select ProASIC3E, the
M7A3PE600 die, and 484 FBGA for the package (Figure 5-16).

New Project Wizard @

Start

M Select Device
Select Todls
Adld Files

Finish

2

Family, Die and Package
Q Select the family, die and package of your new project.

Family:
PéSICIE | Help
Die: Package:
A3PEBDOD 208 POFP
256 FBGA,
AIPE1500

A3PE3000

< Back I MNext > I Finish | Cancel

Figure 5-16. Select ProASIC3E, M7A3PE600, and 484 FBGA

50

CoreMP7 Development Kit User’s Guide

VActel

Actel Libero IDE v7.1

7. Click Next to select integrated tools in the New Project Wizard (Figure 5-17).

New Project Wizard @

Start

Select Device
W Select Tools

Add Files

Finish

Select Integrated Tools
9 Select the tools you want to use with your new project.

{Synthesis.
@® Synplify
Simulation
® ModelSim
Stimulus
® WFL
Physical Synthesis
@® PALAaCE
FlashPro
® FlashPro

< Back I Mext > I

Ad

Restore Defaults

[k

Help

Fiish | Cancel |

Figure 5-17. Selecting Integrated Tools in the Libero IDE New Project Wizard
8. Click the Restore Defaults button to use the default tools included with Libero IDE.

CoreMP7 Development Kit User’s Guide

51

‘ Quickstart Tutorial

9. Click the Add button to add a different Synthesis, Simulation, or Stimulus tool. If you wish to
add a tool, Libero IDE opens the Add Profile dialog box (Figure 5-18).

Add Profile B3

Name:

Wersion:

. Process

Select a tool integration: [LI

Location: |

Additional parameters: |

Restore Defaults I 0K

LeonardoSpectium
Precision RTL

Synplify

Browse... |

Cancel | Help |

Figure 5-18. Add Profile Dialog Box in Libero IDE

10. Name your profile, select a tool from the list of Libero IDE supported tools, and Browse to the
location of your tool. Click OK to return to the New Project Wizard.

11. After you have selected your tools, click Next to continue.

52

CoreMP7 Development Kit User’s Guide

| YActel

’ Actel Libero IDE v7.1

12. Click Add Files in the New Project Wizard to add existing project design files. Include any
ACTgen cores, CoreConsole Projects, Block Symbol, Schematic, Verilog Source,
Implementation, or Stimulus files (Figure 5-19).

New Project Wizard E]

Add files to your project
g The files are copied to your new project directory.

Start New Project Files:
) Block Symbol Files [*.[1-9]) et
Select Device Add Files... | Schematic Files (*[1-9)
Verilog Header Files (* h)
Select Tools
_ Hemay | HDL Source Files (*.v)
M AddFiles ACTgen Cores [*.gen)
Finish CoreConsole Project [.ccp)

Stimulus Files [*.v)
Simulation Files [* mem, * bfm)
Constraint Files (. sde;” pde;” ved;" saif) _

»
;’/ Help | EDIF Metlists [*.edn) -

cBack [New> | Fiish | Cancel |

Figure 5-19. Add Files in the Libero IDE New Project Wizard

13. Select the CoreConsole Project file type and click Add Files. Browse to your CoreConsole
Project created earlier (assuming default installation it will be located in the
C:\CoreConsole\Libero IDE Export\TutorialMP7\ directory) and select the TutorialMP7.ccp file,
then click Add.

CoreMP7 Development Kit User’s Guide 53

‘ Quickstart Tutorial

Add files to your project

>

The files are copied to your new project directory.

The CoreConsole project will be displayed in the project wizard (Figure 5-20).You can add as
many files as you like this way. For this project, only the CoreConsole file will be imported with
this method.

New Project Wizard @

Start New Project Files:
) = Project Design Files A
Select Device Block Symbol Files (*[1-9]7)
Select Tools Schematic Files (*.[1-3])
} FIEMOVE File | Verilog Header Files [".h)
M AddFiles HDL Source Files (*.v)
Finish ACTgen Cores [“.gen)
S CoreConsole Project [.cop) Jo|
_ & TutoriaMP7.cop
W Stirnulus Files [*.v]
‘,-’J Hep | Simulation Files (*.mem, * bfm) -
< Back | Mext » | Finish l Cancel

Figure 5-20. CoreConsole Project Added to the New Libero IDE Project

54

CoreMP7 Development Kit User’s Guide

’ VActel

Actel Libero IDE v7.1

14. Review your project information. Click Finish to close the Wizard and create your new project

(Figure 5-21). Click Back to return to any step of the Wizard and correct information in your
project.

New Project Wizard E]

Completing the New Project Wizard
Q You have successfully completed the New Project Wizard.

To close this wizard and create the project, click Finish.

Start The new project will be created with the following specifications;
; Project Name: ReversiTutonal A
SMect Ditvice Project Location: C:\bctelpri\ReversiT utorial
Select Tools Family, Die, Package: PreASIC3E, M7A3PEGDD, 484 F
HDL Type: VERILOG
Add Files
Using Profiles:
M Finish Synthesis: “Synplify"
Stimulus: "wFL"
Sinmulation: "ModelSim"
/ Physical Synthesis: "PALACE"
b A FlashPro: “FlashPro" 5

< Back I Finish I Cancel |

Figure 5-21. Summary in New Project Wizard

Your Libero IDE project exists, but you must add some top-level code or source to the project—such
as a schematic, SmartGen core, or Verilog module—before you can run synthesis.

CoreMP7 Development Kit User’s Guide 55

Quickstart Tutorial

To add a Verilog top-level HDL file to the project:

1. From the File menu, select Import Files. Navigate to the \7utoria\FPGA directory on the
CD-ROM included with the CoreMP7 Development Kit and select the TuzorialTop.v file.
Click Import.

2. Click on the Design Hierarchy tab located at the bottom of the Libero IDE Design File
Manager, as shown in Figure 5-22.

Lo [

= Piogact Design Fles
Block Symbol Fles
Schemabc Fées
Vernlog Header Files
= HDL Scurce Files
B TuloiaTop.y
ACTgen Cores
= CoreConsole Project
=& TutoiaMP7
=l *HDL Source Files
B shb2ach_ohv
B AhbFakac_ob.v
B ApbFabic_ob.v
3 GPIO_chv
E MP7Biidge_ob.v
rﬂ MemCntl_ob.w
E[SyzCnit|_ob.y
B TutorialMP7.v
B UsRTApb_oby
ra arm_synpliy.v
= Simulation Files
B a7sBFMv
aTsBFM_TS.v
subsystern. bim
= Stmulus Files
B testhenchy
= Constraint Files
aim_palace pdc
=1 Implementation Filles =

Design Hierarchy File Manager I

Figure 5-22. Libero IDE Design File Manager

56 CoreMP7 Development Kit User’s Guide

| PActel

’ Actel Libero IDE v7.1

3. From the Design Hierarchy, right-click the Tuzoria/Top.v file and select Set as Root (see Figure
5-23). This sets the project’s top-level file to the module contained in the source file just
imported.

zlaf
= -DBFF_:{[Configuration |
_: [TutorialMF 5&t AsRoot
Cpen HOL File
Check HDL file
Create Symbol

Properties

Design Hierarchy Iﬂle Mlanager

Figure 5-23. Libero IDE Design Hierarchy Viewer
4. Click the File Manager tab to return to the Libero IDE Design File Manager.

CoreMP7 Development Kit User’s Guide 57

‘ Quickstart Tutorial

Step 2 - Perform Pre-Synthesis Simulation

The next step is simulating the RTL description of the design. First, you must create a top-level
testbench to provide a stimulus for the design. Keep in mind you will not be able to simulate
CoreMP7 but will rely on the Bus Functional Model (BFM), which is a cycle-accurate model of the
embedded ARM7TDMI-S processor.

To create the top-level testbench:

1. From the File menu, select File and then New. This opens the New dialog box, shown in Figure
5-24.

New

File Type: 0K

Schematic A
ACTagen core
Verilog Module
Werilog Header File Help
Stimulug
Stimulus HDL File
SDC File [sdc)
Physical Design Constraint File (pdc)
WCD File [ved) o

LY Ll e P O 3]

[
£

Mame:
lTuloriaITop_lb

Figure 5-24. New File Dialog Box

2. Select Stimulus HDL File in the File Type field, enter “TutorialTop tb” in the Name field, and

click OK. The HDL Editor opens. Enter the following text in a Verilog file, or if this document
is open in an electronic form, copy and paste it from here. Alternatively, this file is provided in
the \Tutorial\FPGA folder on the CD-ROM, and you can import the testbench as you did with
the top-level source file.

‘timescale 1lns/100ps

module testbench() ;
parameter SYSCLK PERIOD = 100; // 10MHz

reg SYSCLK;
reg NSYSRESET;

wire ICE nSRST;

58

CoreMP7 Development Kit User’s Guide

| PActel

‘ Actel Libero IDE v7.1

pullup (weakl) pl (ICE nSRST) ;

initial

begin
SYSCLK = 1’'b0;
NSYSRESET = 1’b0;

// Release system reset
(SYSCLK PERIOD * 4)
NSYSRESET = 1’bl;

(SYSCLK PERIOD * 100000) ;

$stop;

end

// SYSCLK signal
always @ (SYSCLK)
(SYSCLK PERIOD / 2)
SYSCLK <= !SYSCLK;

// Instantiate module to test
TutorialTop TutorialTop 0 (
.SYSCLK (SYSCLK) ,
.NSYSRESET (NSYSRESET) ,
.RemapDefault(1’b0),
CHIGH(),
.LOW() ,
.FLASH BYTEN (),
.FLASH CSN(),
.FLASH OEN(),
.FLASH RPN(),
.FLASH WEN(),
.SRAM ADSC(),
.SRAM ADSP(),
.SRAM ADV(),
.SRAM BYTEN(),

CoreMP7 Development Kit User’s Guide 59

‘ Quickstart Tutorial

.SRAM BYTE WEN(),
.SRAM CLK (),
.SRAM CSN(),
.SRAM GLOBAL WEN(),
.SRAM OEN() ,
.SRAM PWRDWN () ,
.MEM ADDR(),
.MEM DATA(),
.SW(8'b0) ,
.LED(),
.RX0(1’'b0),
.TX0 (),
.ICE nTRST(),
.ICE TCK(1’bO),
.ICE TDI(1’'DbO0),
.ICE TMS(1’'bl),
.ICE VTref (),
.ICE TDO(),
.ICE RTCK(),
.ICE nSRST (ICE nSRST),
.ICE DBGACK(),
.ICE DBGRQ()

)

endmodule

60 CoreMP7 Development Kit User’s Guide

| YActel

’ Actel Libero IDE v7.1

3. From the File menu, click Save. The testbench file now appears in the Libero IDE Design
Manager. Libero IDE lists TutorialTop tb.v under Stimulus Files, as shown in Figure 5-25.

x|
= HDL Source Files =
[a_ Tutonall opv
ACTgen Coles
= CoreConzolz Pioject
-1 & TutoriabdP7
= HDL Source Files
B Ahb2apb_oby
| AhbFabric_ob.y
a Apokabnc_ob.v
GFI0_ob.v
@ MP7Biidge_ob v
B MemCnt_ob.v
% SysCrel_obw
B TutoriaMP7.y
B UARTAPL_ob.v
% arm_synpliy. v
= Simudation Fles
B a7BFM.y
B a7BFM_TSv
subsystem, bfm
= Stimudus Fles -
3 testbenchyv
= Conshaint Fles
aimn_palace pdc
= Implementation Files
aim_designer cdb
=i Shimubus Files
[‘%_ Tutonall op_tb.y
=i Simulaton Fles -

Dezign Herarchy File Manager

Figure 5-25. Libero IDE File Manger with Stimulus

CoreMP7 Development Kit User’s Guide 61

Quickstart Tutorial

4. Check the HDL in the file before you continue. Under the File Manager tab (Figure 5-26),
right-click TuzorialTop th.v and select Check HDL. This checks the syntax of TutorialTop tb.v.

Before moving to the next section, modify the code if you find any errors.

= Stimulus Files | | J
=R TutorialTop_tb.v
=l Simulation Files ' Open HOL file
Design Hierarchy File ““_: Check HOL file
: Delete From Project -

Delete from Disk and Project

Properties

Figure 5-26. Check HDL Option from File Manager

To perform a pre-synthesis simulation:

1. From the Design Hierarchy tab, right-click the TutorialTvp.v file and select Organize
Stimulus, as shown in Figure 5-27.

=l Detault Configuration

SSME] TutorialTop [TutorialT op_v] Ub LI :

+ B TutoralMP? [TutorialMP7.y] Open HOL file
Check HOL file \

Zreake Symbol

©Organize Designer Constraint Files. ..
= Syrplify Synthesis

Creake Stimulus L

Organize Stimulus

Run Pre-Synthesis Simulation
Run Post-Synthesis Simulation

Run Designier

Properties

e

Figure 5-27. Design Hierarchy Context Menu

62 CoreMP7 Development Kit User’s Guide

VActel

Actel Libero IDE v7.1

The Organize Stimulus dialog box appears, as shown in Figure 5-28.

Organize Stimulus @

Click to select a stimulus file in the project, and use the Add button to associate the file.
Use the Remaove button to remove associated files,

Use the Up/Down amow buttons to specify the compilation order for the simulator.

The top level module should appear last in the list box.

Stimulus files in the project: l Associated files: I
TutonalTop_th.yv

Add =+

4+ Remove I

[ok] coce | Hep |

Figure 5-28. Organize Stimulus Dialog Box
2. Select TutorialTop tb.v from the Stimulus files in the project list box and click Add to add the
file to the Associated files list.
3. Click OK. Stimulus icons in the Design Flow window turn green to notify you that there is a
testbench file associated with the project.
4. Right-click the Simulation icon in the Libero IDE Design Flow window and select Options,
as shown in Figure 5-29.

Simulation

B Simulation

M
ModelSim ' ; |

ﬁ Run Pre-Synthesis Simulation {(source files)
I A Run Post-Synthesis Simulation (TutorialTop.v)

I%\'gi":.-'..:,_,-,.! imulation (TutorialTop_ba.v, TutorialTop_ba.sdf)

% Open Log File
Options, .,
Profile...

@

Figure 5-29. Simulation Context Menu

CoreMP7 Development Kit User’s Guide 63

‘ Quickstart Tutorial

The Project Settings: Simulation options window appears (Figure 5-30).

Project Settings E]

Device Simulation | Programming |

¥ Use automatic Da file er defined : | J
[Automatic Do file content

¥ Compile package files Simulation run time:

I~ Include Dofile [iwave oo [/5000

Testbench module name: |leslbench

Top level instance name in the testbench: [<top>__0

Wsim command

Type: O Min O Typ & Max Resolutior: |‘I ps
Wsim additional options:

MaodelSim verilog library path for PraASIC3E:
* Use default library: 'CAACTEL\Libera\Modelhactel\Vlag\proasicle'

" Use my own library: | _I

Default |
[ok | concel | Hep |

Figure 5-30. Simulation Project Settings

5. Change the Simulation run time from 1000ns to 5000ns, as shown in Figure 5-30, and click
OK. Changing the run time allows the default BFM test scripts to complete without having to
invoke additional run time from within the ModelSi7 simulator.

64 CoreMP7 Development Kit User’s Guide

| YActel

’ Actel Libero IDE v7.1

6. Click the Simulation icon in the Design Flow window, or right-click TuzorialTop.v in the
Design Hierarchy and select Run Pre-Synthesis Simulation, as shown in Figure 5-31.

x|
= Default Configuration
SR
| B TutonaMP7 (TutoriaMP7y ~ OPen HOLfile
Chechk HDL File
Create Symbal

Organize Designer Constraint Files..

| 45 Syrplify Synthesis

Create Stimulus L4

Organize Stimulus

Run Pre-Synthesis Simulation
Run Posk-Synthesis Simulation

Run Designer

Properties

Figure 5-31. Running Pre-Synthesis Simulation from the TutorialTop.v Context Menu

CoreMP7 Development Kit User’s Guide 65

Quickstart Tutorial

The ModelSim simulator opens and compiles the source files, as shown in Figure 5-32.

[ModelSim ACTEL 6.1b - Custom Actel Version
Fie Edt View Format Comple Seudate Add Tools Window Help

[DGHE |t B@L% AESH|| SERH] 4B wriUuD H
[TX mladi & & & B2 | % |

‘Workspace e + X
Wlitnce Tossgnura [Dougnunt oo [viebdty | B e
@ maLwaYSHbe TBAM Process RostbenctuNSY
L@ HALWAYSHST? a7BFM Process
@ mALWAYSHI? a7BFM Piocess
@ HALWAYSHSS aTBFM Process
-l BALWISYSHI 09 afsBFM Process
L mALwaYsH2! aTEFM Process
[RALWAYSHI34 ATEFM Puocess
- BALWAAYSHI S arsBFM Process
& ALWAYTS I 38
L HALWAYSHIAZ aTBFM Process
L@ malwArsH143 aTsFM Process
L naLwarsings BAM Process
L@ nassianez aTEFM Process
L@ RASSIGHEAD ATsEFM Process £
|‘ RASSIGHES? afsBFM Process
L@ BASSIGNHSTHI aTEFM Frocess
) RASSIGNETS alsBFM Proces:
L wassiGnesam S7BFM Piocess =l
[B ey | &5 s [5 Fis | B2 Memoses | B
¥ Loading _Asimulation/presymihua_szheshithb =
B Loadng . /simuabie/prayrih DI b
ActslCoMP7 Bus Functonsl Modsl [BFM)
5
]
:--—--—-Eu:\hmulam Setipt Staed -——

8 N-cyche: Wiile 41 to address 3000008
& Blcyche: Witte 05 to addeess c300000c
8 N-cycle: Read 41 fram sddiess ¢ 3000008
B N-cyche: Read 06 from addeess 300000
B N-cycle: Wiile 43 to address c3000000
& Ncycle: Read 41 from addvess 3000008

s Evomeation of BFM Script Complste -

8 Bieak at C./Actelpr/ReversiT utonal/coreconsole/ TulcrasMPT TS frrmulation /s TsBF M v e 142

8 Sanulstion Bieakpert Bisak st C Abctelpg/ReversiT ulonsl/corseonsole/T ulonaMPT/ATS famulstion/aTsBFM v fne 142
8 MACRO /iundo PAUSED atline 13

VSiMipousedp | -
|Now: 4550 ns Deha: 1 isim:flmhencJ-u'TuioriaIfTup_MmunaHop!CoraMP?EH]]M_a?sBFMMW&VSﬁ33 - Limited Visibility Region

Figure 5-32. ModelSim Main Window

2

66 CoreMP7 Development Kit User’s Guide

| PActel

‘ Actel Libero IDE v7.1

Once the compilation completes, the simulator simulates for the default time period of 5000 ns, and
a wave window, shown in Figure 5-33, opens to display the simulation results. The default wave
window currently contains only the SYSCLK and NSYSRESET signals. You will expand this
shortly. The results of the default BEM scripts can also be viewed in the ModelSim log window (as
shown in Figure 5-32 on page 66). The successful reads and writes confirm that CoreMP7 is
connected properly from the top level down to the various busses.

[¥ wave - default (4[=1:3

File Edit View Insert Format Tools ‘Window

D @@ & RBD2 ALY || SulH \! 4 [opd ELEIE P T g H R X e | o
|\ 5l2d | QQ & B> |]

Mow | 4550000 ps

T
Bel | ¢s] i S

[0 ps to 4777500 ps [Mow: 4550 ns Delta: 1

Figure 5-33. ModelSim Wave Window

CoreMP7 Development Kit User’s Guide 67

Quickstart Tutorial

To add the CoreMP7 signals to the ModelSim Wave window, navigate to the CoreMP7E600D

instance in the ModelSim workspace, which can be found under the following hierarchy (shown

in Figure 5-34):

TutorialTop 0 > TutorialTop > CoreMP7E600D
Drag the CoreMP7E600D instantiation to the ModelSiz wave window. The instantiation’s

signals will appear.

2[Designunt [Design unit ype | Visiiliyy | | -]

= CoeMP7EE0OD

=
Y=

¥ Instance
o BIMPLICITWIRE[1 8391 TutonalP? Process
o HIMPLICITAWIRE(1)#452 TutoiaMP? Process
o HIMPLICITAWIRE(1)#537 TutonalvP7 Process
+ gl AHB_Bus AhbFabic Module +aco=be...
'T'l 4 AmbaBrdge Ahb2Aph Maodule +ace=he. .
+ o APEB_Bus ApbF abric Module +acc=bc...

& DF_ADDRO 75 Process N

@ DF_ADDR] 75 Process

@ DF_ADDR2 875 Process

J DF_ADDR3 175 Process

@ DF_ADDR4 A75 Process

|- @ DF_ADDRS 875 Process

J DF_ADDRE 175 Process

@ DF_ADDR? B75 Process

@ DF_ADDRE A75 Process

@ DF_ADDRS 875 Process

—.& NF ANDDRIN ATS Prnrpas ;]
I Ly I & ml & Files l B8 Memories I 4

Figure 5-34. ModelSim Workspace Window

68

CoreMP7 Development Kit User’s Guide

| PActel

‘ Actel Libero IDE v7.1

8. In the ModelSim Transcript (Log) window, type restart. This will bring up the Restart dialog
box (shown in Figure 5-35). Click the Restart button. This will reset the simulation to the
beginning so that logging of the CoreMP7 signals occurs.

ﬁ Restart @@@

Feep:

¥ List Format

v ‘Wave Fermat

¥ Breakpoints

[v Logged Signals

[V Wittual Definitions
¥ Assertions

¥ Caover Directives

Figure 5-35. ModelSim Restart Dialog Box

9. Within the ModelSim Transcript window, type run—all. This will re-run the default testbench
and BFM scripts. The results should be the same as the previous run. Notice the ModelSim
Wave window—the CoreMP7 signals now have waveforms associated with them.

10. Undock the ModelSiz Wave window and maximize it, then select Zoom Full from the
View > Zoom menu. Examining the ADDR, RDATA, WDATA, WRITE, SIZE, SYSCLK,
nRESET, and NSYSRESET signals allows the re-creation of the BFM scripts and validates the

results. The corresponding signals have been grouped together and are shown in Figure 5-36.

ﬂmﬂe - default
Fila Edt Wiew Tnsert Format Tool Window

(DE & i D@D (AL S| SLRM| 4| B G-IEuG B0 5 MEEEE o
[njaiiaq s &

- Mestbench/SYSTLE
. Aestbench/NSYSRESET
. CowePTEGOD/rRESET
CoreMPTEEOCD /ADDR
* CowMPTEGO00/WRITE
£ CorcMPTEGI0D/WDATA
. CoreMPTERIOD/RDATA S — — —— p—
. CoMPTESIND/SIZE i

-1
| I I— O Y R [-l

[287138 ps to 2525907 ps [Mow: 4550 ns Delta: 1

Figure 5-36. ModelSim Wave Window with CoreMP7 Signals
11. In the ModelSim window, select File then Quit to close the window.

A0 41 P 20l — i

CoreMP7 Development Kit User’s Guide 69

‘ Quickstart Tutorial

Step 3 - Synthesize the Design in Synplify
The next step is to generate an EDIF netlist by synthesizing the design in Synplify. For HDL

designs, Libero IDE launches and loads the Synplify Synplicity synthesizer with the appropriate
design files.

To create an EDIF netlist for the design using Synplify:

1. InLibero IDE, click the Synplify Synthesis icon in the Design Flow window, or right-click the
Tutorial Top.v file in the Design Hierarchy and select Synplify Synthesis. This launches the
Synplify synthesis tool with the appropriate design files, as shown in Figure 5-37.

Synplify - [C:\ictelpri\ReversiTutorialisynthesiskTutorialTop_syn. pri]

@ Ele £t Wiew Project Run HDLAnalyst Opticns Window Web Help - =] x|
PuEE 08 Roc AQ||(o0 | BESE |0 es 2222 80He¢9 ||EH
Synplity <>
y p b } 2
1Y \
Source Files 5} I]ph('?lj
Add | [C\AclelpiReversiT utorishsynihesis | syrthess | Type | Modiied R e
= [TutonalTop_syn [pioject) # [mymimp
&R + (2] Veilog @ TutorialT op. zrs RTL Melist 182857 11-Nov-2005 Frequency (MHz)
e M syribesis (TutoialTop] 5] TulodalTop g Synpicty Fle 18:2857 11-Hov-2005 ’—Zl"m -
% iraplog tig Synplicity Fle 18:2300 11:Mov-2005 :
Edit TutodalTop.srd Synpliclty Fle 182305 11-Hov-2005 Symbolic FSM Compiler @
O TutorialT op. sim Gale Netist 18:2305 11-How-2005
(=) Tuitociall op.edn e 182306 11-Hov-2005 Resource Sharing 177
5] TutorialT op.on log fis 182906 11-Nov-2005
5] Tutoriall op. odf SDF 182906 11Mov-2005

5] TutoalTop aressn Hierarchical .. 182306 11-MNov-2005
=) TutorialTop_sde.sde corstraint 182308 11-Mov-2005
5] stdoutlog log 201302 14Mov-2005

Result File
Change | TutorialTop.edn
Target
Change | Actel ProASIC3E : MTASPERDOD : -2, maxfan: 12, globalthreshold: 50, report_path: 4000

. — i Ready..

Cancel

Figure 5-37. Synplify Synthesis Main Window

70 CoreMP7 Development Kit User’s Guide

| YActel

’ Actel Libero IDE v7.1

2. From the Project menu, select Implementation Options. This displays the options for the
Implementation dialog box, as shown in Figure 5-38 for the M7A3PE600.

Options for implementation: TutorialTop_syn : synthesis

Device]Elptionsl Constiaints | Implementation Fiesu!ts] Timing Repowt| Place and Houte] Verilog |

Implementations:
Technology: Part: Speed: i . S
[Actel PraASIC3E v| |M7asPEo0 | |2 =
Device Mapping Options
Option | Value |&
Fanout Guide 12
Promote Global Buffer Threshold 50
Hard limit to Fanout I~
Disable MO Insertion r
Max number of critical paths in SDF 4000
b
<3 a2 (__)

Option Description Synpll(:ﬂ-ty

Click on an option for a description.

[ok | cancel Help |

Figure 5-38. Implementation Options Dialog Box for the M7A3PE600
3. Set (confirm) the following in the dialog box:

* Technology: Actel ProASIC3E (set automatically by Libero IDE)

* Part: M7A3PE600

* Fanout Guide: 12 (default)

* Hard limit to Fanout: Off (default)

4. Accept the default values for each of the other tabs in the Options for Implementation dialog
box and click OK.

5. In the Synplify main window, click Run. Synplify compiles and synthesizes the design into a
netlist called 7utorialTop.edn. This netlist is then automatically translated by Libero IDE into a
Verilog netlist called TutorialTop.v.

CoreMP7 Development Kit User’s Guide 71

‘ Quickstart Tutorial

The resulting EDIF and Verilog files are displayed under Implementation Files in the Libero
IDE File Manager.

If any errors appear after you click the Run button, edit the file using the Synplify editor. To edit
the file, double-click the file name in the Synplicity window. Any changes made here are saved
to the original design file in Libero IDE.

Save and close Synplify. From the File menu, click Exit to close Synplify. Click Yes to save any
settings made to the TutorialTop syn.prj file in Synplify.

Step 4 - Perform Post-Synthesis Simulation

The

next step is simulating the Verilog netlist of the design using the Verilog testbench created in

“Step 2 — Perform Pre-Synthesis Simulation” on page 58.

1.

Click the Simulation icon in the Libero IDE Design Flow window, or right-click the
TutorialTop.v file in the Design Hierarchy tab and select Run Post-Synthesis Simulation. This

launches the ModelSim simulator, which compiles the source files and testbench.

Once the compilation completes, the simulator runs for 5000 ns and the Wave window displays
the simulation results. Verify that the read/write results of the executed BFM scripts are correct.
Follow the same sequence as in “Step 2 — Perform Pre-Synthesis Simulation” on page 58,

beginning with step 7, to add and verify the internal CoreMP7 signals of the BFM.

Scroll in the Wave window to verify that the CoreMP7 system works correctly. Use the zoom
buttons to zoom in and out as necessary.

Step 5 - Implementing the Design with Actel Designer

After creating and simulating the design, the next phase is implementing the design using the Actel
Designer software (performing place-and-route).

1.

From the Libero IDE File menu, select Import Files. Navigate to the \7uzorial\FPGA directory
on the Development Kit CD-ROM and select the TuzorialTop PinConstraints.pdc file. It might
be necessary to change the file type to PDC to view this file. Click Import. The file will now be
listed under Constraint Files in the Libero IDE File Manager.

72

CoreMP7 Development Kit User’s Guide

| YActel

’ Actel Libero IDE v7.1

2. Click the Designer Place & Route button in the Libero IDE Design Flow window, or right-
click TutorialTop.v in the Design Hierarchy tab and select Run Designer. Designer reads in the
design file (Figure 5-39).

#® Designer - [TutorialTop] E|@®
- |

@ File View Tools Options Help
~ Tt | i] Wy e)
Dl=|E| | &|E S| 2 8220
I Design Flow I
.‘@ :'* 21'5 nulm\nnetata
‘ =
£l
Compile Layout Q
Programming File
— MultiView Navigator SmartTime—I
ﬁ # ﬂ 0‘ 1‘ : \r
; # HN i
:I:tg:: PinEditor | ChipPlanner ERter m m
Ed| 'BA NAME' set to 'TutorialTop ba' ~
2 'DESDIR' set to 'C:/Actelprj/ReversiTutorial/designer/impll’ y
'BA_DIR' =et to 'C:/Actelprj/ReversiTutorial/designer/impll’
'BA NETLIST_ ALSQO' sect to '"1'
'EDNINFLAVOR' set to 'GENERIC!
'NETLIST__NAI{ING__STYLE' set to 'VERILOG'
'EXPORT_STATUS REPORT' set to '1'
'EXPORT _STATUS_REPORT FILENAME' set to 'TutorialTop.rpt'
'AUDIT NETLIST FILE' set to '1'
'"AUDIT DCF_FILE' set to '1'
'"AUDIT_PIN_FILE' set to '1'
"AUDIT_ADL_FILE' set to '1'
o Info: ANOM:024 Loaded the definition of the cell A7S from the CDB file.
Inported the files:
C:Y\Actelprj\ReversiTutoriallsynthesis\ TutorialTop.edn
Ci:hvActelpriiReversiTutorialcoreconsole\ TutorialMP74y A73\ lavout\arm_designer i)
The Import compand succeeded (00:00:05)
Design =aved to file TutorialTop.adb.
The Execute Script command succeeded (00:00:18) ..,.
A2 \ANf Errors) Warnings A Info f
|Raadv FAM: ProASIC3E DIE: MPAIPEGDD PKG: 484 FBGA 7

Figure 5-39. Actel Designer GUI

CoreMP7 Development Kit User’s Guide 73

‘ Quickstart Tutorial

The Device Selection Wizard opens (Figure 5-40).

Device Selection Wizard @

Family: Pra&SIC3E

Die Package
A3PEGOD 208 PQFP
M7AIPEGOD 256 FBGA,
&3PE1500 484 FBGA
A3PE3000
Speed: Die voltage:

|-2 vl 15 S

Cancel ach Next > Help

Figure 5-40. Device Selection Wizard for M7A3PE600
3. Select M7A3PE600 in the Die field and 484 FBGA in the Package field. Accept the default
Speed grade and Die voltage and click Next.
Use the default I/O settings and click Next.
Use the default Junction Temperature and Voltage setup and click Finish.

From the Designer File menu, select Import Source Files.

74 CoreMP7 Development Kit User’s Guide

| YActel

’ Actel Libero IDE v7.1

This displays the Import Source Files dialog box (Figure 5-41). Click the Add button, navigate
to the Libero IDE project’s \constraint directory, and add the TutorialTop PinConstraints.pdc file

(it may be necessary to change the file type to view the PDC file). Once the file has been added,
click OK.

Import Source Files @

Mote: the relative order of the same type of files is important,
‘When importing multiple EDIF or VHDL files, the top-level file must be last (at the bottom).
Use the Up and Down buttons to specify the relative order of the files.
Source Files | Type | -'\ Add... |
1 C\actelprjReversiTutorialisyrthesis\Tutorial Top edn (edn
2 C:\ActelpriiReversiTutorialicoreconsolelTutorialP7\AT Slayoutiar cdb | Maodify... I
3 C\bctelprjiReversiTutorialiconstraintiTutorialTop_PinConstraints p pdc
4 Delete I
5
] Copy locally |
7
:]
9
10 3 L |
I~ Keer
F Ke
Audit timestamp: |Tue Nov 16 13:33:25 2005 Audit options... [
ok | Cancel | Hep |

Figure 5-41. Import Source Files Dialog Box in Designer

CoreMP7 Development Kit User’s Guide 75

‘ Quickstart Tutorial

7.

8.

When the EDIF Import Options dialog box appears, as in Figure 5-42, click OK. This will re-

import the source files (all three of them) into Designer.

EDIF Import Options @
EDIF flavor: GENEHIE v|

r Use these options as a default for all EDIF imports
and don't prompt me about this again

| oK | Cancel | Help |

Figure 5-42. EDIF Import Options Dialog in Designer

Click the Compile icon. Leave the default Compile settings (Figure 5-43) and click OK.

Compile Options E]

Physical Design Ce

- Select a categony: : . :
. f
Physical Design Constrainis Checking of the Physical Design Constraints [PDC)

Globals Management
Netlist Dptimization
Display of Results

v} Abort Compile if errors are found in the
physical design constraints.

™ Digplay object names that are no longer found after
netlist matching is performed on the design.,

Limit the number of displayed messages to: W

Restore Defaults

V¥ Show this dialog every time Compile is run,

Help oK | Cancel |

Figure 5-43. Compile Options Window

76

CoreMP7 Development Kit User’s Guide

Actel Libero IDE v7.1

YActel

Designer compiles the design and shows the utilization of the selected device. Also, note that
the Compile icon in Designer turns green once the compile has successfully completed.

Once the design compiles successfully, use the I/O Attribute Editor tool to verify the pin
assignments imported from the pin constraints file. Alternatively, the I/O Attribute Editor can
be used to create pin assignments. Click the I/0 Attribute Editor to open the tool. It opens in
the MultiView Navigator user interface, as shown in Figure 5-44.

< MultiView Navigator [TutorialTop] - [0 Attribute Editor]
#E Fie Edt View Logic Formot Took Window Help

4]

e ST

|- 35

[TF I\ Ports f Package Prs]

n ? DrEEe S

lxl Locked | Bank Hame |10 Standard] output Drive (mi)| Slew |Resistor Pull| Sehmitt Trigger | Inpust Delay| Skew | owput Load| Use 10 Reg| Hot Swappable| -
- iy Logcal = = Bak2 | LVTTL - - Nare o - r F
+ BE FLASH BYTEN_p 2 (= Barks | LVITL 12 Heh More B - T 3 = F
¢ B4 FLASH_CSN_psd 3 i Barks | LVTTL 12 Han Hane = = r s o o]
v OFF FLASH_APN_pad 4 = Bork2 LVITL - - Mane o o B H i
« B LED_padi0) s r: Bark? | LVITL 12 Hain More = = I~ 3 o =
v Bk LED_padl] B I BorkS | LVTTL 12 High Mone B ot ™ 3 E F
v B LED_pad(d] B (= Barkl | LVTTL = = None r = = B (]
o B LED_pad3) [= Bork? | LVTTL 12 g Nore - o - s I ¥
« B LED_podd] g = Bork? | LVTIL 12 Hah None - o I~ s r (=]
w OfF LED podi] | |10 = Bork? | LVITL = 3 None - o = H i
v B4 LED_padis) 1 = Backs | LVTTL 12 Hgh Hone - o I % r =
+ B LED_ped(] 1z i3 BarkS | LVITL 12 Hon | Nore = < I 3% " i
v BFF MEM_ADDR_psd| 13 I Bark2 LVTTL = = None o o = T =
= OfF MEM_ADDR_pad| 14 (= Barks | LVTTL 12 | High More = = T s ™ 1
+ BFE MEM_ADDR_pad 15 I Barks | LVTIL 12 Hgh hione = 3 T 3 T 7
= OfF MEM_ADDR_psd 16 = Bock2 | LVTTL = 3 Nones r o = B i
BF MEM_ADDR pad| 17 W~ Berk2 | LVITL 12 Hgh None - - I s o ~
= B4} MEM_ADDR_pad| 18 "~ Bocks | LVITL 12 Fgin Hores - = r s r (=]
% O MEM_ADDR_psd 19 = BarkS | LVTIL 12 Han Hote I ot ™ £ r F
= B4k MEM_ADDR_pad| 20 ~ Borkd | LVTTL 12 Hgh Up r ot T s r ¥
= BfF MEM_ADDR_pad| Fl "~ Bark? LVTTL 12 Han Hone ™ ot o £ r W
+ B4F MEM_ADDR_pad 2 (= Bark?. | LVTTL 12 e None r ot r E3 E ¥
+ B4} MEM_ADDR_pad| 23 " Barksd LVTTL - = Up i [T} - ' ¥
+ B4 MEM_ADDR_pad] =d Bkt LVTTL 12 Hgh Hare o ot T E) I F
+ B4F MEM_ADDR_pad] 5 I Bard? LVTTL 12 High None o ot I £ B i
B4k MEM_ADDR_pad E3 7 BarkS | LVITL 12 High None B ot I s T W
B MEM_ADDR_pad| il i Blariks LVTTL = - Down o o = r F
B4F MEM_ADDR_pad % (= Bork5 | LVTTL 12 i Nores ~ & I 3 B i
B MEM_ADDR_pad| B " Bark5 LVTTL 12 High Nore i o I 35 I i~
v O4F MEM_ADDR_pad E = Barié LVITL 12 e faane = i T » r "
B MEM_ADDR_pad| 3 W Bank2 LVITL = = Nons 5 i = B (=]

5 @Q MEM_DATA_podf + :‘} = Fnck? v 12 | Hiny Hone T [0 5 a8 - = .

=
4

Prrts View

Output § Resds | Frd1 [

FM: ProASICIE DIE: MPASPESOD PACKAGE: 454 FEGA

10.

Figure 5-44. 1/0 Attribute Editor in MultiView Navigator

Verify that the correct pins have been assigned to all of the signals. If changes are made, select
Commit from the File menu and then close the I/O Attribute Editor.

Optional: After successfully compiling the design, use the Designer Tools to view the pre-layout
static timing analysis with SmartTime, set the timing constraints in SmartTime, analyze the

CoreMP7 Development Kit User’s Guide

77

‘ Quickstart Tutorial

static and dynamic power with SmartPower, and use the ChipPlanner to assign modules. Click
the appropriate icons to access these tools.

For more information on these functions, refer to the Designer or Libero IDE online help.

11. In Designer, click Layout. This opens the Layout Options dialog box, shown in Figure 5-45.

Layout Options @

IV Timing-driven

Iv Run place

I™ Place incrementally

-

[V Run route

™ Route incrementally

I Use Multiple Passes

=
Advanced... |
S|

Help 0K Cancel

Figure 5-45. Layout Options Dialog Box

12. Click OK to accept the default layout options. This runs place-and-route on the design. The
Layout icon turns green to indicate that the layout has successfully completed.

78 CoreMP7 Development Kit User’s Guide

| YActel

’ Actel Libero IDE v7.1

13. From Designer, click Back-Annotate in the Design Flow window. This opens the Back-
Annotate dialog box, shown in Figure 5-46.

Back-Annotate @

Extracted files directomy

elpri/ReversiT utonial/designer/impl1

Browse...

Extracted file names: Output format:
|SDF ~|
Simulator language Expoit additional files
* Verilog v Netlist
" VHDLI3
Timing
" Pe I 'Oy
Status
Current directony:

5peed| Temp. | Voltage
-2 COoM COM

| 0K I Cancel Help

Figure 5-46. Back-Annotate Dialog Box
14. Accept the default settings and click OK. The Back-Annotate icon turns green.

15. Save and close Designer. From the File menu, click Exit. Click Yes to save the design before
closing Designer. Designer saves all the design information in an ADB file.

The file TutorialTop.adb appears under the Designer Files tab of the File Manager. To re-open
the file, right-click it and select Open in Designer.

CoreMP7 Development Kit User’s Guide 79

‘ Quickstart Tutorial

Step 6 - Perform Timing Simulation with Back-Annotated Timing
After completing place-and-route and back-annotation of the design, perform a timing simulation
with the ModelS8im HDL simulator.
To perform a timing simulation:

1. Click the Simulation icon in the Libero IDE Design Flow window, or right-click the
TutorialTop.v file under the Design Hierarchy tab and select Run Post-Layout Simulation.
2. This launches the ModelSiz Simulator, which compiles the back-annotated Verilog netlist file
and testbench.
Once the compilation completes, the simulator runs for 5000 ns and the Wave window displays
the simulation results. Verify that the read/write results of the executed BFM scripts are correct.

3. Follow the same sequence as in “Step 2 — Perform Pre-Synthesis Simulation” on page 58,
beginning with step 7, to add and verify the internal CoreMP7 signals of the BEM.

4. Scroll in the Wave window to verify that the CoreMP7 system works correctly. Use the zoom
buttons to zoom in and out as necessary.

80 CoreMP7 Development Kit User’s Guide

VActel

Actel Libero IDE v7.1

Step 7 - Generating the Programming File

1. Open the TutorialTop.adb file in Designer and click the Programming File button in the Design
Flow window, which opens the FlashPoint window (Figure 5-47).

FlashPoint - Programming File Generator for PA3 - Step 1 of 1

Dutput filename:

Silicon feature(s) to be programmed:

Tie off each unused 1/0 with a:

Browse... |

v FPGA Amnay
™ FlashROM

| s

" Pulldown resistor [reduced quiescent power consumption)
* Pull-up resistor [compatible behavior for migrated ProASICplus designs)

' Devices marked as A3PEBOD-EAS or ASPEED0-ES may draw higher quiescent current
- than given in the ProdSIC3E datasheet. To reduce the curent consumption choose the
pull-down resistor option above for unused 1/0s.

| vews | [Fnish | cancel | Help

Figure 5-47. Flash Point Dialog Box
2. Click Finish. The programming file is generated and saved in the \designer\impl/1 folder. The

Programming File icon in the Designer Design Flow window should now be green, indicating
that programming file generation has been successfully completed.

3. Save and close Designer. From the File menu, click Exit. Click Yes to save the design before
closing Designer.

CoreMP7 Development Kit User’s Guide 81

‘ Quickstart Tutorial

Step 8 - Programming the Device
After generating the programming file, program the device using an Actel FlashPro3 programmer.

Before performing any action with the FlashPro3 programmer, it must be properly set up. Connect
the FlashPro3 USB cable to your PC USB port, connect the ribbon cable to the programming
header on the target board, and turn on the power switch on the board.

1. Click the FlashPro Programming button in the Libero IDE Design Flow window, or right-
click TutorialTop.v under the Design Hierarchy tab and select Run FlashPro.

FlashPro opens (Figure 5-48).

T FlashPro - [TutorialTop] *

Fie Edt View Tools Programmers Corfiguration Customie Help

1|
Carfigise STAPL File
- Wiew Frograeneners I

JActel

Lelx

Driver : Z.0.2 build 1

7_I?T\nu AEnam A Warnings h hiof

Please Wak... Mo profect keaded

Figure 5-48. FlashPro Desktop — Prior to Locating Programmer(s)

82 CoreMP7 Development Kit User’s Guide

VActel

Actel Libero IDE v7.1

FlashPro establishes a communication channel with the FlashPro3 programmer(s) attached to
the PC (Figure 5-49).

1 FlashPro - [TutorialTop] *
Fie Edt View Took Programmess Corfigurstion Customize Help

D ¢ | =mas |8 0% 0k

NewPigect 1 Configare STAPL Fis
= => PROGRaM [I
Dpen Progect (3 Wisw Programensis

Pragammer Programmen
Type

Reliash/Retcan hoe Programmess

Driver @ 2.0.2 build 1
Creaced new project 'C:\hkctelprjii\ReversiTutorialidesigner)impll)TutorialTop #p\TutorialTop.pro’
STAPL file 'C:i\ictelpri\ReversiTucorialidesigner\impllyTutorialTop.scp’ has been loaded successfully.

Lo |2 | Programmes List windos

TT*T\MAEM Warrings } Infa [
Ready CYActelpri|RieversiTutorialidesigner i1 TutorialTop.stp SINGLE.

Figure 5-49. FlashPro Desktop — After Locating Programmer(s)
2. When launching FlashPro from within Libero IDE, the project STAPL file is automatically
loaded and configured. To verify the STAPL file being used to program the device, click the
Configure STAPL File button.

CoreMP7 Development Kit User’s Guide 83

‘ Quickstart Tutorial

The STAPL Configuration window (Figure 5-50) appears.

STAFL File
TutorialTop.stp

STAPL file information:

Browse... |

STAPL_FILE_NAME
CREATOR
DEVICE

PACHAGE
DATE
STAPL_VERSION
IDCODE
DESICH
CHECESUH
SECURITY
ALG_VERSION
SILSICG
MAY_FREQ

<

Sirvgla STAPL Cenfiguration Window

C:V\ActelpritReversiTutorial\designeriinpl &
Desicmer Version: 6.32.0.28

M7AIPEEOO

HM7AZPEGOD-FG484

2005411715

JESD71

123261CF

TutorialTop

320C

Disable

4

ulalufululafulul

10000000 ¥

Advanced... |

Figure 5-50. STAPL Configuration Window

Action

| PROGRAM |

Procedures. ..

3. Here the programming file may be changed by clicking the Browse button and navigating to the
new programming file. Various Actions may be performed using the drop-down selections. For

this tutorial, leave it set to PROGRAM (default).

For more information on these functions, refer to the FlashPro online help.

To return to the Programmer List window (Figure 5-51), click the View Programmers

button.

Programemes Lok wirdow

I'I'nwmmnr Pro Oranmees Part I'l'ogm er
| Harme Ty Statue | Enabled
1 |D12se FlastiPro il 258 =

Fleiresh/Rescan o Programemare ‘

Figure 5-51. Programmers List Window

84

CoreMP7 Development Kit User’s Guide

YActel

Actel Libero IDE v7.1

4. Verify that the attached programmer’s check box is selected under the Programmer Enabled
heading, then click the Program button.

5. Programming will take approximately two and a half to three minutes to complete. Under the
Programming Status heading, a progress bar will appear. Alternatively, the log window may also
be viewed (Figure 5-52).

Dzaver : Z2.0.2 build 1 o
Created e zraoject 'Ciihctel FeversaTutoraalidesigner’ amplll TutorialTop_fph TutoriniTop.pra’
STAPL file 'C:lActelpe)l\Reve iolidesignes) implliTutorialTop.atp' has been looded succesaafully.
Progrommes Scan Choain
ERLOgE BE 1Z 58 7 pen pgleeted on progrommer AND an exbocnzlly pro anp b izo been o
PECGEMEE : Sean Cheain PASSED,
PEOQEanmEr : Executing ection PROGRAH
Programmes : Date Authenticotion

progrommer '01Z54' : Erese ...
programper '01258' @ Programoing FPGR hcray
: The ASPEEQD EAZ and ES devices do not suppoct FPGR krray verificetion.

progeamer ‘01258

programper '01258' : FPGR Array vercification i2 supported by ASPESDD production devices,
progeajuper '01256' : Finished: Tue Now 15 16:18:03 2005 (Elapssd time O0D:03:01)
proyremmer ‘01256 : Executing wction PROGEAN PASSED.

0 -9-9-0-0-0

-

-_}\All 'iErrols E ‘Warrirgs “_-'qu ||'

Figure 5-52. FlashPro Log Window

6. Once programming has completed, select Exit from the File menu. Answer Yes when prompted
to save the project. This will return you to Libero IDE.

7. From the Libero IDE File menu, select Exit. If prompted to save your project, answer Yes, as
this completes the Libero IDE FPGA portion of this tutorial.

CoreMP7 Development Kit User’s Guide 85

‘ Quickstart Tutorial

ARM RealView Developer Kit — Actel Edition

The RealView Developer Kit, available from Actel (separately from the CoreMP7 Development
Kit), contains an integrated project manager and file editor suitable for creating and developing
embedded projects. In this section, we’ll create the executable source code to be run on CoreMP7.
No coding will be required in this section, as we’ll use source code included with the CoreMP7
Development Kit.

Step 1 - Creating a RealView Project

To create a RealView project:

1. Copy the contents from the \7uzoria/\MPU directory on the CoreMP7 Development Kit
CD-ROM to the C:\CoreMP7\Tutorial\Source directory, which must be created.

2. Launch the RealView Debugger 1.8 program located under Start > ARM > RealView
Developer Suite 2.2.

Prior to launching RealView Debugger, the RealView ICE Micro Edition must be connected
to the PC via the USB port. For information on installing and configuring the drivers for the

RealView ICE Micro Edition, see the Real/View ICE User Guide on the RealView Developer

Kit — Actel Edition CD-ROM.

3. From the Project menu, select New Project. This displays the Create New Project dialog box,
as shown in Figure 5-53.

Project Name: | ReversiBasicEngine

Project Base: | C:\CoreMP7 \Tutorial 0 I

=elect Type of Project:

f* Standard Project (Compile/2ssembleiLink)

" Library Project (Compile/&ssemble/fdd-to-Library)

™ Custom Project (Your Makefile, Your Command, Mo-Build)
" Container Project composed of Existing Projects

" Copy of Existing Project

OK | Cancel [Help |

Figure 5-53. RealView Create New Project Dialog Box

86 CoreMP7 Development Kit User’s Guide

| YActel

’ ARM RealView Developer Kit — Actel Edition

4. Click the Navigate button (the folder to the right of Project Base), select <Select Dir...> from
the context menu, and browse to the project directory: C:\CoreMP7\Tutorial. Click Select.

5. Ensure the Standard Project radio button is selected, and enter “ReversiBasicEngine” in the
Project Name field. Click OK. This displays the Create Standard Project dialog box, shown in
Figure 5-54.

EI Create Standard Project @

Project Name: ReversiBasicEngine

Toolchain: | ARN.C22. ARM RVCT 2.2 v |

Sources (CIC++fAssembly) to build from: ['

|
O

Add | Del | Rep | awon| awoft|

Executable:] ReversiBasicEngine.axf (el I

Description: | Standard project

OK Cancel | Help |

Figure 5-54. RealView Create Standard Project Dialog Box

CoreMP7 Development Kit User’s Guide 87

‘ Quickstart Tutorial

6. Again, click the navigate button (to the right of Sources to build from) to open the Select
Source Files for Project dialog box (Figure 5-55).

E] Select source files for Project

Look in: Il{__} Tutorial ﬂ = Ef: v

i) Source

File name: | Open

Files of type: | Sources [*.c;* ac:" e cpp:*.cc.”.on e+ v | Cancel
Help

Set Directory: |<Recent Directories> | Favorites...

Set File: | <Recent Files> ﬂ Favorites...

Figure 5-55. RealView Select Source Files for Project Dialog

7. Navigate to the C:\CoreMP7\Tutorial\Source directory and press CTRL + A to select all the files
within the directory.

8. Click Open.

88 CoreMP7 Development Kit User’s Guide

VActel

ARM RealView Developer Kit — Actel Edition

9. Click OK in the Create Standard Project dialog box. The Project Properties window now

appears (Figure 5-56).

EE Project Properties
File Yiew Help

& Description: | Defines base project information

«»« \ReversiBasicEngine.prj
+ &y PROJECT |
+[I SETTINGS
[*CONFIGURATION
+ [*COMPILE=arn
+[]*COMPILE=arm_cpp
+ [*COMPILE=thunb
+ [*COMPILE=thunb_cpp
#{*ASSEMBLE=arn
] *ASSEMBLE=thum
S CUSTOM=default
+ () *BUILD

Hame Ualue
|_] Command Open Close
11 *Modification History
L4, Specific device
L4, *Description "Standard project”
$ *Procesaor ARM-C22
$ *Type Standard
5‘.'; *huthor
$ Lock

Base directory
Tool directory
Tool enwvvar

Source search
Source mapping

"<use path of project file>"

Figure 5-56. RealView Project Properties
10. Click the CONFIGURATION entry in the left-hand window pane to view the available

project build variants.

CoreMP7 Development Kit User’s Guide

89

‘ Quickstart Tutorial

11. Right-click the Active config entry in the CONFIGURATION pane and select DebugRel

12.

from the context menu, as shown in Figure 5-57.

EE Project Properties
File View Help

& | pescription: | active configuration to use

.- . \ReversiBasicEngine.pr] Name Ualue
T gfﬁ&ﬂﬁﬁm’rmn ¢ *Config st
T ﬁ*CUHPILE=aIm L 1rl:ranf:!'.g Release
(1 *COMPILE=arn_cpp L5 *Config DebugRel

3_?. Active config Debug

[*COMPILE=thuub

+[1*COMPILE=thumb_cpp # Subdir rule Confi¢ Edit Value...
Pl “ASREDLE e Edit as String...
1 r[:_: CUSTOM=default Move/Copy to Configuration. ..
+ [j"BUILD Detailed Description. ..
Debug
Release

Figure 5-57. RealView Project Properties Configuration Options

The Configuration settings enable you to build your application program in different ways. They
define the target configurations used in the build model. The most common target
configurations are a Debug build, with debug information and no code optimization, and a
Release build, with less debug information and high optimization.

This group can also be used to set up different optimization levels—for example, a DebugRel
configuration with higher optimization than Debug but lower than Release. Another example is
multiple variants of your application using different device drivers.

See the RealView documentation available at http://www.arm.com/documentation/
Trace Debug/index.html or refer to online help for further information on this subject.

Expand the BUILD entry by clicking the plus sign to the left of its folder, and then select the
Link Advanced sub-menu component.

90

CoreMP7 Development Kit User’s Guide

| YActel

’ ARM RealView Developer Kit — Actel Edition

13. Right-click the Scatter file entry in the Link Advanced pane and select Edit as Filename from
the context menu, as shown in Figure 5-58.

File ¥iew Help

E Description: |Name of optional file cortaining scatter-loading information, (see --scatter)

- .« \ReversiBasicEngine.pcj Hame | Ualue
(4 *PROJECT € Entey
i
| (4 *CONFIGURATION “erf i
#{y*COMPILE=arm A L
& {1 *COMPILE=arn_cpp e huto via file Edit as Filename...
414 *COMPILE = thumb $ virtaal funct
+ (4 *COMPTLE=thusb_cpp § Relocatable e
41| *ASSEMBLE=arm T split Move/Copy to Configuration...
P AR Rt Lt B i Ro base Detailed Description. ..
5__|¢U$T0H=default i Ropi T ETEd
i (UL e R base
A Listings Sy : _
| BHessages & Rupi #disabled
- i Keep
B Symbol_Control 4 First
EyPre_Post_Link 4 Last
-BRVDEBUG_Commands $ memove unused default
$ Partial #disabled
UF Strict #False
sﬁ *Entry point "Reset Handler™
[ﬂ =— Debuy
—— Release

- DebugRel

Figure 5-58. RealView Project Properties Build Options

14. Browse to the ..\CoreMP7\Tutorial\Source directory and select the CoreMP7DevKit.scf scatter
map description file.

The scatter file is used to tell the linker where to load files or objects residing in memory. For
detailed reference information on the linker and scatter-loading, refer to the ARM Developer
Suite Linker and Utilities Guide.

The benefit of using a scatter description file is that all the (target-specific) absolute addresses
chosen for your devices, code, and data are located in one file, making maintenance easy.
Furthermore, if you decide to change your memory map (e.g., if peripherals are moved), you do
not need to rebuild your entire project. You only need to re-link the existing objects.

15. Also within the Link Advanced menu, set the Entry point to Reset Handler.

16. From the File menu, select Save and Close. This will return you to the RealView Debugger
desktop where you might see the compiler attempt to compile the source files with a makefile,
which fails due to missing files. Ignore this error/warning.

CoreMP7 Development Kit User’s Guide 91

‘ Quickstart Tutorial

Step 2 - Compiling the Source Files

Compiling Source Files
1. From the Build menu, select Build. Select Yes if you are asked if you would like to Rebuild All.

The output of the Build pane appears with several messages generated as a result of the
attempted build, as shown in Figure 5-59. If errors were present in your source code, they would
be listed with the corresponding filename, line number, and a brief description of the error.

If an error is found, the Code pane of the RealView Debugger opens the relevant source file with
an arrow pointing to and highlighting the line of source code the first error message is
referencing. Correct the error, save the modified source file, and then rebuild the project, and
continue this process until no errors are present upon Compile.

-0 Dabugial\UsesTnpus. s
1\ammam -g --dwarfd -3 4

AR = «ofUETEE =3 |

o
Iy e Y o e T T Ll .| Lid

Figure 5-59. RealView Debugger Build Pane

2. Ifaproject is already up-to-date, building will not occur when it is requested. If you wish to do
a forced rebuild of all source files, select Clean from the Build menu, which deletes the relevant
object files, and then select Rebuild All from the Build menu to rebuild the entire project.

Step 3 - Debugging: Simulating/Executing the Compilation

Simulator versus Emulator

A simulator attempts to model the entire behavior of a processor in software running on your
personal computer. No matter the speed of your PC, there is no simulator which can simulate the
microprocessor’s real-time behavior. Further, there is no external world communication between the
simulator and your target system. Stimulus files must be created and used to simulate external events.

On the other hand, emulators typically replace the processor on the target board and interface
directly with the external world. The emulator provides the user with all the features of simulation
plus the capabilities of interfacing with the external world and running at full system speed.
Emulators exist in two forms: Debug Modules and In-Circuit Emulation (ICE).

The Debug Module approach combines all of the emulator electronics and the actual emulation chip
into a single PCB, which connects to the target by ribbon cables, providing a connector that can plug
into an actual chip package of the target processor. All signals for the emulated microprocessor pass
through the ribbon cable that connects to the target system.

92

CoreMP7 Development Kit User’s Guide

YActel

ARM RealView Developer Kit — Actel Edition

The ICE approach is slightly different. The ICE interfaces directly to the On-Chip Debug system
within the actual processor. This provides an interface for complete control of the target processor—
typically JTAG, but sometimes a proprietary interface, already embedded into the target processor.

The exact electrical and timing characteristics of the target system are achieved when using the On-
Chip Debug system, whereas the Debug Module approach may provide additional features and
access to internals of the target. For that reason, simulators are best suited for the testing of
algorithms.

Configuring the Simulator / On-Chip Debugger

The frontend tools for performing emulation are exactly the same. The only differences between
simulation and emulation are the initial setup steps, specifically steps 3—6. The alternative steps for
performing emulation are discussed in “Alternative Steps for Using the On-Chip Debugger” on page
101.

1. Click the Src tab in the RealView Debugger Debug window. The Code pane shows that there
is currently not a target connected to the debugger.

Click the Connect to Target link to launch the Connection Control dialog.

3. Expand the Server > localhost branches in the name tree, then right-click new arm and select
Configure Device Info, as shown in Figure 5-60.

“_ Connection Control

Help
Name | pescription
=3 ARM-A-RR ARM Ltd. RDI targets
+ 22 ARMulator ARM instruction set simulator
=i Sexrver Connection Broker
-1 % localhost Simulator Broker
& _Inev arm Connect (Defining Made)...
Connect
Connection Properties. ..

Configure Device Info...

Figure 5-60. RealView Debugger Connection Control Dialog Box

CoreMP7 Development Kit User’s Guide 93

‘ Quickstart Tutorial

4. The ARMulator Configuration dialog box appears. Select the ARM7TDMI-S processor, as
shown in Figure 5-61. Click OK to return to the Connection Control dialog box.

Eﬂ ARMulator Configuration @

Processor ~ Additional Modules
ARM7OM Flosting Point:
ARMTEJ-S
ARMTT-S Qo
ARMTTDI-S " VFPv2
ARMTTDM " WFPv2 (Fast-mode)
ARM7TDMI-S " FPA (limited support)
ARM7TM
ARM7TM-S MMUPU Initialization:

[Default Page-Tables
Clock -
" Emulated Speed: |
(+ Real-time
Debug Endian: (* Little " Big
Start Endian: (¢ Debug Endian ¢~ Hardware Endian

OK Cancel Help

Figure 5-61. ARMulator Configuration Dialog Box

94

CoreMP7 Development Kit User’s Guide

| YActel

’ ARM RealView Developer Kit — Actel Edition

5. Select the new arm check box under the name tree. A new simulation object, Simarm 1, will
be instantiated, as shown in Figure 5-62.

“_ Connection Control

Help
Hame | pescription
=3 ARM-A-RR ARM Ltd. RDI targets
+ 22 ARMulator ARM instruction set simulator
ElfServer Connection Broker
-2 localhost Simulator Broker
-#F ¥ 5imarm 1
& [Inew_arm Start ARM arm simulator

Figure 5-62. RealView Connection Control with Simulation Object
6. The RealView Debugger is now connected to the ARM7TDMI-S Instruction Set Simulator

target. You may now close or minimize the Connection Control dialog box.

7. The RealView Debugger Code pane prompts for the loading of the recently built image to the
target. Clink the Load link to load the image. If the Code pane is not prompting you to load an
image, click the Code tab at the bottom of the Code pane.

CoreMP7 Development Kit User’s Guide 95

‘ Quickstart Tutorial

8. The code is now loaded into the target. The current point of execution is identified by the red
box, as shown in Figure 5-63. The code currently being displayed is the basic initialization (or
bootloader) code, which is typically written in assembly language.

Reset Handler FUNCT 10N -

; Branch to C Libracy entiy point

INFORT maln
[] Setup Stacks |
riz,= main
£ls ; branch to _ main

ENDFUNC

IMPORT | |ImagessRAN EXECSSZIIsSLinit]|
EXPORT _ wser_initiel_stackheep

heap_base Dl || Images SRAN EXECSSZL58 Limit] |

__user initial stackheeap FUNCTION
il heap hase

HOV pe.lr

ENDFUNC

detup Stacks
LDR RO, =0xDEADBEEF
k1, =USE_STACK
RO, [R1]
#Hode_IRQ:0R:I_Bit:0R:F Bit

MoV RO,
Lﬂ:\b-sm xgr'c'kb&st'n'f..sf _I J"
Figure 5-63. RealView Debugger Code Pane with Loaded Target

Debugging the Design

This section will touch on the basics of debugging from the simulation point of view. The primary
goal of this section is to learn the very basic features of the debugger, as their application in the
following example is rudimentary.

1. Open the basicengine.cpp source file found in the ..\CoreMP7\Tutorial\Source directory using the
Open option under the File menu.

2. Select Show Line Numbers from the Advanced sub-menu of the Edit menu to display line
numbers in the margins of the source code.

3. Setabreakpoint on line 15, the “Reversi m reversi; ” statement, by double-clicking to the left of
the line number. A red breakpoint marker will appear to the left of the line number, as shown in
Figure 5-64 on page 97.

A breakpoint is a user-defined stopping point in a program that is inserted for debugging
purposes. Breakpoints are a method embedded developers use to gain information about a

96

CoreMP7 Development Kit User’s Guide

YActel

ARM RealView Developer Kit — Actel Edition

program during its execution. During the reak, the developer can examine the internal contents
of the processor, memory, registers, etc. to ensure proper operation.

WO O w] OO fa D B e

30

#include
ginclude
ginclude
#include

const in

<stdio.h> —
"Beversi.h"”

"UserInput.h'™

"UARTComChannel . h"

t INITIAL X = 23
- INITIAL Y = 2;

= MAX X = 8;

- NIN X = 1;

nt MR Y = MAX X;
nt NIN Y = MIN X;

int main()

{

Reversl m_rewversi;
UserInput user;

int ®Current, yCurrent;
InputEey kewy:
UARTComChannel uart:

#if USE_SEMI HOSTING FOR_OUTPUT == 1

gendif

printf ("\nStarting Rewersiin");

u reversi.RegisterConCharmel ((ComCharmel *)suart):

xCurrent = INITIAL X:
yCurrent = INITIAL Y:
key = DOWN_KEY;

4| b fi D=m ZSrc hbasicangine.cpp ,{baa‘c«init.s f _I J v

Figure 5-64. RealView Code Pane with Breakpoint

Select Run from the Debug menu (or use the F5 shortcut key). The cursor (red box) will now
be present on line 15 (where the breakpoint was set).

9y

Open the position.cpp source file and set a breakpoint on line 125, the “m board[4][4] = White;’

statement.

CoreMP7 Development Kit User’s Guide

97

‘ Quickstart Tutorial

6. Right-click m board and select Watch from the context menu. The m board array will be

added to the watch window, as shown in Figure 5-65.

=l Hame |l.lalue
= -n_bhoard [0x201F31F4]
i {4 [0] [0x201F91F4]
I [L] [0x201F91FE]
¥ rez] [0x201F9208]
3] [0x201F9212)]
= 4] [0x201F921C]
[0] MNbhColors
| [1] WNbColors
Lozl NbColoxs
[3] NbColozrs
[4] MbColors
[5] NhColors
[6] WbColors
- [7] NbColoxs
[8] NbColors
- [9] NbColors
=51 [Ox201F9226]
5 16] [0%201F9230]
[#[7] [0x201F9234]
|
4 rt-1Walch1 Watch2 Jwatch3 Jwiatchd 4] v

Figure 5-65. RealView Debugger Watch Window

A watch is a variable or expression that you require the debugger to display at every step or
breakpoint so that you can see how its value changes. The Watch pane is part of the RealView
Debugger Code window and displays the watches you have defined.

98

CoreMP7 Development Kit User’s Guide

| PActel

’ ARM RealView Developer Kit — Actel Edition

7. Within the watch window, expand the m board variable and then expand the [4] sub-
component (a dimension of the 7 board array).

8. Select Step Into from the Debug menu (or use the F11 shortcut key). The cursor (red box) will
now be present on line 126. Looking at the watch window, you can see that the 7 board[4][4]
contents have changed from the default “nbColors” to the value “White.”

9. Continuing to single-step (or Step Into) three more times, you will see changes in the [5][4],
[5][5], and [4][5] components of the m board multi-dimensional array.

10. Select Registers from the View menu. The Register window is displayed; you may choose to
“dock” it into the RealView Debugger, as shown in Figure 5-66.

The Register window displays the contents of the internal processor registers at every step or
breakpoint so that you can see how its value changes. The register contents may also be modified

through this interface by simply double-clicking the value and modifying the field.

il R0 201F81F4 RI1 00000001
g .z 0000000A RS oooooooz
:] B4 201F91F4 RS Z000Z7EC
P15 0ooooooo RY 0oo0ooono
.5 nopooooo RO gooooooo
R10 00000198 R11 00000000
R1Z 2Z01F924E 3P Z01F8DES
LR zZ0oolezc PC 200017CC

CPSR 600000D3

NZCY FIQ IRQ STATE| MODE
0110 DIS DIS| ARM SYC
+ IT5R

+ IRQ

+ FIQ

¥ SWC

[+ ABT

+ 1D

_ 4| » |'\ Care ,{Cycleﬂul.rt KSemihust .f J J

Figure 5-66. RealView Debugger Register Window

al

CoreMP7 Development Kit User’s Guide 99

‘ Quickstart Tutorial

11.

Right-click one of the <<NoAddr>> values in the RealView Debugger Memory window and
select Set Start Address. Enter the value 0xC2000000. The Memory window will now display

the memory segment contents beginning with the aforementioned address, as shown in Figure

5-67.

12.

13.

2ﬂ EpeEiluEielely) | 0x10 | 0x00 0xFF OxE7 0x00| OxES Ox00 OxES O0x10 0x00 OxFF OXE7 A
OxC200000C | 0x00 OxES 0x00 0OxES 0x10) Ox00 OxFF OxE7 0x00 OxES Ox00 OxES
w| (0xC2000018 0x10 0x00 OxFF OxE7 Ox00 OxES Ox00 OxES O0x10 0x00 OxFF OxE7
OxC2000024 0x00 OxES 0x00 0xEE 0x10| Ox00 OxFF OxE7 0x00 OxE& Ox00 OxXES
OxCZ2000030 | 0x10| Ox00 OxFF OxE7 0x00| OxES Ox00 OxES 0x10) O0x00' OxFF OxXE7
UxCZ200003C Ox00 OxES Ox00 OxES 0x10 Ox00 OxFF OxE7 Ox00 OxES Ox00 OxES
0xC2000048 0x10 Ox00 OxFF OxE7 0x00 OxES 0x00 OxES 0x10 0x00 OxFF OxE7
O0xCZ2000054 0x00 OxE8 0x00 OxES 0x10 0x00 OxFF OxET O0x00 OxES Ox00 OxES
O0xC2000060 | 0x10 Ox00 OxFF OxE7 0x00 OxES Ox00 OxES Ox10 Ox00 OxFF OxE7
OxC200006C | 0x00 OxES 0x00 OxES 0x10 Ox00 OxFF OxE7 0x00 OxES 0x00 OxES
0xC2000078 0x10 0x00 O0xFF OxET 0x00 OxES 0x00 OxES Ox10 0x00 OxTFF OXE7
O0xC2000084 0x00 0OxE3 0x00 OxES8 0x10| 0x00 OxFF OxE7 0x00 OxE3 Ox00 OxE8 W

Figure 5-67. RealView Debugger Memory Window

The Memory window displays the contents of the memories (both Flash and SRAM)), as well as
the memory-mapped peripheral configuration registers, at every step or breakpoint so that you
can see how its value changes. The memory contents may also be modified through this interface
by simply double-clicking the value and modifying the field.

If you are debugging with the emulator, you can modify the memory contents at 0xC2000000
and twiddle the LEDs on the CoreMP7 Evaluation Board, thus showing that you have direct
access to the on-chip peripherals.

If you wish to run the complete Reversi (also known as Othello) game on the CoreMP7
Development Kit, continue with “Running the Reversi Game via the On-Chip Debugger” on
page 104. Otherwise, end the debugging session by selecting Disconnect from the Target
menu.

100

CoreMP7 Development Kit User’s Guide

| YActel

’ ARM RealView Developer Kit — Actel Edition

Alternative Steps for Using the On-Chip Debugger

1. Connect the RVI-ME to the CoreMP7 Evaluation Board through the ARM JTAG header and
power up the board.

2. Expand the ARM-ARM-USB branch to reveal RVI-ME in the name tree. Right-click
RVI-ME and select Configure Device Info, as shown in Figure 5-68. This launches the
RVConfig utility.

“. Connection Control

Help
Hame | pescription
=3 ARM-A-RR ARM Ltd. RDI targets
+ 22 ARMulator ARN instruction set simulator
R Server Connection Broker
=} i ARIM-ARN-USE RealView ICE Micro Edition
VERVIIE Expand {050

Connection Properties...

Configure Device Info...

AddfRemove/Edit Devices...

Figure 5-68. RealView Debugger RVI-ME Configure Device

CoreMP7 Development Kit User’s Guide 101

Quickstart Tutorial

3.

Click the Auto Configure Scan Chain button in the RVConfig utility. After a few seconds, the
ARM7TDMI-S processor will be identified, as shown in Figure 5-69.

[R¥Canfig - C:WProgram Files\ARM\RVD\Core\1. B\734\win_32-pentium\etcirvime. rve

Ele Yiew Help
= Realview ICE Micro Edition

ARMFTDOMIS
Advanced

Scan Chain Configuration

00 1—|

TAPID Device ID Cods
i} ARMTTDMIS CxaF1FO0SF

IDIQ

IR Length Options | Template Version

l.&uotufq.:zﬁwﬂ?hl [Device Properties...| | Movelp |

[Add De'\-lc:e] [F!mvstI
JTAG Clock Spead

() Adaplive O 250 kHz
) 625 kHz) 500 kHz
() 125kHz) 1HHz

O 2MHz
) 4 MHz
) BMHz

Figure 5-69. RealView Debugger RVConfig Dialog Box

102

CoreMP7 Development Kit User’s Guide

’ VActel

ARM RealView Developer Kit — Actel Edition

From the File menu, select Save. Then select File > Exit and return to the Configuration
Control dialog box.

Select the ARM7TDMI-S check box under the Name tree. It may be necessary to expand the
RVI-ME branch first, as shown in Figure 5-70.

“. Connection Control

Help
Name | pescription
=3 ARM-A-RR ARM Ltd. RDI targets
+ S ARNulator ARM instruction set simulator
#fServer Connmection Broker
=} i ARM-ARN-USE RealView ICE Micro Edition
-HBRVI-NE ARM JTAG debug interface (USE)

& (V| ARM7TDMI... ARMITDMI-S on localhost

Figure 5-70. RealView Debugger Connection Control with On-Chip Debugger Target
6. The RealView Debugger is now connected to the ARM7TDMI-S via the On-Chip Debugger.

You may now close or minimize the Connection Control dialog box.

7. Continue with the Quickstart Tutorial with step 7 on page 95.

CoreMP7 Development Kit User’s Guide 103

‘ Quickstart Tutorial

Running the Reversi Game via the On-Chip Debugger

1.

Reload the ReversiBasicEngine.axf file by selecting Reload Image to Target from the Debug

menu.

Connect the RS-232 connector P2 to the COM1 port of your PC using a standard straight-
through serial cable.

From the Debug menu, select Run (or use the F11 shortcut key). There will be an indicator in
the RealView Debugger status bar which indicates that the target is Running with a small
progress bar.

Minimize the RealView Debugger tool.
Navigate to the ..\7utorial\Demo directory on the Tutorial CD-ROM and double-click the

ReversiGUI exe executable.
Pressing SW6, SW7, SW8, SW9, or SW10 will commence the game.

To end the game, select Stop Execution from the Debug menu (or use the SHIFT + F5
shortcut key).

Disconnect from the target by selecting Disconnect from the Target menu. It is now safe to
close the RealView Debugger.

Reversi Background

The object of the game is to own more pieces than your opponent when the game is over. The game
is over when neither player has a move. Usually, this means the board is full. On your turn, you place
one piece on the board with your color facing up. You must place the piece so that your opponent's
piece, or a row of your opponent's pieces, is flanked by your pieces. All of the opponent's pieces
between your pieces are then turned over to become your color.

Game Controls
SWS8: Places a piece

SW9: Moves the placement box to the left one unit

SW10: Moves the placement box to the right one unit

SW7: Moves the placement box down one unit

SW6: Moves the placement box up one unit

104

CoreMP7 Development Kit User’s Guide

A

M7A3PE600 and M7A3P1000 FG484
Package Connections

Due to the comprehensive and flexible nature of M7 ProASIC3/E device user I/Os, a naming
scheme is used to show the details of each I/0O. The name identifies the I/O bank to which the I/0
belongs as well as the pairing and pin polarity for differential I/Os.

I/0O nomenclature: Gmn or IOuxwBy
Gmn is only used for I/Os that also have CCC access, i.e., global pins.

G: Global

m: Global pin location associated with each CCC on the device: A (northwest corner), B
(northeast corner), C (east middle), D (southeast corner), E (southwest corner), and F
(west middle)

n: Global input MUX and pin number of the associated global location m: either A0, A1,
A2, B0, B1, B2, C0, C1, or C2

w I/0 pair number in the bank, starting at 00 from the northwest I/O bank and proceeding
in a clockwise direction

x: P (positive) or N (negative) for differential pairs, or R (regular — single-ended) for I/Os
that support single-ended and voltage-referenced I/O standards only. U (positive-LVDS
only) or V (negative-LVDS only) restricts the I/O differential pair from being selected as
an LVPECL pair.

w: D (differential pair), P (pair) or S (single-ended). D if both members of the pair are
bonded out to adjacent pins or are separated only by one GND or NC pin, P if both
members of the pair are bonded out but do not meet the adjacency requirement, or S if
the I/O pair is not bonded out. For differential pairs, adjacency for ball grid packages
means only vertical or horizontal. Diagonal adjacency does not meet the requirements for
a true differential pair.

B: Bank

y: Bank number [0..3] for M7 ProASIC3 and [0..7] for M7 ProASIC3E. The bank

number starts at 0 from the northwest I/O bank and proceeds in a clockwise direction.

Figure A-1 on page 106 and Table A-1 on page 107 are extracted from the ProA4SIC3 and
ProASIC3E datasheets and provide package connections for the M7A3PE600 and M7A3P1000

devices.

CoreMP7 Development Kit User’s Guide 105

‘ M7A3PE600 and M7A3P1000 FG484 Package Connections

Pinouts for other devices in the FG484 family may be found on the Actel website:
ProASIC3 Flash Family FPGAs datasheet at www.actel.com/documents/PA3 DS.pdf
ProASIC3E Flash Family FPGAs datasheet at www.actel.com/documents/PA3E DS.pdf

These datasheets are included on the CoreMP7 Development Kit CD. However, always refer to the

website for the most recent datasheet.

484-Pin FGBGA Package

A1 Ball Pad Corner
2221201918 1716151413 121110 9 8 7 6 5 4 3 2 1 x

/

N\

00000000000 OOOOOOOOOOO
OC000000O0O0O0OO0OOOOOOOOOOO
OC000000O0O0O0OO0OOOOOOOOOOO
OC000000O0O0O0OO0OOOOOOOOOOO
000000000000 OOOOOOOOO0O
OC00000O0O0O0OOOOOOOOOOOOOO
OC00000O0O0O0OOOOOOOOOOOOOO
OC00000O0O0O0OOOOOOOOOOOOOO
000000000000 OOOOOOOOO0O
OC000000O0O0OOOOOOOOOOOOOO
OC000000O0O0OOOOOOOOOOOOOO
OC000000O0O0OOOOOOOOOOOOOO
OC000000O0O0OOOOOOOOOOOOOO
OC000000O0O0OOOOOOOOOOOOOO
OC000000O0O0OOOOOOOOOOOOOO
OC000000O0O0OOOOOOOOOOOOOO
OC000000O0O0OOOOOOOOOOOOOO
00000000000 OOOOOOOOOOO
OC000000O0O0O0OO0OOOOOOOOOOO
OC000000O0O0O0OO0OOOOOOOOOOO
OC000000O0O0O0OO0OOOOOOOOOOO
00000000000 OOOOOOOOOOO

<s<cHAmUvzZzgZrA-IOTMON® P

> >
w >

Figure A-1. 484-Pin FGBGA Package Layout

106

CoreMP7 Development Kit User’s Guide

YActel

484-Pin FGBGA Package

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections

Pin Number | M7A3P1000 Function | M7A3PE600 Function
Al GND GND

A2 GND GND

A3 VerBO VB0

A4 I007RSB0O I006NDBOV1
A5 IO09RSBO 1006PDBOV1
A6 I013RSB0O 1I008NDBOV1
A7 TI018RSB0O 1008PDBOV1
A8 IO20RSBO 1011PDBOV1
A9 1026RSB0O 1017PDB0OV2
A10 1032RSB0 1018NDB0OV2
Al11 1040RSB0O 1018PDB0OV2
Al12 1041RSB0O 1022PDB1V0
A13 1053RSB0O 1026PDB1V0
Al4 IO59RSB0O 1029NDB1V1
A15 1064RSB0 1029PDB1V1
Al6 1065RSB0O I031INDB1V1
A17 1067RSB0O 1031PDB1V1
A18 1069RSB0O 1032NDB1V1
A19 NC NC

A20 VeeiBO VeerBl

A21 GND GND

A22 GND GND

CoreMP7 Development Kit User’s Guide

107

‘ M7A3PE600 and M7A3P1000 FG484 Package Connections

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
AA1 GND GND

AA2 VB3 VeeB7

AA3 NC NC

AA4 10181RSB2 IO03NDBOV0
AA5 10178RSB2 1003PDBOVO
AA6 10175RSB2 1007NDBOV1
AA7 10169RSB2 1007PDBOV1
AAS 10166RSB2 I011NDBOV1
AA9 10160RSB2 1017NDB0V2
AA10 10152RSB2 1014PDBO0OV2
AA11 10146RSB2 1019PDBOV2
AA12 10139RSB2 1022NDB1V0
AA13 I0133RSB2 1026NDB1V0
AA14 NC NC

AA15 NC NC

AA16 10122RSB2 I030NDB1V1
AA17 I0119RSB2 1030PDB1V1
AA18 10117RSB2 1032PDB1V1
AA19 NC NC

AA20 NC NC

AA21 VeeBl VeeB2

AA22 GND GND

108

CoreMP7 Development Kit User’s Guide

| PActel

‘ 484-Pin FGBGA Package

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
AB1 GND VeeB7

AB2 GND NC

AB3 VB2 NC

AB4 IO180RSB2 NC

AB5 10176RSB2 GND

AB6 10173RSB2 1004NDBOVO
AB7 10167RSB2 1004PDBOVO
ABS 10162RSB2 Vee

AB9 10156RSB2 Ve

AB10 I0150RSB2 1014NDB0V2
AB11 10145RSB2 I019NDB0OV2
AB12 10144RSB2 NC

AB13 10132RSB2 NC

AB14 10127RSB2 Vee

AB15 10126RSB2 Ve

AB16 10123RSB2 NC

AB17 10121RSB2 NC

AB18 10118RSB2 GND

AB19 NC NC

AB20 VB2 NC

AB21 GND NC

AB22 GND VB2

CoreMP7 Development Kit User’s Guide 109

‘ M7A3PE600 and M7A3P1000 FG484 Package Connections

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
B1 GND NC

B2 VoerB3 NC

B3 NC NC

B4 TIO06RSB0O GND

B5 IO08RSBO GAA0/IO00NDBOVO
Bé6 1012RSB0O GAA1/I000PDB0OVO
B7 I015RSB0O GABO0/IO0INDBOVO
B8 1I019RSB0O 1005PDB0OV0

B9 1024RSB0O 1010PDBOV1

B10 1031RSB0O 1012PDB0OV2

B11 1039RSB0O 1016NDBOV2

B12 1048RSB0O 1023NDB1V0

B13 1054RSB0O 1023PDB1V0

B14 1058RSB0O 1028NDB1V1

B15 1063RSB0O 1028PDB1V1

B16 1066RSB0O GBB1/1034PDB1V1
B17 1068RSB0O GBA0/IO35NDB1V1
B18 1070RSB0O GBA1/1035PDB1V1
B19 NC GND

B20 NC NC

B21 VBl NC

B22 GND NC

110

CoreMP7 Development Kit User’s Guide

YActel

484-Pin FGBGA Package

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
C1 VB3 NC

C2 10220PDB3 NC

C3 NC GND

C4 NC GAB2/10133PDB7V1
Cs5 GND GAA2/10134PDB7V1
Cé I010RSBO GNDQ.

C7 1014RSB0O GAB1/1001PDB0OV0
Cs Ve I00SNDBOVO

C9 Ve I010NDBOV1

C10 1O30RSB0O 1012NDB0V2

C11 1037RSB0O 1016PDBOV2

C12 1043RSB0O 1020NDB1V0

C13 NC 1024NDB1V0

C14 Vee 1024PDB1V0

C15 Vee GBC1/1033PDB1V1
C16 NC GBB0/I034NDB1V1
C17 NC GNDQ_

C18 GND GBA2/1036PDB2V0
C19 NC 1042NDB2V0

C20 NC GND

C21 NC NC

C22 VeerBl NC

CoreMP7 Development Kit User’s Guide

111

‘ M7A3PE600 and M7A3P1000 FG484 Package Connections

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
D1 10219PDB3 NC

D2 10220NDB3 10131NDB7V1

D3 NC 10131PDB7V1

D4 GND 10133NDB7V1

D5 GAA0/IO00RSBO 10134NDB7V1

D6 GAA1/IO01RSBO VMV7

D7 GABO/IO02RSBO VeepLa

D8 1016RSB0O GACO0/I002NDB0OV0
D9 1022RSB0O GAC1/1002PDB0OV0
D10 1028RSB0O I015NDB0V2

D11 1035RSB0O 1015PDB0OV2

D12 1045RSB0 1020PDB1V0

D13 1050RSB0O 1025NDB1V0

D14 1055RSB0 1027PDB1V0

D15 1061RSB0O GBC0/I033NDB1V1
D16 GBB1/I075RSBO VeepLs

D17 GBA0/I076RSB0 VMV2

D18 GBA1/1077RSB0 1036NDB2V0

D19 GND 1042PDB2V0

D20 NC NC

D21 NC NC

D22 NC NC

112

CoreMP7 Development Kit User’s Guide

YActel

484-Pin FGBGA Package

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
E1 10219NDB3 10127NDB7V1

E2 NC 10127PDB7V1

E3 GND NC

E4 GAB2/10224PDB3 10128PDB7V1

E5 GAA2/10225PDB3 10129PDB7V1

E6 GNDQ_ GAC2/10132PDB7V1
E7 GAB1/I003RSBO VeOMPLA

E8 I017RSBO GNDQ_

E9 I021RSBO I009NDBOV1

E10 1027RSBO 1009PDBOV1

E11 1034RSB0O 1013PDBO0OV2

E12 1044RSB0O 1021PDB1V0

E13 IO51RSBO 1025PDB1V0

E14 IO57RSBO 1027NDB1V0

E15 GBC1/I073RSB0 GNDQ_

E16 GBB0/IO74RSBO VeoMPLE

E17 I071RSBO GBB2/1037PDB2V0
E18 GBA2/1078PDB1 1039PDB2V0

E19 1081PDB1 1I039NDB2V0

E20 GND 1043PDB2V0

E21 NC 1043NDB2V0

E22 1084PDB1 NC

CoreMP7 Development Kit User’s Guide

113

‘ M7A3PE600 and M7A3P1000 FG484 Package Connections

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
F1 NC NC

F2 10215PDB3 NC

F3 10215NDB3 Ve

F4 10224NDB3 10128NDB7V1
F5 10225NDB3 10129NDB7V1
Fé6 VMV3 10132NDB7V1
F7 IO11RSBO 10130PDB7V1
F8 GACO0/I004RSB0 VMV0

F9 GAC1/I005RSBO VB0

F10 1025RSBO VeeBO

F11 I036RSBO I013NDBOV2
F12 1042RSBO 1021INDB1V0
F13 1049RSBO VBl

F14 T1056RSBO VeeiBl

F15 GBC0/I072RSB0 VMV1

F16 1062RSBO GBC2/1038PDB2V0
F17 VMVO 1037NDB2V0
F18 1078NDB1 1041NDB2V0
F19 IO81NDB1 1041PDB2V0
F20 1082PPB1 Vee

F21 NC NC

F22 1084NDB1 NC

114

CoreMP7 Development Kit User’s Guide

YActel

484-Pin FGBGA Package

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
G1 10214NDB3 10123NDB7V0
G2 10214PDB3 10123PDB7V0
G3 NC NC

G4 10222NDB3 10124PDB7V0
G5 10222PDB3 10125PDB7V0
Gb6 GAC2/10223PDB3 10126PDB7V0
G7 10223NDB3 10130NDB7V1
G8 GNDQ_ VeeB7

G9 I023RSBO GND

G10 T1029RSBO Vee

G11 1033RSBO Ve

G12 T1046RSBO Vee

G13 1052RSBO Ve

G14 IO60RSBO GND

G15 GNDQ_ VoerB2

G16 I080NDB1 1038NDB2V0
G17 GBB2/1079PDB1 1040NDB2V0
G138 1079NDB1 1040PDB2V0
G19 I082NPB1 1045PDB2V1
G20 1085PDB1 NC

G21 I085NDB1 1048PDB2V1
G22 NC 1046PDB2V1

CoreMP7 Development Kit User’s Guide

115

‘ M7A3PE600 and M7A3P1000 FG484 Package Connections

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
H1 NC 10121NDB7V0

H2 NC 10121PDB7V0

H3 Ve NC

H4 10217PDB3 10124NDB7V0

H5 10218PDB3 10125NDB7V0

Hé6 10221NDB3 10126NDB7V0

H7 10221PDB3 GFC1/10120PPB7V0
HS8 VMVO0 VeeB7

H9 VerBO Ve

FH10 VoeiBO GND

H11 1038RSB0O GND

H12 1047RSB0O GND

H13 VerBO GND

H14 VeeiBO Vee

H15 VMV1 VoerB2

H16 GBC2/1080PDB1 GCC1/1050PPB2V1
H17 1083PPB1 1044NDB2V1

H18 1086PPB1 1044PDB2V1

H19 1087PDB1 1049NPB2V1

FH20 Vee 1045NDB2V1

H21 NC 1048NDB2V1

H22 NC 1046NDB2V1

116

CoreMP7 Development Kit User’s Guide

YActel

484-Pin FGBGA Package

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
Nn 10212NDB3 NC

]2 10212PDB3 10122PDB7V0

J3 NC 10122NDB7V0

J4 10217NDB3 GFB0/IO119NPB7V0
J5 10218NDB3 GFA0/I0118NDB6V1
J6 10216PDB3 GFB1/10119PPB7V0
17 10216NDB3 VeOMPLE

J8 VeeB3 GFC0/I0120NPB7V0
19 GND Ve

J10 Voo GND

J11 Ve GND

J12 Voo GND

113 Ve GND

714 GND Vee

115 VBl GCCO/I050NPB2V1
J16 1083NPB1 GCB1/1051PPB2V1
J17 1086NPB1 GCA0/I052NPB3V0
718 1090PPB1 VeoMPLC

J19 1087NDB1 GCB0/IO51NPB2V1
720 NC 1049PPB2V1

J21 1089PDB1 1047NDB2V1

J22 1089NDB1 1047PDB2V1

CoreMP7 Development Kit User’s Guide

117

‘ M7A3PE600 and M7A3P1000 FG484 Package Connections

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
K1 10211PDB3 NC

K2 10211NDB3 10114NDB6V1

K3 NC 10117NDB6V1

K4 10210PPB3 GFA2/10117PDB6V1
K5 10213NDB3 GFA1/10118PDBé6V1
K6 10213PDB3 VeepLr

K7 GFC1/10209PPB3 10116NDB6V1

K8 VB3 GFB2/10116PDB6V1
K9 Vee Vee

K10 GND GND

K11 GND GND

K12 GND GND

K13 GND GND

K14 Ve Ve

K15 VBl GCB2/I054PPB3V0
K16 GCC1/1091PPB1 GCA1/1052PPB3V0
K17 IO90NPB1 GCC2/1055PPB3V0
K18 1088PDB1 VeepLe

K19 1088NDB1 GCA2/1053PDB3V0
K20 1094NPB1 I053NDB3V0

K21 1098NDB1 1056PDB3V0

K22 1098PDB1 NC

118

CoreMP7 Development Kit User’s Guide

YActel

484-Pin FGBGA Package

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
L1 NC 10114PDB6V1
L2 10200PDB3 10111NDB6V1
L3 10210NPB3 NC

L4 GFB0/10208NPB3 GFC2/10115PDB6V1
L5 GFA0/10207NDB3 10113PPB6V1
L6 GFB1/10208PPB3 10112PDBé6V1
L7 YV eOMPLE 10112NDB6V1
L8 GFC0/I0209NPB3 VeeB6

L9 Vee Vee

L10 GND GND

L11 GND GND

L12 GND GND

L13 GND GND

L14 Ve Ve

L15 GCCO/IO91NPB1 V(B3

L16 GCB1/1092PPB1 1054NPB3V0
L17 GCA0/I093NPB1 1057NPB3V0
L18 1096NPB1 1055NPB3V0
L19 GCB0/I092NPB1 1057PPB3V0
L20 1097PDB1 NC

L21 I097NDB1 1I056NDB3V0
L22 IO99NPB1 1058PDB3V0

CoreMP7 Development Kit User’s Guide

119

‘ M7A3PE600 and M7A3P1000 FG484 Package Connections

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
M1 NC NC

M2 10200NDB3 10111PDB6V1
M3 10206NDB3 I0115NDB6V1
M4 GFA2/10206PDB3 IO0113NPB6V1
M5 GFA1/10207PDB3 10109PPB6V0O
M6 VeepLp 10108PDB6VO
M7 10205NDB3 10108NDB6V0O
M8 GFB2/10205PDB3 VeeB6

M9 Ve GND

M10 GND Vec

M11 GND Ve

M12 GND Ve

M13 GND Ve

M14 Vee GND

M15 GCB2/1095PPB1 VeerB3

Mi1é6 GCA1/1093PPB1 GDB0/I066NPB3V1
M17 GCC2/1096PPB1 I060NDB3V1
Mi18 10100PPB1 1060PDB3V1
M19 GCA2/1094PPB1 1061PDB3V1
M20 10101PPB1 NC

M21 1099PPB1 1059PDB3V0
M22 NC 1058NDB3V0

120

CoreMP7 Development Kit User’s Guide

YActel

484-Pin FGBGA Package

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
N1 10201NDB3 NC

N2 10201PDB3 10110PDB6V0O

N3 NC Ve

N4 GFC2/10204PDB3 I0109NPB6VO

N5 10204NDB3 10106NDB6V0

N6 10203NDB3 10106PDB6VO

N7 10203PDB3 GEC0/I0O104NPB6VO
N8 VeeB3 VMV5

N9 Ve VoerBs

N10 GND VeeiB3

N11 GND 1084NDB5V0

N12 GND 1084PDB5V0

N13 GND Voo B4

N14 Ve Voo B4

N15 VBl VMV3

N16 1095NPB1 Veepn

N17 I0100NPB1 GDB1/1066PPB3V1
N18 10102NDB1 GDC1/1065PDB3V1
N19 10102PDB1 1I061NDB3V1

N20 NC Vee

N21 I0101NPB1 IO59NDB3V0

N22 10103PDB1 1062PDB3V1

CoreMP7 Development Kit User’s Guide

121

‘ M7A3PE600 and M7A3P1000 FG484 Package Connections

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
P1 NC NC

P2 10199PDB3 1I0110NDB6V0O

P3 10199NDB3 NC

P4 10202NDB3 10105PDB6V0O

P5 10202PDB3 10105NDB6V0

P6 10196PPB3 GEC1/10104PPB6V0
P7 10193PPB3 VeOMPLE

P8 VeeB3 GNDQ

P9 GND GEA2/10101PPB5V2
P10 Vec 1092NDB5V1

P11 Ve 1090NDB5V1

P12 Vee 1082NDB5V0

P13 Ve 1074NDB4V1

P14 GND 1074PDB4V1

P15 VBl GNDQ

P16 GDB0/I0112NPB1 VCOMPLD

P17 10106NDB1 Vit

P18 10106PDB1 GDC0/I065NDB3V1
P19 10107PDB1 GDA1/1067PDB3V1
P20 NC NC

P21 10104PDB1 1064PDB3V1

P22 10103NDB1 1062NDB3V1

122

CoreMP7 Development Kit User’s Guide

YActel

484-Pin FGBGA Package

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
R1 NC NC

R2 10197PPB3 10107PDB6V0O

R3 Ve 10107NDB6V0

R4 I0197NPB3 GEB1/I0103PDB6V0
R5 10196NPB3 GEB0/I0O103NDB6V0
R6 10193NPB3 VMVé6

R7 GEC0/I0190NPB3 VeepLE

R8 VMV3 I0101NPB5V2

R9 VB2 1095PPB5V1

R10 VoeiB2 1092PDB5V1

R11 10147RSB2 1090PDB5V1

R12 10136RSB2 1082PDB5V0

R13 VB2 1076NDB4V1

R14 VB2 1076PDB4V1

R15 VMV2 VMV4

R16 I0110NDB1 TCK

R17 GDB1/I0112PPB1 Vpump

R18 GDC1/10111PDB1 TRST

R19 10107NDB1 GDA0/IO67NDB3V1
R20 Veo NC

R21 10104NDB1 1064NDB3V1

R22 10105PDB1 1063PDB3V1

CoreMP7 Development Kit User’s Guide

123

‘ M7A3PE600 and M7A3P1000 FG484 Package Connections

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
T1 10198PDB3 NC

T2 10198NDB3 NC

T3 NC GND

T4 10194PPB3 GEA1/10102PDB6V0
T5 10192PPB3 GEA0/I0102NDB6V0
Té6 GEC1/10190PPB3 GNDQ_

T7 10192NPB3 GEC2/I099PDB5V2
T8 GNDQ_ 1095NPB5V1

T9 GEA2/10187RSB2 I091INDB5V1

T10 10161RSB2 1091PDB5V1

T11 10155RSB2 1083NDB5V0

T12 10141RSB2 1083PDB5V0

T13 10129RSB2 1077NDB4V1

T14 10124RSB2 1077PDB4V1

T15 GNDQ_ 1I069NDB4V0

T16 10110PDB1 GDB2/1069PDB4V0
T17 Vit TDI

T18 GDC0/I0111NDB1 GNDQ_

T19 GDA1/10113PDB1 TDO

T20 NC GND

T21 10108PDB1 NC

T22 10105NDB1 1063NDB3V1

124

CoreMP7 Development Kit User’s Guide

YActel

484-Pin FGBGA Package

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
U1 10195PDB3 NC

U2 10195NDB3 NC

U3 10194NPB3 NC

U4 GEB1/10189PDB3 GND

us GEB0/I0O189NDB3 I0100NDB5V2

U6 VMV2 GEB2/10100PDB5V2
u7 10179RSB2 I099NDB5V2

U8 10171RSB2 1088NDB5V0

U9 10165RSB2 1088PDB5V0

U10 10159RSB2 I089NDB5V0

U1l 10151RSB2 1080NDB4V1

U12 10137RSB2 1081INDB4V1

U13 10134RSB2 1081PDB4V1

U14 10128RSB2 1I070NDB4V0

U15 VMV1 GDC2/1070PDB4V0
U16 TCK 1068NDB4V0

U17 Vpunp GDA2/I068PDB4V0
U18 TRST TMS

U19 GDA0/IO113NDB1 GND

U20 NC NC

U21 10108NDB1 NC

U22 10109PDB1 NC

CoreMP7 Development Kit User’s Guide

125

‘ M7A3PE600 and M7A3P1000 FG484 Package Connections

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
V1 NC VoerB6

V2 NC NC

V3 GND NC

V4 GEA1/10188PDB3 1098NDB5V2
V5 GEA0/I0188NDB3 GND

Vé 10184RSB2 1094NDB5V1
V7 GEC2/I0185RSB2 1094PDB5V1
V8 10168RSB2 Vee

V9 10163RSB2 Ve

V10 10157RSB2 1089PDB5V0
Vi1 10149RSB2 1080PDB4V1
V12 10143RSB2 1078NPB4V1
V13 10138RSB2 NC

V14 10131RSB2 Vee

V15 10125RSB2 Ve

V16 GDB2/I10115RSB2 NC

V17 TDI NC

V18 GNDQ GND

V19 TDO NC

V20 GND NC

V21 NC NC

V22 10109NDB1 VeeiB3

126

CoreMP7 Development Kit User’s Guide

YActel

484-Pin FGBGA Package

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
W1 NC GND

W2 10191PDB3 VeeB6

W3 NC NC

W4 GND 1098PDB5V2
W5 10183RSB2 1I096NDB5V2
W6 GEB2/I0186RSB2 1096PDB5V2
w7 10172RSB2 1086NDB5V0
W38 10170RSB2 1086PDB5V0
W9 10164RSB2 1085PDB5V0
W10 10158RSB2 1085NDB5V0
W11 10153RSB2 1078PPB4V1
W12 10142RSB2 1079NDB4V1
W13 I0135RSB2 1079PDB4V1
W14 I0130RSB2 NC

W15 GDC2/10116RSB2 NC

W16 10120RSB2 1071NDB4V0
W17 GDA2/10114RSB2 1071PDB4V0
W18 TMS NC

W19 GND NC

W20 NC NC

W21 NC VoerB3

W22 NC GND

CoreMP7 Development Kit User’s Guide

127

‘ M7A3PE600 and M7A3P1000 FG484 Package Connections

Table A-1. M7A3PE600 and M7A3P1000 FG484 Package Connections (Continued)

Pin Number | M7A3P1000 Function | M7A3PE600 Function
Y1 VB3 GND

Y2 I0191NDB3 GND

Y3 NC VeerBS

Y4 10182RSB2 1097NDB5V2
Y5 GND 1097PDB5V2
Y6 10177RSB2 1093NDB5V1
Y7 10174RSB2 1093PDB5V1
Y8 Ve 1087NDB5V0
Y9 Ve 1087PDB5V0
Y10 10154RSB2 NC

Y11 10148RSB2 NC

Y12 10140RSB2 1075NDB4V1
Y13 NC 1075PDB4V1
Y14 Ve 1072NDB4V0
Y15 Voo 1072PDB4V0
Y16 NC 1073NDB4V0
Y17 NC 1073PDB4V0
Y18 GND NC

Y19 NC NC

Y20 NC VeeB4

Y21 NC GND

Y22 VoeiBl GND

128

CoreMP7 Development Kit User’s Guide

Board Schematics

This appendix provides illustrations of the CoreMP7 Evaluation Board.

Top-Level View

Figure B-1 on page 130 illustrates a top-level view of the CoreMP7 Evaluation Board. Figure B-2
on page 131 shows a bottom-level view of CoreMP7 Evaluation Board.

CoreMP7 Schematics

The rest of this appendix shows the following illustrations of the CoreMP7 Evaluation Board:
Figure B-3 on page 132: Main 1.5V, 2.5 V, and 3.3 V Power Supplies
Figure B-4 on page 133: Flash and Synchronous SRAM Memories
Figure B-5 on page 134: M7A3PE600 FPGA - 1I/0 Banks 0-2
Figure B-6 on page 135: M7A3PE600 FPGA - 1/0 Banks 3-5
Figure B-7 on page 136: M7A3PE600 FPGA - 1/0 Banks 6-7
Figure B-8 on page 137: LEDs and Push-Button Switches

Figure B-9 on page 138: FPGA I/O Expansion Headers

Figure B-10 on page 139: USB Interface

Figure B-11 on page 140: RS-232 and CAN Interfaces

Figure B-12 on page 141: Ethernet 0 Interface

Figure B-13 on page 142: Ethernet 1 Interface

CoreMP7 Development Kit User’s Guide 129

TRET [T 03 nyozw I
O PG 3 x e 1003 - oo D:E“:ED o 1] &l o) o %j% O
Aol coooo [y + # oo @ P Low
) Baoo 3 a:nm‘ 3 %; CTHRECTTR
<1l DJ T 'Ih@.alm'rbl - o]] J o0 0 LEJ O
I Iy, ot Sm il
¥ 0 FP3 _J186 O § g8 = z 85 @l WJE“P{J)
N 2 [] E2] - @
o[0T ||||||||| Cl # EE o it o2
40 39 + D a = Eo L
n ||||||||||J = T futoa o
- 3 o
s oo | | | g g L o
NI |||||||||| g =-Ro —
Y X+ I LoV 3 = = R
ma| Go |vs N ™y e [@ B O
wip| O [WIT g5 L =
C = 117 a1 .em
Mis[MI9 = o $ Ly w
LT D mn,euﬂ z Nﬂ‘z =-€-‘E O
| % B b BRg, o5
PIs PIT 24 4 1 Lz
Ti8| B RBeSdT - B w4 ez TR8 TR ™ TR we[G -|B o
e _© w0 ap FEw o2
Lis =
i gg L weE Do§|05|0,030§ B
Gt G0 154 E vz Q) o E oE QE [0 @ 2
ot LFT w7 i]]]2 m& -G
BE| OO @L— B e F—"’i g z —
pig GO RJ?\:I 121 ﬂgﬂ*l Iﬁ] . u O
] o0 0
B 00 a ,JIIIIIIIIIJLOED ~cnenens T g
el - -
or| & B ETHERMET! ETHERWETF H
:E 49 6" e g E o, ! ‘3‘0
— ool [ee E ulo°
<52 |E| ISG O v Or O L e ¥
C”" oo oo i oo
- I | vl & o
ﬂ 258mes o= 2
a0 p i
Sl :ﬁgg ﬁgg ETHERMETI Obi ¥
oo = ?
E: gg & § 2| vl o oo EEL@ % o
w| oo S wale o oo o " o
E4 o0 E’?o . va [| an7|C 0 LS ¢°
| oo Lga e o 4o o E %@ Oﬂ-
ul oo | E,,\. AEACH O g g O O =
fa|l oo |w OO b BT 0 O Al O = - == &
LIL] 0s "5 o eujo o ! = uSEFOF ..
Fz| @ |3 N 5 B2 At &l - O
b o |jamEo: FEmSo o rjo o] o, NN, 5 e o
w| oo sERS Mo t[G &) w8 O laPER KEZ w8 e B 7| ®
ml 00 |o[OFk hem 5% &) wze o FE a8
ul oo | '; Mool uzoo W56, WGTEED LB EIDE =la
oo aify b " ste B wzo B) TReE REET S 5T
g " " 0| 57 L T LB EFEED T BN = =
o o5 o e T L e W
By
Jf o |el wai I:II
L3 o0 |2F % o | BQ [. J2] G E P23 |E| IIn O
i raa| Q9
3_1 g g :r E EEEE R (I 2 m “mii :: o
wo| GB (@ weE| 00 fle = =%
3 PR oy fud Ma JF2E = = o
way, 4w PRl O GEE_ESRD |1]
P - 2 o0 Whs__ o [+
I S-son O0eg oo 5@ IEEeE=E = o
o3 g OO eo Fle . umg =il
t Wiz AT oo v g N’a“s EI
pig| SO ==
boasd, s © e Q
==9F 3 — T :ﬁa = =- =
B GCOooHE || s TR ©f£ﬁ$ ua gy _
s cooo |2 Dnm Fo %

Mgg www . octel ccom g
i “1 OL:’ 015 us Ps
E i : I T

30_0430 LERT 04 30 m;o 0430 N

1! it | |] [1 1 | [] [1
OEU:'EU:' E'E:lm ONE___OpH__ O B__ O iB__OpE___ O

O IE:la_'DEJEZ_

o 00 o

a

Figure B-1. Top-Level View of CoreMP7 Development Board

130 CoreMP7 Development Kit User’s Guide

O

) g fge dh g8 db gl o ° @m0
OO San oo >
° @ecgo. BD o ° 0 e
S5 3.5 ﬁ o o0 0 o o O
. "
§ ﬁl e 1 O mo
o
ob B El‘j = o Gg
s g °3
84 OO T8 EF‘ = e o]
Rlod 3O 28 “o@ =
alas, £ 83 Tl EE Lo
VI - X - 1T a @ B 1o EID O
B Q0 M = aren
M G0 ek Lg M g hom L
S0 MG e O o e gz‘j O
w60 w@oo. @og ¢ w85
LICE + X + B LT m[aw;s.. sl -am[“
BLT £ Blig = o E O %]
m oo ag @M égj” oo O 0wl e i Og
w1 wh
o ee suBoo Fmoo wi W W W FE) oz of of oF ok o
o OO al:'f:.,a ATH F AL g O oF o5 0% 0% 0F [+] o
a - ri_wRse E3 B O3 Br @5 o
a3 oo 7 oo0 o e
83 QO an i W e o
Bl G Tl == 1ar ey O
Wooo
1 oo | WIS [MO0 3] g = Fieh
Lt} i BEL
?Di E% gﬂl IGTSHLTJ e E‘“ﬂ L 50@900
Eo - &8 oo il E
a ol SO0 awad wf] ° %
L L MTEr €3 Lr G o SuTINMM %
7 00 LW a0 ; & OO
[+ o BUTTE « X o B o &
®oe F hge O O O GO
< [N = T A 0 B OO o ﬁ
&5 BAD O W OO S (e

AR I+ B s B4]
00 OO0
a 0

[min2 2]
g 0%

LN X
W oao
o o
Mg
al OO
[+ I+ 551 O
S X = A
00 G O raq Tmm@
* 0o o ©
ET X i "’"g'm @B
[T] oae.maeum‘-ﬂéu &
[s 3
oH 50HE
x oo ulmaaqaea.lwmw a ﬂ:@
Lol =1 & B E e maar
[- ¥ 8 .
L oo [-1
[N,] wn B & Lsu&% G 13
oo W5 i e TG o o e
i R TREYLLTY TG o ,Eﬂmwam 2
o o i o] - B [+
5L S0 O 5oamG B T o]
ﬁl MOaE_Ba <
[k IFo WS - el
B B @ @ @ o o io gom oy e .
¢ ¢ o © @ [%] b 2o 8 EE =
Bl
“° EOIRROR it gt
CICR+ B+
% @t‘h al ks Omamﬁaﬂl O
-0 pu T OB
Y ETEECEERITRSCTISEEL s =
BOOOOOOOOO00000000000 L E%%@E e 0 o o
COOOOOOOORO00RR00000D0 = - © BOE
- — - e
YIEYEYEESY2ET2EIEOCRS f,"m ¢ @
[& w Oer Oaﬂ []
G oM Do G5 0sT o D O g ﬁ]
mmmmﬁmmﬁoé& aﬂ& -:::-oEEI-:::-a
g & dh o 88 dh dfh 8

g8 o mﬂo ol o mlo o Bio &I-::- O

Figure B-2. Bottom-Level View of CoreMP7 Development Board

CoreMP7 Development Kit User’s Guide

131

v z € v S

Zien -
108 euues 0" ARE"KTANESSY 802 0" 424" 1avd €0

NOILVINMOANI QuVOs

A1ddNs ¥3amod

saion RewDYIS SrreEe A b
R vo e e FUIRS ano_[Panio

Qyvod LI A3a LWYVaI0) L £20 220
dio) 930V ﬁ B 2o [L0eo |4

Ast

S¥0L19¥AYD ONITAN0DAC

a1 ana As'T

AovANLy
= a1 2ng S dMdD §2281SdL EEH uv

14\20
== 13538 R

00000
oY Reoose
L Tleao RERZ27 N o
0 vz o ne 2] 1N ERVER) Mwmq Aszinzz 0
zzzzLanm fomcim FoS 810
. SeTEIvoN
N ot]soN >Nsz1353y
fom 1%

w
[ERRNEENE\N

sa

@
—
#

A0L/AN00}.
110 == Aguantoo_ |-

a31N3D 90—
La

¥

E 3
el 440 NO ASS or m:w“(%

05 WpI9TNT

HnooL
A0S/4NZZ0 440/NO 84 ' ¢ = AobiENLY
i4%] [al
ﬁ ano 2oN [noglanioo _
2L =
= ﬁ R
I
b

A9LI4N00L

510
e
NALON dMdo sizsisdl wikb
a1 ana nan @t ana 25T aa1 ana acvs slmen 80 353w $0g000
_ _ _ Tlogo =882 - b
T T T (xei) vuioos DA o vz o as't o Isnas NSY asaianzeo
NIA k X1 EON NI
oL] voN eNI
e % gr|son oN NSLLISTY
g ion
zn
e
~ = ° fEn
N N n
[ERLENERN [EERLEENELN [EERIEENGIN
[CRY N A A
ca 2a
h
d = T ewoezsido
7
Y % o ToO\\Om|_H > 440 NO AS
|
g:ée/ﬁ rousnogy L rosrapos 3525\# or-sHsio
89 Eo [t 4 _
NIA Asz AgE L =
e \wmﬂm»%mw) WS @I NNOD
% oN o
(o) ¥ ea'E . Aosianzz B H
) ASerNgL L Aserng) s nserangs ~Lnserangs L2
A0S1ANLO 0 (5 = Lo T 5
A N &
£ 894400
NIA
5 0D THOSVER 0
M ITIOA 6
13 re in 300 2 zoM0d ndu 46
T z B v B

1es

CoreMP7 Development Kit User’s Guide

5V, 2.5V, and 3.3 V Power Suppl

1

Figure B-3. Main

132

v z

133

8108859 N o o
o NN ano [Pano [Panio 4o 40 4o ano 4nio [PA0LEN0L
s ER Sr10~
ovio |,

L
K

SH0LT0VAYD ONTIEN0DET

o oo .
° 105-euues P Py X0" AT KTERESSY 604 X0°amy’svd €5 =
=
o B NOTIVINMOANI QuVOR o T
s | s o Panio P ano [P oanpo [oano P oanco [° o [SAouanor
. 1/4NT°0 3 SEOITONOY ONITAN02EA TTYD R 510
“EONVEETOL 401 'SAVIVAONIIH N ¥ 2910 1910 [,0910 6510 8510 1510 9510 §S510
AHOWIW ante EONVNETOL 85 'SHHO NI ¥V ¥OISISEM TTV"¥
{3SUNGHIO GRINIS 58 =
R —
7076 ¥ WA UETOR
Q¥VO08 LM A3Q LN¥YeI0D Joumens 190z = = iFe
di09 |30V anvo 7 amco [P anvo [P oamo [P oamo [P oanvo 2
= ARRARARAL -+ Wl i w[i s wl
; \7r

3

1es

Flash and Synchronous SRAM Memor

4

Figure B

13 Wvuss v 52,
T o
13 Wvass G871 WVISS 2z NMQMd WYHSS e
8vdr AQY WYHSS AgQy a8 NEg Nydss
08QV Wv¥SS osav va NZ8 WY¥SS
4SQV WYHSS dsav g NILIIME WYHSS - Laoosmezin
NOV3Y WYHSS 3 "
MO [<] NILINMO WYHSS
£3 77 1SSA 20A
NSO :«zmmolﬂmwﬂ 3 MO <] ¥10 Wviss SSA ®
z 3
81y it :m«dﬁ B YON | e
a40a iy e §1900Y WIn N HSVId =< o
¥dDa a1y [0 Hagy nan NILAG HSVT4] EIVE] 2N [
1800 s1v [o 200 NI NSO HSV14 Ep ron O
TEVIVA Wan 9800 Ty [TN =
0EV1Va WA ¥OQV_WIN
meeam & lseco e o o> 98¢ b sy e
ol B2viva Wan 81| {ao0 v 500V W3 2 iy [ZF_Zigaav wan
VIVQ WaW_ £V | a0q oy [ST AET] L-ve10a Siv [BY_oruaav waw
8Ly VIva WIn_ 2V |1 goq o [08 ST AE] IVa WIW_ 57 |, 00 iy [L__siaav maw
VIva WIN_ 6 |oapg oy 6900y WIN Iva W3W__EV |¢/ng £l IRTCCAGED]
VIva WIN 8| ,ung N 8900V WIN Iva WIW_ 1V |7 nq Ziy [£_eruaav man |
Viva WaN_EZ |gvung oy £400Y_ N3N Iva W3n_6¢ || /pg ™ ¥aay nan |
Viva Wan 2L svoq o foor 500V 3N va wan 98¢ D0 ™ FMEL]
et VIVO NI 69| pvog VY G ATED] Ivo Wan—7E] 3t Y 9 orsaav nan
VIva WIN_ 89 | cvpg oV [T ATET] Iva N3N 2% |gpg ov [£ 6uaav wan |
VIV AN £9 |ovog v £900V WIN Iva W3n_ Ot | o4 Jv [[B_suaav waw]
WIVG WaN_ 29 | [ynq Ty [5E ATCATETTIN Iva W3W_ ¥V | gog ov [B __zuaav man \|
11v1va WaW_69 |ouog ov | 95 [RCATETIIN Iva WIW_ 2V |apg oy | 6L _ouaav wan |
91v1va Wan 89 <<<<<<<< |[® [EESIETIAN va W3n_ 0% | ,pq by [0Z__suaav wan
533233333333 5335 52888888 s (93 £ [1 oy i
SERRR2222222 5588 00000880 va WIN £400V_WaW
lo:Lelviva waw RORES02I30Rrn £oNS BNSGRGRS e lo:g1l¥aay waw Ya Ran m.n\mwm__ w« [T su0av Ram
bl N va WIn Tt | oog ov [7¢_Teaav wan |
SRR EREE 8n va WIW 6C ST owaav Wam |
97T MZTS WYdSS loielviva waw n "] lo:8sluaav Wan
%
iee = 9T x MCTG HSVTIA
Wﬁﬁﬁwﬁﬁﬂﬁﬁﬁﬁ F fomse
8385585855558 000000000000
087 WvHss Q2283238812 GEGEL68850HHE
N33 22288LERLAEB2
M =]
13 Wvgss V1 550 = 1008M6ZIN
SeTTvass T 281
08T VHss 7z NMQUMd WY¥SS
QY WV¥SS| gy 88 | Ni8 Wydss
9SQV WvuSS osa NO8 WvaSS LSSA 20A
. dSav WvESS dsa NILIME WSS 55 SSA © >ur3
N NQV3Y WYESS) o
Fgg——<__] N3LIMO Wviss 84 HSY14< {8y
LE] T L YON Ly
Nso wvass[> Go 13 {sg——<] 10 wvass or eoN [B¢
751¢ N3LAG :wjuﬁ mw;m mwm o<
o Ly . NSO HSVTd 3 F—x
[TET]
ol g e S 1Y oromony T
12 WIN Aee = PAFISTIATETIN
1800 Sty 9Ly
SIVIVA WIN_£2 |gq0q v 37 WIN iy [B7oruaay waw \|
VIVIVa WIN 22 |gapg sl [27 WIN VIV piy [1_sruaav man |
ELVIvVa WIN_ Bl | gnq Ziy [WIN ViV KM RS CATETIN
N0L QMO QNoL QoL viva Waw 81 |¢aoq Isr [V1V 1y [€ eruaay waw
Viva Waw €V 5800 oy 77 WIW VLV {1y [zibaav waw
o Ssy S v S el VIvd WIN_ 2 |\gpng 6y [080l W3 V1V oLy 11900 WIW
Viva Wan 64909 v (78 6uaav nan | Vv &y [9orwaav nan
Viva WIn 8 ,unq v |28 smaav wan \| V1V ov [£_6uaav wan \|
IVIVQ WaW__EZ |gung ov [8 zmaav man \| VIV v [B_suaav wan |
9vIva WaN_2Z |eypq oy |00V _ouaav man \| VIV ov [BF_Z8aav wan |
Aee V1V AN 69 | g by [25 _swaav nan | VL oy 9400Y_NAW
V1vQ WIN 89 |ovog ov [€8 puaav waw | V1V v SHQQY WAW
iva wan €9 vod BV o AT TN Vi oy [Tz vdoov wam
viva wan 29 vod &Y |5t zuoav mam | VLV &y 2 euaav nan
VIV WaN 89| qvoq MR T ETIN VIV M A TAETIN
0vIva WIW 89 Ssssssss | o¥oav AN VIV ov [7Z_18aav Wan |
222323333333 5555 59555389 VLY SZ 05aavy WaW
[o:1€lviva Wam RERRBz=Isars R332 BRRRRARR ——<_"] loeil¥aav Wan
[o:1Elviva W3W sn b] [0'84]¥0QY WIW
N o
3 iy on
,WWWWWWWWWWWW 9T x MCTS HSYTd
9T « MTTS WYYSS
Aee
v 2 © v S

CoreMP7 Development Kit User’s Guide

v

S

108-eulwES

B

210 VOdd

Qyvod LI A3a LWYVaI0)

7076 V3 eI Uenon
10 ulens 190z

dio) 930y

X0"ASH ' ATAKESSY 834

X0°AZu"savd €34

NOILVIMOANI QuVOs

AT/4NT"0 E¥Y S¥
EONYEETOL $01'SOVHVAORDTR

‘EONVMZTOL 86 ‘SKHO NI 3w¥

8

v

SSTMMEHIO GHIVIS SSETNA'T
SEUON HYHOVIA OTINKEEDS

NI EEy s

0093dev

LAZ8dd0501/1 009

4 S
8¢ |, HOLVIIDSO zHYZE i HOLYTNOSO ZHNOS
P m 9 V40010 = m
440010 £{1NO_ ON ¢ AosiEnko_L_ £ 4N0_ ON =< Aogranto L
s vE0=T— s €80
S © 0ld9 001 8 P
ho
0 6vdr [sotn
i M
Zy 8y
Aee Ae

8dN0S01/0009

2

28l 20A

2

21

LAZ8dd1501/1 899
LAZ8dNISO1/0809
0AZ80d8€01/2089
0AZ80d.£01/2889
0AZEAdIEOIZYED

LAZEdNEYOI
LAZ8dd6¥0l

LAZBAN8YO!
1AZ80d8rol

LAZEANLYOL

LAZ80d P01

LAZEANSYOI

LAZ80d9r0l

OAZ8ANLEO!

0AZBANIEO!

08i 900

260

28 e woaa

EOVANEINI OSTH

03S/ONA 88N
ANdSNS 8sn

AQY WYHSS
0SQV WYHSS
dSav WYHss
NEE WVHSS
NZ8 WYHSS
NLE WYHSS
NOg WYHSS

NSO WV¥SS
10 WSS

[970lorn za

NILIYME WYHSS
NOV3Y WYHSS
NILIHMO WYNSS

009348y

3
550
888
o8¢
Jl<leld
3
4““
B}
2

LALBAdEEON/L 08D

[51V 81r8aavy waw N\
LA BANGZO! I Ta ooy Wan)
[STd oruaavy waw |
Mool S190qv_WIn
OALEANSZOI PRI A
0AL8Qd9ZOI £1900Y_ N3N
0ALBANSZOI 21900 N3N
0AL8Qdszol | B3 LEaay Wan |
0ALEANYZO! | XD 0rEaav Wan_
0A180d¥Z0l %
OAagaczol [-ZFd 100V nan
0ALEANZZOI 9¥aQv_W3W
0AL8adzzol | Sr8 S¥0av Wan
[ZWV_vyaav wan N
OALEANLZOI Jﬁ.nE/
0AL80d 1201 £40QY WIN
0ALEANOZOI | CFD_28aav Wan_
[Z13 1waav waw |
0A180d0Z01 AL

260

18 Ve wodd

IAKBANEE0I/0089 [13
LALBANYEOI/08ED | 513 e
IALEadvEoloass [91F
LA80dsEONVED [91T
IABaNSEOI/0VED [1T
LALEANZEO! | - NMQUMd WVHSS
LAL8AZEO! |- 84 HSV1d
LALBANLEOI |5 NOV3N HSV14 s"0lo1 18
LA18adI£0I ILINM HSY1d
LALBANOEOI NSO HSVd
IAL80d0¢OI [T N3LAS HSVT4
LALGAN6ZOI NY HSV1d
LA18Qd6Z0!

[o:gilyaay waw

—

HOVANAINT AMOWEH

00936V

ano 40 P 4o
570 wo [, v

= 181 907

4% wo [ovo [ee0

28 00A

ano W anvo [° amo [P
880 €0 [90
S

o a0 [P anio
1e0

2€0 0€0

SHOLIOVEYD ONITANODHA ¥9ad
081 99A

08100/
0A080d0001/L VYO
0A090dZ001/LOVD
0A090d1001/18YD
0A0EANZ00I/00VS
0A0ZANL0OI/08YS
0A08AN0OOI/OVYS

ZA08ANGLO!
2A080d6101
2ZA08AN8LOI
2A09ad8Lol
2ZA08ANLLOI
2A080d.L0l
ZA08AN9LOI
2A08ad9L0l
2ZA08ANSLOI
2A08adsLol
2ZA08ANYLOI
2A09ad10l
2ZA08ANELOI
2A08adeLol
ZA08ANZLO|

LAOBAN8OO!
1A080d800!
LAOBANL0OI
1A090d 2001
LAOBANS0O!
1A090d900!
0AO8ANS00!
0A080dS001
0A08AN¥00!
0A080d %001
0AOEANEOO!
0A090dE00!

o8l 99,

[s olorn 08

[o:1elviva waw

ven
08 e ¥oad

2

Figure B-5. M7A3PE600 FPGA - I/O Banks 0-2

CoreMP7 Development Kit User’s Guide

134

T z © v S
=5 10s-euveS o
o o X0"ASH" KTERESSY 80 0" AZE@¥d €0
I NOTLVWMOANI QYO
| AOT/4NT*0 B¥Y SHOLIOYO¥D ONIT4N03EQ 1T¢°D
SvE VOdd ante EONVYETOL $0T'SVEYAONOIH NI E¥Y SHOLIOVAYD TTY"€ = = = =N
BONYHFIOL 35 'SHHO NI GE¥ NOISISEN 1T
SSTIMERI0 EINIS SSEINQ'T
7076 Vo WA WEGH Sa10N NNOYI DTIVREHDS
QHYO8 LY A3Q LW¥V9100 e it o P amo P oamo o P s P oo P oo P v [P o P oo I o I anvo P ano P oo PP
dio) |9joy
650 [, 950 180 wmoﬂ mmuﬂ qmulﬁ Eoﬂ Nmolﬁ ,Slﬁ ﬁolﬁ %olﬁ 80 19 o0 [Y
Aee \ir \% A
vai 00A 81 D0A
SHOLIOVAYD SNITAl
8
0093dEY
SaND
SN0 SO0A
= z 58100/
z L S8I00A - =
e S8100A —— T s
v 2AS80d6601/203D ; 0093d8v
j A 2AS8Ad00101/283D e
- 2AS8dd10L0I/ZYID e anNo
ZASEANLOLOI £00A [0
. ZASBANOOLOI) € £8100A \ﬁ
iFe i ASh sar oA esonebo! I 0093dey A —)
ZASEAN860I SH20 vOdd s L £g100A 1 E24 ASL €8l 00A
2A$80d860! 7000 v9d4 [s-0lon sa YAND Lo £8100A Lorg +
2ZASEANL60] L ¥10 NI 1X3 vodd POON (oo 0A€8ddSS0I/Z009 (7w
2AS80d .60 3 XN0 VOd4 2 8100 1 OA£8dd¥SOI/Z809 |1 LL
2ZASEANIEOI AQ X¥0 v9d4 L v8I00A ﬁ As 0AE8AdESOITVOD Lar 0
ZA$80d960! £0X¥0 ¥Odi 8100 |0y o1/0vo9 [9k
LASANSEOI ZaX¥0 ¥od4 0AVEQd0£01/20a9 #1353 o1/Lv9 [Er
| AG8ddS601 1aX¥0 ¥9dd 0Av8Qd6901/z8as [o 450010 LAS8ANL901/0¥QD (g1l °
N0 LASBANY6OI 00X¥0 ¥9d4 0AVEadge0lzvas [FHA- 9 V001D saron 1A£80d2901/1va ST
1AS8AdY60I 0510 NI 1X3 v9dd LAPBANLEOI (7T 01d9 V#2010 LAg8dN990I/08AD o7
1 LASBANEGO! ¥3 X0 vodd 1AP8dd 1801 [gran = 1 A£8dd9901/1 809D | 715
4 LAS80dE6OI N3 X10 ¥9d3 LAPBANOSOI {—rn L LAEBANS901/0009 1o
‘e LASBANZ60! £0XL0 v9d3 1Ay8adogol [117 LA£8dS901/1009 [Ere
v LAS8AdZ60! 2aX10 v9d4 LAYEANGLOI |7 ww LAE8ANP90I a w
e LASBANL60I LOX10 ¥Odd 1AY8ad6.01 [S17Y - 1ggadyeol [13T
o 1AS8Ad160I 00X10 ¥9d4 LApEaNg.ol | o - LAEBANESO! [riolon €8
{ASdsos0l 5% v {nveans £l [LY ; ¥AgaaNz90l [220
L | 1004 ¥Odd LA
Aee AT ASL ¥EI DOA 0ASEANGSOI €510 NI 1X3 vodd LAPEQdLL01 w" L nedadesol (SE
0AS80d680I ¥3 Xyl vOdd LAPBANSLOI (i w LAESANL90I
0ASEAN88O! AQ X¥l vOdd 1Ay80doL0l [T10 - LA£8AdLI0I Movoaa In-InY
0AS8AdEE0I £aX¥} ¥Odd LAbEANS 2Ol | - LAEBANO9OI L
0ASEANZ8O! Zaxul vodi 1Ay8ads .ol [— LA£8Qd090!
0AS8Ad.80I Laxyl vodd LAPEANY2OI [£ = 0AEEANGSOI
0ASEAN9BO! 00Xy} ¥9d4 LAy8ddyLOl [T 0A£8Ad650I
0AS8Ad980I 2510 NI 1X3 v9dd OAYEANELOI g OAEBANBSO!
0ASEANSBOI ¥3 XLb vod3 0AVEAdELOl {77 0AEEQ8SOI
0AS8AdSEOI N3 XLL vOd3 OAYEANZLOI £ 0AE8dNLSOI
O0ASEANYBOI £AXL} vOdi 0A¥8QdZ20l [ZH ol
0AS8AdVEOI 2aX14 vodi OAYEANLLOI [g1 o - 0AEBANISO!
0ASEANESO! LaXL) ¥Odd 0AVEQd 1201 (77 — LINERREES]
0ASEAdEROI 00X1} v9d4 0APEANOLOI - TH o 0AEEdNSSOI
0ASEANZ8O! OGN ¥Od3 OAPEANG9OI (£ ! OAE8dNPSOI
0AS8AdZ80I1 OIOW VOdi OAPBANB9OI g 4 OAESANESO!
AE €81 00A 40 N I_SA.EW_E asn 08 1NIOd L a
<@ Jwva voaa va e voad €8 e voad 08INIOdL 6dL
081NIOdL 8dL
081NIOd L LdL
13NY3H13 08INIOd L 9dL
08INIOL Sdl
bdl
T z T v S

135

Figure B-6. M7A3PE600 FPGA - I/O Banks 3-5

CoreMP7 Development Kit User’s Guide

CoreMP7 Development Kit User’s Guide

Figure B-7. M7A3PE600 FPGA - I/O Banks 6-7

T z B v B
- 108-euiues e Ry
o . X0°ABY £ KTARASSY @32 X0 g sava @
e NOTIVIMOANT quvo"
)
1d L9 Vodd HONVZTOL $0T'SOVNVAONDIN NI 34V SYOIIOVAYD TIV'E
“EONVETIOL 9 'SKHO NI SNV MOSISEN TIN'Y
SSIMHTHLO QEIVIS SSETNA'T =
QUYOS LIy A3Q ZNHY@100 Y e 10 SELON WYNOYIA DILVHIEDS = -
dio) 930y l\ﬁ
v
Aosraneso [anioo
anvo [° ano [P anvo [P oanvo P anvo [° ano [P oanvo [P oanvo 2 =
60 60 —_—
v910 [€910 80 €80 [880 [180 980 580 [, . T
0093deY =
svdr
ACE I
‘ Lo Dghme o -
= 987 901 caNs Seans [71d
(2120 6d 3
o |seane reane [3
Ty{6EaND ogane [N
Tey-|0vaND 6zane [y ot
w w W w W w W w w w w w w w w w T LYaND 8ZAND
L amo FLI ano anio anio [P anio FLI ano [P anio anio anio ano FLI anio [P anio FLI ano [P anio ano [Panio anio anvo [w YAND 1ZaND mﬁ T
280 180 080 610 80 [w0 910 s [w0 €20 2o 10) 690 [. 890 1200 990 [590 90 [, €90 290 190 [Aﬂmwmuo orans 23] -
8.ON ¥ZAND
v {220N ezans [E1]
9.0N zzanoe [1] vt
L SLON 1ZAND o1
st vLON ozane [T L
SHOLIONGYD ONITd03Aa e HE 122 M.
N LION LLGND [gr
= 0/ON orane [§7
0INOD ST 690N siane [0%
Xpga{89ON yLAND ardr | o1
8 zanD 1aL g %eR 190N ciano [B10 L
1oL - <Ok 990N zrane 7O —
— e sy dNNdA — X5Tx{ 599N LLOND
e B <oa{roon orans [52 £
ovLrA SWL i - & evon 6aND
- 9 T SAL Aee = _ fomz SaNe -
== %—5{ON oaL = 190N ot
b —
e o z 00 E&s 099N Q1400A |grg v
+aNo T — T TSl Yozm|5eoN a9on W |
or LY S 6oN 314001 [91 ovdr €
oYLL <980 31d00A 71}
S pan] ssoN vieoon [[
S vson = |
Ll %S IEsON 41dWOOA | L
ovhdzsoN 31dWODA L
<00 ison a1anooA [l ;30 o As'h
%oz 0SON 01dWOIA 30 60l
670N 81dNOOA [or] } 30 80t
= fom A 919 T30 Jo
1 18von V1dWooA [2 o |
00936Y wwwu 8 DAND -
0093deV Xz -
5T lsvon £ oans [B1L 30 sow
1aND Xz PPN 9 DAND |5 -
100A XOENErON S DaND
€ 281907 SzEN{eroN v oano [EI8 30 ol
2 181907 SETRH PN € DAN® (713 r
L L8107 > ovon z DaND
281007 o AR v oans [9
° L AL80dZEL011ZDVD 0110939 [7% Lo % ogr{8EON
1A8adveloligyyo [F5 SO 0A98aNE0101/0839 [13 ol ALY 2290 |
LA8adee Olzave T —JEORIE 0A98QdE0LOI/L83D [Lol o8l 9on Xzzrr{98ON 9200N (4 nir
0A28dd0z101/104D |7g—CLONLE 0A980dZ0L0I/1V3D |7 . XFErSeON 520N | g
0AZ8dN0ZLO1/004D - —$LORL8 N 0A980NZ0L0I/0V3O |7 E10 X Sr vEON 2O £ Ash
. IV AT Y L — PN LA98QdS101/2049 [Fh I < leeon £200A [
onLgdNeL LOl0gd0 [T JCOIIS 17980491 10112849 [T X Spvi{eeoN zzoon [EHd
1 sonie LA98dLLL0IZY49 [T) SEe3 reon 1200 [219
z LA9gd8LON/I Y49 [T 9 0gON 0z00A [1q E
€ 2= LA98ANE1 L0110V *eeq{62oN 6190A [-
¥ DN LA9EANLHLOI Xpga| 82N 810 [H
Hs =1 LA9EANS}LOI %3 izoN L1908 [Z
3 1 o LA9EANS L. Xgza{92ON 9LOOA (g 8l 9o 281 D0A
AEE AST AGL 181 DA 6 LA98ANYLLOI 2 X1za{52ON SLOOA {5y
L 1A980dY1 1Ol B ST veon vioon [T 30 zony
<23 lezoN £100A
L 3 lzzoN 2100n [T H
L a3 B0 izoN LIOOA
9 031 1217107 98 120 ozon 01001 [513 cai 00A 981 90n
aNoo s a: 610N 600N |1
b a3 xS sron 800 [30 Lomy
1t € Q31 KR—|LON
z z an Spa9roN LANA L
H 1 a3 SLON SAWA
Lk Lo §, HE SAwA [38 187 90n »a1 99A
[L ms S8 e ion enwn [0
T 9 MS XEF32ION PAWA
AEE ST S 98l 90A 0AL80dEZ1OI 5 ms Xepo-{HON LAWA Lare
B 0AZ8ANZZLO b s XE1SforoN zann (518
0Az804eziol [51 j € ms 323 1eon OAWA
OALBANLZLOI ({o I z Ms %5 89N 081°00A zal 00
O0AL8AdIZIOI 5o L0 L Ms X5 LON dWNdA L
0 e > [ig70l0MI 28 0A98adS0401 0 Ms Xgea{9ON 1S¥L sedr
Hen <gea SN OVLIA
La e voas o6n Yora| 9N
98 e voas jﬁﬂ N
gr9| HON
3DV4YILNI 37 ANV HOLIMS
160 iee
T z B v B

136

137

z e v T 5
Jos-vues

ran[T
Zidr

$0378 SIHOLIMS 9 a3 T
9ldr

B Lo

Q¥V08 LI A3A LWyVai0) s an[__ T
dio9 |99V STar

v o[.
pidr

€ a3l T

S

zan[.
Zidr

L aan T

0 a3
b b
YV VvV VYV VYN
NORORR R
L. vral. eral, zeal, 1ial. oral. 6a
== o ho

1 = viz vz vz Sviz Sviz Sviz viz nie
Zvd Jivd ovd 68y (8EY Cley CJ9ed Jsey
Aosianto 0L o o o
1010

7 NRs

D00k dSS0LLTIL

A0s1NL00 L
66:

98 20\ 98l 00/

Figure B-8. LEDs and Push-Button Switches

CoreMP7 Development Kit User’s Guide

B v T B
T
ranl_ T
Tiar
$0317% SIHOLIMS 9 031 T
rar
Qyvod LI A3a LWYVaI0) s a3l T
Tar
v a3 r
iar
¢ a3 .
Tar
z a3 r
Zrar
L .
Trar

T 1€
V]
L7 |

Aos/ENLo0 L
z010—T—

= viz vz Svie iz iz iz Sviz vie
2oy JLvd Covy (6ed (8ey e 9t (Sey

00014 dSSOLLTL

98 207 s 981 D0\

CoreMP7 Development Kit User’s Guide

Figure B-9. FPGA /O Expansion Headers

138

T

© v 5
2165 10s-euveS
o sv @ ¥0'AgE"ava g2
NOTLVWMOANI QYO
asn
H10 GSINIS SSEO'T 4o ao [P
SAION HVESVIQ STIVEHDS
Q¥V08 LI A3A LWyVai0) 8010 2010 |,
savo 50
RS A
= vesw = =
T 67
YOXOTwL ¥OXOIWL
YOXOTPL z z
L 914 ms<_} r T T or T <] asn 914 ms
& 82dr
Joun] vi ETY R
agin] vk
asn 914 ms 1
oL b EE] m_ 1 A A
H in oL ¥ Ivy 8sn N3 ms 1Ko L A
As AgE Shdl =
P = =
T ovd
YOXOTrL POXOTWL
voxowe | 1 z
+a asn N3 ms<_} 3 - . r N3 ms
a 3 Izar
o9in| vt g9in | ¥h
voin| b
L Age Age
1NI0d L Aee
vidlL
YOLOHANNOD dsn - =
0f1-y apeidesay gsn b
20713IHS INSIZLOdRINTE wy
[RRETH vy
s WyiLLLasn N
+a ane aNdsns 8sn
B v
B 520201 X—g-|ON ane 9zdr
. = |
05141000 —{ 20N VON [5— lﬁ a33ds 8sn ‘u@ﬂ 033ds NSNS | . <A asn
9010 7010; 5010 :
T Inro 5-|¢LNOaND 7o m dA gsn
———1 @ A0LI4N0ZE _|7 NI 9N > asn 914 ms —— 0 dA gedr
] — —
SNEA I g{+LN0 N3 8sn N3 Ms 0dA 8sn z Boar 71 OdA NOY | . P ADY 8SN
sin 03S/OWA 85N ‘N@jﬂm\og El}
ST N3O 8sn
[20A 3gow
AS
119010d-G0¥Sd oy ST 300W 8sn

3 121 90A | -
-
= 11 ane |
€in

Hd0Id ONI¥HHALS

HOLIMS ¥dMO4d dsn

Age

YIATHOSNVEL dsn

Figure B-10. USB Interface

139

CoreMP7 Development Kit User’s Guide

v

zirons 10s-eulwES

YINIFOSNVHL Z€2-S¥ NV

7076 v main

Qyvod LI A3a LWYVaI0)

190z

dio) 930V

W68A ¥OLOINNOD

LS0EXYI

381
oy

4680 ¥OLOINNOD,

ZEZSY IXL

o
9
7
€

ZeZsy IXy

o—]
o |9

ed

4680 ¥OLOINNOD

L

b
ano sy

JHATHOSNYEL NVO

£

1D = a31N3IHO
NGHS aN® 61a
axy NYo
9¢d|
T INVD axy +
HNVO axi T
200 Sear axiL NvO
en AEE

ano

4
aIvANI

NIvY

G
famzal
*—g|NISY
1

NIEY

Zezsy Iy

Z€28y S1O Nies

B
PoexvIN H anio
€

00 |
4030404 L

NO30¥04

1nosy
Lnovy
1nogy
Lnozy

1noiy
a1nozy
NigL

NIZL

NILL

o o5
zd - T A
. =
a0 QM\;\\HW.>
[
YHATHOSNVIL <C¢€C-SY
p © v s

Figure B-11. RS-232 and CAN Interfaces

CoreMP7 Development Kit User’s Guide

140

T

B

10s-euILIES, v

o

X0 ASH’ KISHESSY €24 X0* g
NOTLVHMOANT

ava a0a
auvos

1-13N¥3H13 |
E e
QuVO8 LM A30 LWYVei0d 10 uans 1907
dio) |9joy
ZX0Z43aVIH
#1353y
S¥00 VOd3
1000 vodi
L 10 NI 1X3 vOdd
¥3 X¥0 ¥Odd
AQ X0 ¥9dI<
£0X¥0 ¥Od
20X40 ¥Od3
1aXH0 ¥9d3
00X40 ¥9d3
0 310 NI 1X3 v9d3
¥3 X10 ¥9dd
N3 X10 ¥9d3
£0X10 VO3
20X10 V93
LX10 Y93
00X10 ¥9d3
2aW vOdd
OlaW vod3
ger
¥AAROL T-LENSEHIE
LvHO8 Z1X2110d .
IAV/86LI =
aNoD3
anpo [0
dTT-KHAISN | G700
= 20AdaY
e 00AD3
aN©43Y _
ano aNoAY A
vzio ONYO r
T
nir T[00N43Y €210
Aee e T anog 2O
¢ [lanea =
& 2aNoL j>:
a0 Ao
2o —— 1210 — LANODL
r P 4o
551200 0zl ==
1aan N
- 200AL
= = o8
A AE i 1ooAL 8]
e nee aNDO 0 o
% |vanso = Aee
aNo11d
a0 [Panio] r
- anio
6110 L8110 [it
55-{200A0 N
o7taaA0 09ATI |y
1 a6in
AeE AT e
A1dd40S ¥AMO4 AHdA
dIH) 3HL 40
INWE NIHLIM @30V1d 38
GINOHS dVIa FHL 1TV

Aee
10031
Age
sgo0-00r =€
= 2o 5% ziam
#004SQ3T oF FOINTAST ~
— ez V03— =
4o
6210 - ano
—g|ON® SP-LY ON X 8210
-0XY AHd[> XY XL g——————<_"]-0XL AHd
z10 110 |
+0XY¥ AHd[_>———————{+X¥ XL <"]+0XL AHd ATe
Sd
SyLY-NOD
LVHO8 Z1X21L10d
IAVZBOBLWY
g |NGHMd
¥—gpMLi-ax L0 /[0]01dD “11x zunse dezzLd
X—gg-petdLiiolds —
LA AT
Y ULNI +11X r
NI N¥NE 10289210 =
S0 g
—5ggsasT— w35 Xdiviaaaxloladsaan W10439 T
#odsas >—g34N3 WVHOS/#100031 [—
% —gp13SAIUx¥ATT 430081 {5—x A zom
18037/#X1031 d8sod X
o d8S0d A HNT0L A3 U#NIAIT

#18Y b |uisy

X—ggxda/lel1as HoaL
X—51350dS/L113S HOIL -aX104/101aVAHd g T -
%—g48 MNI/0113s HOAL +QXL0L/ILIAVAH [5T AN
++0XL0H/IZIQVAHd |57 AN Yz0 = Q¥ AHd
YOINY +ax¥0L/ElavAHd [T AN
- Qmﬁfo\ikowai ladsaan o N VAVEATT]
ES %55 9X1031/#xdaa31 &
yldy SUO0L/SHD S0
fomz BT I —
¥—gg{eLsaL avee
T EERE] vjo_x_mgv\jo XY e A1 10 N1 X3
- 9 vlaxu/d3 Xy ¥3 X¥0
o0 954 aTT-AHIION £Q X [£F AQ XH0 sy
En_xm £0X¥0
g Axd zlaxy Zaxao
e oL]eixa [Llax | 7 Laxo
Xy rXd/L1S3L axyoi/lolaxy 5 0aX¥0
%—ggfiiXd/0183L
sz
310 d8SOdMIOXLO0L/MIO XL e AN >0 %10 N3
[laxL/y3 xL ¥3 X10
-0X4 AHd Xy NIXLOL/NI XL N3 X10 vey
+0XY AHd X [elaxt Sax 10
[elaxL Z0X10
[1jaxL 1aX10
axiorfolaxL 00x10
0XL AHd XL
+0XL AHd +XL oaw san
olaw olaw

vein

AHd LEN¥EHLE

Figure B-12. Ethernet 0 Interface

141

CoreMP7 Development Kit User’s Guide

v

2y

108-eulwES

I

T13INY¥3HL3

50

7076 V3 eI Uenon

X0"ASH ' KTANASSY 838

“EONVMZTOL $6 ‘SKHO NI SMY ¥

X0 4@a"iawd 80d
NOILVINMOANI QuvOs

H0EDTH NI Y 530,

v
SSTMMEHIO GHIVIS SSETNA'T
SEUON HYHOVIA OLINAEDS

Qyvod LI A3a LWYVaI0) 1o uwens Looz
dio) 930y
ZX0Z43aVIH
%] 0 6€ forx
#13534 8¢ L€ [OF T
S¥OL vOdd 9t 9 9€ [or L]
1001 vodi b Ve €€ g S
€ %10 NI 1X3 v9dd ze 1g
) T 510 NI 1x3
¥3 Xub ¥Odd $61 08 62 g2 o
AQ XL vodI<_| 8z 12|52 el T
£0X¥L ¥Odd 55192 52 X
Zaxul vodi Se1 T €T g o
LaxuL v9dd 2 1z e T
00X¥| YOdi sloz 6l g o
Z %10 NI 1X3 v9dd X ler ur e
¥3 XLL ¥9dd 9l sl gl X3
N3 XL} ¥Odd vLoel b d3 XIL
12 € N3 XL
£0XLL VOdi [T R
20X1h ¥9dd GHoL 6 g 3
LOXLL YOdd g L —
00XL} ¥9d3 9 5 ol
OaW vOdi voelg :
olan vodd 2 Ly
zr
¥AAHNL Z-LANSEHLE
LvHOB Z1X2110d
1AP2806LW =
anoo3
ano
dTT-XHdISN BELD
- 00AdaY
= 00/D3
SIGEER] N
ano aNoAY Aee
8610 ONHO
T ano
H s CUCEL | 1810 Iﬁ
- - Q0ANYO
Aee +{eanoa H ~
55 FaNOa e
o ZaNoL
a0 a0 L2
9610 —— Sel0 —— ANOL
N b o
zaan vel0 ==
o raan L
- ZOOAL
i e = T 100AL |08
nee ree F5{2aN90 - L
1-{+aN9O = At%®
aNOTd
ano Mo
€610 = ano
L 1810
52000 ﬁ
7{raano 09ATd gy
1 q0zn
e ATE A
A7d4dns ¥IMO4 XHA
dIH) 3HL 40
WWWE NIHLIM 030V1d 38
QGINOHS dVIa 3HL TV

—

o1a31
1a31
AT
sgo0oor ¢
B
#radsam < F—— {2803 210371 o> #niaan
= na3< |03 110371 |-y >oram
a0 u —g N9 SPLd ON X
€910 Ao
XY AHI Xy XL fg——————< XL AHd ero lﬁ
z10 110
+1X¥ AHd[> *X¥ XL < J4IXL AHd
o A
Sy LY-NOD
LyHO8 Z1X2L1Dd
IAPLEDBLAY.
T
*—5{NQ¥Md N
*—paimL--axLotilololdo X |, wnsz L 4dzavio
%—gz-FetdLlLondD
2N AT
X ¥INI +11X .
dz20y 10
NI N¥NE L 4 -
S0 f5—X lﬂ\
#10dsa31<___———5#]3S Xd/v18a31#loladsa3n 1043y T
%7 #AN3 WYHO8/#100031 O8I [+
X—gp13SAIVEX¥ATT 43008I {5—X Ly
180371/4X1031 dgsod 5%
#1IN103T d8S0d QI HINTOL AIT#NIATT
#LSH < Juisy
va.mLan;mj_mw_ HO3L)
%—4a-1350ds/1L113s Ho3L -ax10L/10]aVAHd
X—geda NIlonas HoIL +QX101/[L1aVAHd |5 roL
++QX10L/1Z]aYARd [5F oL Up0 = AV AHd
Y| YOINY +OX¥OL/E]AVAHd g7 r L
1352310/vXLa3 14l ladsaz ~AX¥OL/IPIAVAHd |r T I
%—gg9X1031/4Xdaa31 L
*—Tg|dLdy SHOOLISHD | s¥oL
X—potrias/elsaL 10901/109 1004
*—gg{2L83L
5o o CENNENET HIOXHOLMNTD XY | ST Mo £ 0 N 1xa
dTT-AHd3ISN [vlaxuma xd i\ ro FERI:
AQ x| AQ XL
[elaxy < Umnxf
Xgrixd [elaxy 17 zaxyL
Xpgtixd [laxy LaxyL
Xy XA LSIL axuok/[0]axy 1 oaxxL
X—gg{¥X3/0183L
M1 d8SOd/MTIOXLOLMTD XL AN Teeg > 2 W10 NI Ux3
TplaxL¥3 X1 [8 ¥3 xL2 e ¢ 694
“IXY AHd Xy N3XLOLNI X1 (- N3 XL
+IXY AHd Xy [elax. i £axLl
[elaxL zaxit
[1]axL Laxit
axto/folaxt 0axit
“IXL AHd o XL
+1XL AHd +X1 oan oan
[e e —— T[]

vozn

AHd LINYIHII

Figure B-13. Ethernet 1 Interface

CoreMP7 Development Kit User’s Guide

142

C

Signal Layers

The CoreMP7 Evaluation Board is a six-layer board. The board has the following copper layers:
Figure C-1 on page 144: Layer 1 — Top Signal Layer
Figure C-2 on page 145: Layer 2 — Ground Plane
Figure C-3 on page 146: Layer 3 — Signal Layer 3
Figure C-4 on page 147: Layer 4 — Signal Layer 4
Figure C-5 on page 148: Layer 5 — Power Plane
Figure C-6 on page 149: Layer 6 — Bottom Signal Layer

CoreMP7 Development Kit User’s Guide 143

TRET
7 a0 3N Cwn I0rgy U

CooOOO
ke eReXe]

g?ﬁ rr'f:#

“@.

llul Illll

KX
AR

= PHML_ A0

1
ral

rEe
< RIT

|ﬂ|—n iJ

°

S _m_ PR 14}
_v{_w, 1HH,|1 "THI
I

E4| O O Qv l?@ ooooooooo

Le| £ 2 WL :

La| f2 o WA
o O e, 1t

- &

&
e ReReRe]
feReRe Rl

R
SO0
Gao0
= =
WEEE) X
.-'.-rn

=
)
I i &

T
o
ol

kﬁﬂ-

oo

= . %4——-«:‘
Jl §
g+
CoreMP7 \D\g\v
EERTIFISFRINE
COOQoOOOoOD0
QRO OD0

P14 (G £E[O B Al wE ey

P [l
mu_m#B oy

|:1e| com

e R+
LR+
LR+
e+
e+
LR+

] mu 11.]

'.- DJ
M_E&Eu ::_:::_::;‘;_w 5

Figure C-1. Layer 1 — Top Signal Layer

144 CoreMP7 Development Kit User’s Guide

Figure C-2. Layer 2 — Ground Plane (Blank)

CoreMP7 Development Kit User’s Guide 145

O 2 o0 o x/ T 0gg, P2V @ o o O

! F e e fe—— o Xe) -

5} Y A0 — B XK. Fe pod

O LR RO T CORHELTOR

* t)

|_ Iﬁgl'ﬂ.#l - 0 = 1

= o am P ———— O

E FRE _J1an

4 L+
L+
L .Rg 'Ll 0

= P | o2

H— a1 1 TEER L] 4]

g 1 s
B ate e B T E I- $ =}
el o | I
a3 O3 |ARIT LR
w0 G s ' O
wiEe O (WF s s =
MGG O M9 5[0 - s[elwe @
LEG G a0z & L]0 O
LEEC O LG o By 1B o B3
PSS @ [R17 54 WEIBA g e VOCIEE .

TR O S o
LipH— 00
L ¥ 00
L= 00
s o ®
e
4 ==
r = O
== il R
Efe— \ 1 — ETHERMETZ O

= o e - T v ¥

= & pverep ([Bre) o

H :: : * Ly

H » HI [

ABERUNG e el o
-
f * vl M w3 Mo ofjifilo o
L 2 e e N oc-J @ o]
. * O & O 1¥|
:'N o LLEIL :' gg'
) A e o ol &do o>
e o s o] sslo o]
L0 * LI(EJ L * 00 TOG,
o . [sJke o]
g o snooLy
¥EE Bt & wal0 ol
1 s of rulory
H
ik S L) * - %fmg}{g—
— G iI0)
L v v CEANREEY
s 35
* la
.\J‘\
.=1
P oo
£ oo
. oo o
2.
oo o @
o0 o @
s oo P
7 e e a0 2]
Jld §0 oo &
oo
A 55 O
R — =
g ”@00000 AT ;E:-_?.:-
E DOOO0 00 g
*
; e www,octel com . ‘oo
\ 7 e e 5 uz [e|es rs a6
o] N IR A X
Sl % u’ LI "o w * * LT oy ¥ LT Lﬂ‘
. . . L Cyadr Cra i £ £h 3453 430 € Tn Z
Be DR ThE 4] R T A A |
O oy i s L + B T+ S = - L = S+ L+ SR + - | + N = L - J. - O

Figure C-3. Layer 3 - Signal Layer 3

146 CoreMP7 Development Kit User’s Guide

e ——— T B "
O @ — -] W DM O
~) Iﬁg&w—t:gs:t_ﬁp_- o
L] T H .J-Au- T == EE'NW
}J — L .ITI.I."—;}H'=\— O
= 5 :
i EE— M L ,
; — = o,
%) 5.2 i T 73;{ S
i === V(= o
T 7 -+ ; L o]
: o]
18] o [h—rt M o
814 ‘?ﬁ IE 1 f .
EYS[! E —
T ;_ O
Wi . s LA L1 @
e 16 G o= ok o
Li| oo = H
vl oo =z Bt I E O
LIL I e X f|= E - N o
18| 0 0 ||RHEE e el e o -2 o
w| oo ¢ OO0) i, ¢ F e @ 4
Lis{ © o i A = Ho
Ll Glo = AR l .Ij \-226 K g o 5, . no i
ailfee b e —— £zl e DA oFlofz [lofE 4o ©
£l | &G & O O Jupai * * s B +El |:| -
us| oo Pk N - =
pis| | @ @l > e R el Azl 1[5 S e
™ o F il S T) P . 1 sgluee * * oj I:l
Er| | € & L " I o a m‘ _ ETIERMETR T
oy O/p A .E - = . m;}\ | 1.\K :. et .: HOO———; ¥
3 .
. b E fee' M o * [l e N D P: : @ °
A1 L (Al ' fﬁ ./—’k b o L. .. .‘.J o o o . +
ey, e o & e o
H H [+ Al |+ J_
oy i BH B (| o ©
4ol g |) Altsl 3 - - Ze=k
i oo | oE EMERIETI 7 =T ¥
ot] R T H i .-I.Eﬂ; Lo] o
) o -] o o
w & ro (1) I oe .
s &] e o 2 G- o ° -
o o r'{ -]
Ed g/ 2 xlels R # [ew o; oo ._fl‘ -] o
-
o 134 e oll : Offe
:;: 0_/—\\ - e OO : 0 - = $
2 || g\- 0 . gg *
el |(E=X+] 3
HE o * + - - 4C o o
L1 []
wil| oo ' a2 e
ol |6 TEs A ; oo m..PJB
v6 |G & H ’ Fj 2
L) [E-E=F 2 S AL 1L *a szuF?N TRAMLIEIVER
af| e o i I I A R
J |0 o] % b . 421,17:;-31| I'D.E O
L3 ¥ O * Ll - ﬁo » I SR =
“ y Feo =
3.3 g
0] . o
L+
J3
Corle
Fegs .
FHE= i
sz ocodelo e QIO D h =
s coodn ’ = g P (O O] E
RE LR
o
TR EEEEE EF] B waf@ Q] A -
M WG b _FE _TF e PE Pé &6
o - n i n t E’ % JFT 'g
i °§ ui ui as 5 - - - - LT Lﬂ'
. . 1+ Qa0 4 30 O 30 420 & Tm I
oy e e e e } Ll hd D el T
g T i i 5 & & Lo L S+ L SN+ [+ N + FI L ¢ S+

Figure C-4. Layer 4 - Signal Layer 4

CoreMP7 Development Kit User’s Guide 147

Figure C-5. Layer 5 - Power Plane (Blank)

148 CoreMP7 Development Kit User’s Guide

* o

PESE1#
e

T
Z G SJFF:EQU 10]34

s

O

i
i

:

[
B0 oo i
Hoaas 2
F T el 0 &
ma a3
e *’1?
FP3 _NAG
E3
o)
B
T4 w2

Ol

[o e Re)

se2v ol [0

[+]
5 o
&
o o1 %
& o7
¥ o— G
oo [
[+ Xy
o E
.
!
L]
:_\mﬁ
[
E] o
LR e)
P oo
o0 LF: Apo G O
o0 . [> \{'Ea'ﬂ'ﬂ
ﬁhﬁ e [HEE
o o oo
ololNE C o0 0
o 33 R A R AT
oy O o T S oo
a/ . = e ol rzoa
o = vz oo waa
o0 ol el TR E]
oo ! Sy : ¥ T2 IE[A
crd Y-l B et & a0 |
o0 r e A !'I'.%E Lo~
00 G AL & K ¥
o0)
oo [eell s el A Rk = & g o
oo * -:1 o Ty o 121G G H
a0 H * &e W G I Mcm HE
e B 2 gl : 5 My . ¥ Ei ™ il 2
&bl S PN T} ey wslC O o
4 oo USE_SUSPhD 1y
T || A EIE ek B i H Bl R e e Tle
E! slo|| ol slold| ok o JE gg = la®
hed & IP-E' @@ o
. 49 gﬁ o KI
CDF | : d plg| X —_ ! O
-
-
LR [
= o 00\0\0\0 E % 1 AT P F7 ! —
g 00 z 1% e [B) 7 |
N . R
YEIfgeer EEEE :;3 e ! pa (£ K] -
™ - 1R u3 RE P5 —
o] o] 2P| 0| 20| 3P| o 2 &E s) l il =iy L
| | °b, | 5| 5| b, b sse e ¥
°]]]] FOTEERG 5 T Giﬁnmmdm-umm =
O 87 *HE cE0 cBR cHR cER o8P B apl] | me] | e | o] | B | o= O
B & & ® & & & ¢ |BRubE0nBESn B0 B0 B

Figure C-6. Layer 6 — Bottom Signal Layer

CoreMP7 Development Kit User’s Guide

149

D

Product Support

Actel backs its products with various support services including Customer Service, a Customer
Technical Support Center, a web site, an F'TP site, electronic mail, and worldwide sales offices. This
appendix contains information about contacting Actel and using these support services.

Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product
upgrades, update information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434

From Northwest U.S.A., call 650.318.4434

From Canada, call 650.318.4480

From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743

From the rest of the world, call 650.318.4743

Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center

Actel staffs its Customer Technical Support Center with highly skilled engineers who can help
answer your hardware, software, and design questions. The Customer Technical Support Center
spends a great deal of time creating application notes and answers to FAQs. So, before you contact
us, please visit our online resources. It is very likely we have already answered your questions.

Actel Technical Support

Visit the Actel Customer Support website (www.actel.com/custsup/search.html) for more
information and support. Many answers available on the searchable web resource include diagrams,
illustrations, and links to other resources on the Actel web site.

Website

You can browse a variety of technical and non-technical information on Actel’s home page, at
www.actel.com.

CoreMP7 Development Kit User’s Guide 151

‘ Product Support

Contacting the Customer Technical Support Center

Email

Phone

Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific
Time, Monday through Friday. Several ways of contacting the Center follow:

You can communicate your technical questions to our email address and receive answers back by
email, fax, or phone. Also, if you have design problems, you can email your design files to receive
assistance. We constantly monitor the email account throughout the day. When sending your
request to us, please be sure to include your full name, company name, and your contact information
for efficient processing of your request.

The technical support email address is tech@actel.com.

Our Technical Support Center answers all calls. The center retrieves information, such as your
name, company name, phone number and your question, and then issues a case number. The Center
then forwards the information to a queue where the first available application engineer receives the
data and returns your call. The phone hours are from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday
through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060
Customers needing assistance outside the US time zones can either contact technical support via

email (tech@actel.com) or contact a local sales office. Sales office listings can be found at
www.actel.com/contact/offices/index.html.

152

CoreMP7 Development Kit User’s Guide

Index

10/100 Ethernet 19

A
Actel
electronic mail 152
telephone 152
web-based technical support 151
website 151
assumptions 5

B
board

CAN 21

clocks 21

description 9

Ethernet 19

headers 22

jumpers 15

layers 22

LEDs 16

memory 22

PLLs 11

power supplies 12
block diagram 12

programming 14

RS-232 18

schematics 129

self test 25
programming 25

switches 17

test points 22

testing 25
programming 25

top-level view 10

usage 9

USB 20

C
CAN 21
clocks 21
CompanionCore 21
contacting Actel
customer service 151
electronic mail 152
telephone 152
web-based technical support 151
Core10/100 19
CoreMP7 evaluation board 9
CoreUART 18

customer service 151

D

design flow 27
design creation 29
implementation 30
microprocessor 31
programming 31
system creation 27
verification 29
development kit contents 7

E
Ethernet 19
example design 14

F
FPGA package connections 105

H

hardware 9
description 9
installation 25

headers 22

CoreMP7 Development Kit User’s Guide

153

‘ Index

J
jumpers 15

K

kit contents 7

L
LEDs 16

M
memory 22

P

PLLs 11

power supplies 12
block diagram 12

product support 151152
customer service 151
electronic mail 152
technical support 151
telephone 152
website 151

programming 14

R
RS-232 18

S
schematics 129
self test 25
programming 25
setup 25
software
installation 25
switches 17
system requirements 7

T

technical support 151

test points 22

testing 25
programming 25

U
USB 20

w
web-based technical support 151

154

CoreMP7 Development Kit User’s Guide

For more information about Actel’s products, visit our website at
http:llwww.actel.com

Actel Corporation 2061 Stierlin Court ® Mountain View, CA 94043 USA
Customer Service: 650.318.1010 Customer Applications Center: 800.262.1060

Actel Europe Ltd. Dunlop House, Riverside Way ® Camberley, Surrey GU15 3YL e United Kingdom
Phone +44 (0) 1276 401 450 ¢ Fax +44 (0) 1276 401 490

Actel Japan « EXOS Ebisu Bldg. 4F ¢ 1-24-14 Ebisu Shibuya-ku e Tokyo 150 ¢ Japan
Phone +81.03.3445.7671 o Fax +81.03.3445.7668 www.jp.actel.com

Actel Hong Kong e Suite 2114, Two Pacific Place ® 88 Queensway, Admiralty Hong Kong
Phone +852 2185 6460 Fax +852 2185 6488 » www.actel.com.cn

XXXXXXXX.X/7.06

VActel

| Frame Capturing and Sending in FPGA Zahno Silvan

Appendix 5: Datasheet CoreMP7

25.03.2008

VActel

CoreMP7

DirectCore

Product Summary

e Personal Audio (MP3, WMA, and AAC Players)
e Personal Digital Assistants

* Wireless Handset

e Pagers

¢ Digital Still Camera

¢ Inkjet/Bubble-Jet Printer

e Monitors

Key Features
e FPGA Optimized ARM7™ Family Processor
e Compatible with ARM7TDMI-S™
e 32/16-Bit RISC Architecture (ARMvA4T)
o 32-Bit ARM® Instruction Set
¢ 16-Bit Thumb® Instruction Set
e 32-Bit Unified Bus Interface
e 3-Stage Pipeline
e 32-Bit ALU
e 32-Bit Memory Addressing Range
e Static Operation
¢ EmbeddedICE-RT™ Real-Time Debug Unit
e JTAG Interface Unit

Benefits

e Fully Implemented in FPGA Fabric

e All Microprocessor I/Os Available to User

e Unified Bus Interface Simplifies SoC Design

* ARM and Thumb Instruction Sets Can Be Mixed

ARM Supported Families

e ProASIC®3 (M7A3P)
e ProASIC3E (M7A3PE)
e Fusion (M7AFS)

Synthesis and Simulation Support
e Directly Supported within the Actel
Integrated Design Environment (IDE)
o Synthesis: Synplify® and Design Compiler®
¢ Simulation: Vital-Compliant VHDL Simulators and
OVI-Compliant Verilog Simulators

Libero®

Verification and Compliance

e Compliant with ARMVAT ISA
e Compatible with ARM7TDMI-S

Core Version

e This Datasheet Defines the Functionality for
CoreMP7 v1.0.

Contents
INtroductioncooci e 1
Device Utilizationccccoeeeiviiciiniie e 2
General Descriptionccccvcveven v cnen e e, 3
Programmer’s Modelcccoceioiiiiiiiniiinene e 7
AHB Wrapper ... 12
CoreMP7 Variantscccccveviiciiiiien e eeeeee e 13
Delivery and Deploymentcccccvioreiiriiienecennnnnn. 14
Bus Functional Modecccccoeeviviieniieee e, 14
AC Parameterscooeei e 19
[7=] o] 0o 23
Ordering Informationccooooviiieiiniieeee e 28
List of Changesccuevioieciiie e 28
Datasheet Categoriesccccocvveeervevsieeccee e e e, 28

Introduction

The CoreMP7 soft IP core is an ARM7 family processor
optimized for use in Actel ARM-ready FPGAs and is
compatible with the ARM7TDMI-S. Users should refer to
the ARM7TDM-S Technical Reference Manual (DDI0234A-
7TMIS-R4.pdf), published by the ARM Corporation, for
detailed information on the ARM7. The ARM7 TRM is
available for download from the ARM website at
www.arm.com.

CoreMP7 is supplied with an Advanced Microcontroller Bus
Architecture (AMBA) Advanced High-Performance Bus
(AHB) compliant wrapper for inclusion in an AMBA-based
processor system such as the one generated by the Actel
CoreConsole IP Deployment Platform (IDP).

April 2006
© 2006 Actel Corporation

v2.4

| CoreMP?7

ARM7 Family Processor

CoreMP7 is a general purpose, 32-bit, ARM7 family
microprocessor that offers high performance and low
power consumption. The ARM architecture is based on
Reduced Instruction Set Computer (RISC) principles. The
simplicity of RISC results in a high instruction throughput
and fast real-time interrupt response from a small and
cost-effective processor core. Pipeline techniques are
employed so that all parts of the processing and memory
systems can operate continuously. Typically, while one
instruction is being executed, its successor is being
decoded, and a third instruction is being fetched from
memory. The CoreMP7 processor also implements the
Thumb instruction set, which makes it ideally suited to
high-volume applications with memory restrictions, or
applications where code density is an issue.

The 16-bit Thumb instruction set approaches twice the
density of standard ARM code while retaining most of
the ARM performance advantage over a traditional
16-bit processor using 16-bit registers. This is possible
because Thumb code operates on the same 32-bit
register set as ARM code. Thumb code is able to reduce

up to 65% of the code size compared to 32-bit ARM
instructions, and offers 160% of the performance of an
equivalent ARM processor connected to a 16-bit memory
system.

Device Utilization

The CoreMP7 has been implemented in M7 ProASIC3/E
and M7 Fusion devicesss A summary of the
implementation data is listed in Table 1.

CoreMP7S

This variant of the CoreMP7 is optimized for maximum
speed and minimum size and does not include debug.

CoreMP7Sd

This variant of the CoreMP7 is optimized for minimum
size and includes debug.

Table 1 o CoreMP7 Utilization and Performance
Device
Variant Performance (MHz2) Tiles RAM Block Utilization (%)
M7A3P1000
CoreMP75S 28.548 6,397 4 26.0
CoreMP75d 22.714 8,522 4 34.7
M7A3PE600
CoreMP7S 29.699 6,324 4 45.7
CoreMP75d 23.646 8,587 4 62.1
M7A3P250
CoreMP7S 23.904 6,104 4 99.3
M7AFS600
CoreMP75S 26.499 6,350 4 459
CoreMP75d 23.165 8,243 4 59.6

YActel

CoreMP?7

General Description

The CoreMP7 processor architecture, core, and functional diagrams are illustrated in the following figures:
e The CoreMP7 block diagram is shown in Figure 1.
e The CoreMP7 core is shown in Figure 2 on page 4.
e The CoreMP7 functional diagram is shown in Figure 3 on page 5.

DBGRNG(0)
DBGRNG(1) <¢—
DBGEXT(0) —»~ EmbeddedICE-RT

DBGEXT(1) —» Macrocell

ﬁ

Scanchain 2

LOCK
WRITE
SIZE[1:0]
PROTI[1:0]
TRANS[1:0]
ADDR[31:0]

A

CPU |<— Coprocessor
Interface Signals

A

WDATA[31:0] <—

| Databud

RDATA[31:0] —»

—I': Scanchain 1 [—

Y

EmbeddedICE-RT
TAP Controller

* A
DBGTCKEN

DBGTMS
DBGNTRST
DBGTDI
DBGTDO e

Figure 1 e CoreMP7 Top-Level Block Diagram

v2.4 3

| CoreMP?7

ALU Bus

ADDR[31:0]

K

T

Address Register

Incrementer Bus

Address
Incrementer

PC Bus

Register Bank

J

A

<

A Bus

Shifter

ALU

A
\/

<+ Multiplier |

—

Instruction
Decoder and
Control Logic

B Bus

-+— CLK

~— CLKEN

<«— CFGBIGEND
<+— nIRQ

-~— nfFIQ

~+— nRESET
~— ABORT
— LOCK

— WRITE

—» SIZE[1:0]
— PROT[1:0]
—» TRANS[1:0]
— DBG Outputs
-«+— DBG Input
— CP Control
~4— CP Handshake

Write Data Register

Instruction Pipeline
Read Data Register

Thumb Instruction Decoder

y

WDATA[31:0]

f

RDATA[31:0]

Figure 2

CoreMP7 CPU Block Diagram

v2.4

YActel

CoreMP?7

CLK
Clock { CLKEN

nlRQ
—_—
Interrupts { nFIQ_»

NRESET

Bus Control CFGBIGEND

DMORE

Arbitration
LOCK

DBGINSTRVALID
(DBGRQ
DBGBREAK
DBGACK
DBGNEXEC
DBGEXT[1]
Debug DBGEXT[O]
DBGEN
DBGRNG[1]
DBGRNGI0]
DBGCOMMRX
L DBGCOMMTX

DBGTCKEN

DBGTMS

DBGTDI Synchronized
DBGNTRST
DBGTDO
DBGNnTDOEN

Scan Debug
Access Port

ADDR[31:0]

WDATA[31:0]

RDATA[31:0]

Memory
ABORT Interface
-+

CoreARM7 WRITE

SIZE[1:0]
PROTI[1:0]

———
TRANSI[1:0]

CPnTRANS
CPnOPC

Memory
Management
Interface

—

CPnMREQ
CPSEQ
CPTBIT

Coprocessor
CPnl Interface
CPA

-

CPB
4

EmbeddedICE-RT

Figure 3 CoreMP7 Functional Diagram

The signals of the CoreMP7 are listed in Table 2.

Table 2 o Signal Descriptions

Name Type Description
ABORT Input Memory abort or bus error
CFGBIGEND Input Big/Little Endian configuration

CLK Input Clock

CLKEN Input Clock enable

CPA Input Coprocessor absent

CPB Input Coprocessor busy

DBGBREAK Input EICE breakpoint/watchband indicator
DBGEN Input Debug enable

DBGEXT[1:0] Input EICE external input O

Note: The CoreMP7 is available with either the native ARM7 bus interface or with an AHB wrapper. The use of the AHB wrapper changes
or transforms some of the signals in Table 2. This is discussed in detail later in this document.

v2.4

| CoreMP?7

Table 2 o Signal Descriptions (Continued)

Name Type Description

DBGNTRST Input Test reset

DBGRQ Input Debug request

DBGTCKEN Input Test clock enable

DBGTDI Input EICE data in

DBGTMS Input EICE mode select

nFlQ Input Interrupt request

nlRQ Input Fast interrupt request

NRESET Input Reset

RDATA[31:0] Input Read data bus

ADDR[31:0] Output Address bus

CPnl Output Coprocessor instruction (asserted low)

CPnMREQ Output Memory request (asserted low)

CPnOPC Output Opcode fetch (asserted low)

CPNnTRANS Output Memory translate (asserted low)

CPSEQ Output Sequential address

CPTBIT Output Processor in Thumb mode

DBGACK Output Debug acknowledge

DBGCOMMRX Output EICE communication channel receive

DBGCOMMTX Output EICE communication channel transmit

DBGNEXEC Output Executed (asserted low)

DBGNTDOEN Output TDO enable (asserted low)

DBGRNG[1:0] Output EICE rangeout

DBGTDO Output EICE data out

DBGINSTRVALID Output ETM Instruction valid indicator

DMORE Output Set when next data memory access is followed by a sequential data
memory access

LOCK Output Locked transaction operation

PROT[1:0] Output Indicates code, data, or privilege level

SIZE[1:0] Output Memory access width

TRANS Output Next transaction type (i, n, s)

WDATA[31:0] Output Write data bus

WRITE Output Indicates write access

Note: The CoreMP7 is available with either the native ARM7 bus interface or with an AHB wrapper. The use of the AHB wrapper changes
or transforms some of the signals in Table 2. This is discussed in detail later in this document.

v2.4

YActel

Programmer’s Model

This section summarizes the programmer’s model of the
CoreMP7. Supporting detail is available in the ARM
ARMZ7TDMI-S Technical Reference Manual (available for
download at www.arm.com) and the ARM Architecture

Reference Manual, which can be purchased at
WWwWw.amazon.com.
The CoreMP7 processor implements the ARMvAT

architecture and includes both the 32-bit ARM
instruction set and the 16-bit Thumb instruction set.

Processor Operating States

The CoreMP7 processor has two operating states:

ARM state: 32-bit, word-aligned ARM instructions are
executed in this state.

Thumb state: 16-bit, halfword-aligned Thumb instructions
are executed in this state.

In Thumb state, the Program Counter (PC) uses bit 1 to
select between alternate halfwords.

Note: Transition between ARM and Thumb states does
not affect the processor mode or the register contents.

Switching State

You can switch the operating state of the CoreMP7
between ARM state and Thumb state using the BX
instruction. This is described fully in the ARM
Architecture Reference Manual.

All exception handling is performed in ARM state. If an
exception occurs in Thumb state, the processor reverts to
ARM state. The transition back to Thumb state occurs
automatically on return.

Memory Formats

The CoreMP7 processor views memory as a linear
collection of bytes, numbered in ascending order from
zero:

Bytes 0 to 3 hold the first stored word.
Bytes 4 to 7 hold the second stored word.
Bytes 8 to 11 hold the third stored word.

Although both Little Endian and Big Endian memory
formats are supported, it is recommended that you use
Little Endian format.

Data Types

The CoreMP7 processor supports the following data
types:
e Word (32-bit)
Halfword (16-bit)

Byte (8-bit)

CoreMP?7

You must align these as follows:

Word quantities must be aligned to four-byte

boundaries.

¢ Halfword quantities must be aligned to two-byte
boundaries.

e Byte quantities can be placed on any byte
boundary.

Operating Modes

The CoreMP7 processor has seven operating modes:

User mode is the usual ARM program execution
state, and is used for executing most application
programs.

Fast interrupt (FIQ) mode supports a data transfer
or channel process.

Interrupt (IRQ) mode is used for general-purpose
interrupt handling.

Supervisor mode is a protected mode for the
operating system.

Abort mode is entered after a data or instruction
prefetch abort.

System mode is a privileged user mode for the
operating system.

Undefined mode is entered when an undefined
instruction is executed.

Modes other than User mode are collectively known as
privileged modes. Privileged modes are used to service
interrupts or exceptions, or to access protected resources.

Registers

The CoreMP7 processor has a total of 37 registers:

31 general-purpose 32-bit registers
6 status registers

These registers are not all accessible at the same time.
The processor state and operating mode determine
which registers are available to the programmer.

The ARM State Register Set

In ARM state, 16 general registers and one or two status
registers are accessible at any one time. In privileged
modes, mode-specific banked registers become available.
Figure 4 on page 8 shows which registers are available in
each mode.

The ARM state register set contains 16 directly accessible
registers, r0 to r15. An additional register, the Current
Program Status Register (CPSR), contains condition code
flags, and the current mode bits. Registers r0 to r13 are
general-purpose registers used to hold either data or
address values. Registers r14 and r15 have special
functions as the Link Register and Program Counter.

v2.4

| CoreMP?7

Link Register Program Counter
Register 14 is used as the subroutine Link Register Register 15 holds the Program Counter (PC).
(LR). In ARM state, bits [1:0] of r15 are zero. Bits [31:2]
Register 14 (r14) receives a copy of r15 when a Branch contain the PC.
with Link (BL) instruction is executed. In Thumb state, bit [0] is zero. Bits [31:1] contain the PC.
At all other times, you can treat r14 as a general- | privileged modes, another register, the Saved Program
purpose register. Status Register (SPSR), is accessible. This contains the

The corresponding banked registers—r14 svc, condition code flags, and the mode bits saved as a result
r14 irq, r14 fig, r14 abt, and r14 und—are similarly of the exception that caused entry to the current mode.
used to hold the return values of r15 when interrupts Figure 4 shows the ARM state registers.

and exceptions arise, or when BL instructions are

executed within interrupt or exception routines.

ARM State General Registers and Program Counter

System and User FIQ Supervisor Abort IRQ Undefined
r0 r0 ro ro r0 ro
r ri ri ri r1 r1
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3
r4 r4 r4 r4 r4 r4
r5 r5 r5 r5 r5 r5
ré ré ré ré ré ré
r7 r7 r7 r7 r7 r7
r8 r8 fiq r8 r8 r8 r8
r9 r9 fiq r9 r9 r9 r9
r10 r10 fiq r10 r10 r10 r10
r11 r11 fig ri1 ri1 ri1 ri1
ri2 r12 fiq r2 ri2 ri2 ri2
ri3 r13 fiq r13 svc r13 abt r13 irq r13 und
r4 r14 fiq r14 svc r14 abt r14 irq r14 und
r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC)

ARM State Program Status Registers

CPSR CPSR CPSR CPSR CPSR CPSR
SPSR fiq SPSR svc SPSR abt SPSR irq SPSR und

B = banked register

Figure 4 CoreMP7 Register Organization in the ARM State

YActel

The Thumb State Register Set
The Thumb state register set is a subset of the ARM state set. The programmer has direct access to the following:
Eight general registers, r0-r7

The PC

A Stack Pointer (SP)
A Link Register (LR)

The CPSR

CoreMP?7

There are banked SPs, LRs, and SPSRs for each privileged mode. The Thumb state register set is shown in Figure 5.

Thumb State General Registers and Program Counter

System and User FIQ Supervisor Abort IRQ Undefined
ro ro ro r0 ro r0
ri ri r1 ri ri ri
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3
r4 r4 r4 r4 r4 r4
r5 r5 r5 r5 r5 r5
ré ré re ré re ré
r7 r7 r7 r7 r7 r7
SP SP fiq SP svc SP abt SP irq SP und
LR LR fig LR svc LR abt LR irqg LR und
PC PC PC PC PC PC
Thumb State Program Status Registers
CPSR CPSR CPSR CPSR CPSR CPSR
SPSR fiq SPSR svc SPSR abt SPSR irq SPSR und

B = banked register

Figure 5 e

CoreMP7 Thumb State Registers

v2.4

| CoreMP?7

The Relationship Between ARM State and Thumb State Registers
The Thumb state registers relate to the ARM state registers in the following way:

e Thumb state r0-r7 and ARM state rO-r7 are identical.

e Thumb state CPSR and SPSR, and ARM state CPSR and SPSR are identical.

e Thumb state SP maps onto ARM state r13.

* Thumb state LR maps onto ARM state r14.

¢ The Thumb state PC maps onto the ARM state PC (r15).
These relationships are shown in Figure 6.

Thumb State ARM State
r0 > r0
r1 > r1
r2 > r2
r3 > r3
rd > rd
r5 > r5
ré > ré
r7 > r7

r8

r9
r10
r11
r12

Stack Pointer (PC)
Link Register (LR)
Program Counter (PC)

Stack Pointer (r13)
Link Register (r14)
Program Counter (r15)

YVYY

Current Program Status Register _ | Current Program Status Register
(CPSR) o (CPSR)

Saved Program Status Register _ | Saved Program Status Register
(SPSR) o (SPSR)

Figure 6 Mapping of Thumb State Registers to ARM State Registers

Note: Registers r0-r7 are known as the low registers. Registers r8-r15 are known as the high registers.

10 v2.4

The Program Status Registers

YActel

CoreMP?7

The CoreMP7 core contains a CPSR and five SPSRs for exception handlers to use. The program status registers the

following:
¢ Hold the condition code flags
e Control the enabling and disabling of interrupts
e Set the processor operating mode

The arrangement of bits is shown in Figure 7.

Condition
Code Flags Reserved Control Bits
| I | I I I I |
31 30 29 28 27 26 25 24 23 8 7 6 5 4 3 2 1 0
InJzfefvle]eef=f<l/ /-]]F]T[mams]m2]mi]uol
Overflow Mode Bits
Carry or Borrow or Extend ————— State Bit
Zero L FIQ Disable
Negative or Less Than IRQ Disable

Figure 7 Program Status Register Format

The Condition Code Flags

The N, Z, C, and V bits are the condition code flags. You can set these bits by arithmetic and logical operations. The
flags can also be set by MSR and LDM instructions. The CoreMP7 processor tests these flags to determine whether to

execute an instruction.

All instructions can be executed conditionally in ARM state. In Thumb state, only the Branch instruction can be
executed conditionally. For more information about conditional execution, see the ARM Architecture Reference

Manual.

v2.4

1

| CoreMP?7

AHB Wrapper

The AHB wrapper interfaces between the CoreMP7 native ARM7 interface and the AHB bus. The module translates
access from the core to AHB accesses when the core is the current master. The external interface signals from the
wrapper are described in Table 3.

Table 3 o AHB Wrapper External Interface

Signal

External Master I/F Direction Description

HCLK Input Bus clock. This clock times all bus transfers. All signal timings are related to the rising
edge of HCLK.

HRESETN Input Reset. The bus reset signal is active LOW and is used to reset the system and the bus.
This is the only active LOW AHB signal.

HREADY Input Transfer done. When HIGH the HREADY signal indicates that a transfer has finished on
the bus. This signal can be driven LOW to extend a transfer.

HRESP[1:0] Input Transfer response. Indicates an OKAY, ERROR, RETRY, or SPLIT response.

HGRANT Input Bus grant. Indicates that the CoreMP7 is currently the highest priority master.
Ownership of the address/control signals changes at the end of a transfer when
HREADY is HIGH, so a master gains access to the bus when both HREADY and
HGRANT are HIGH.

HADDR([31:0] Output This is the 32-bit system address bus.

HTRANS[1:0] Output Transfer type. Indicates the type of the current transfer.

HWRITE Output Transfer direction. When HIGH this signal indicates a write transfer and when LOW a
read transfer.

HSIZE[2:0] Output Transfer size. Indicates the size of the transfer, which can be byte (8-bit), halfword (16-
bit), or word (32-bit).

HBURST[2:0] Output Burst type. Indicates if the transfer forms part of a burst. The CoreMP7 performs
incrementing bursts of type INCR.

HPROT[3:0] Output Protection control. These signals indicate if the transfer is an opcode fetch or data
access, and if the transfer is a Supervisor mode access or User mode access.

HWDATA[31:0] Output 32-bit data from the MASTER.

HRDATA[31:0] Input 32-bit data written back to the MASTER.

12 v2.4

YActel

CoreMP7 Variants

CoreMP?7

There are two implementations of CoreMP7 for all M7 devices except for the M7A3P250 which only supports the
CoreMP7S variant. The utilization and performance of the variants are shown in Table 1 on page 2.

Debug Interface

A

Debug JTAG
Signals

(Debug)

TAP

Controller

A

Bus Control e

Coprocessor
ARM7 CPU < > Signals

Signals
Address <7
Data < >

Figure 8 ARM7 TDMI-S Core

CoreMP7Sd

The CoreMP7Sd is configured with all features of the
ARM7TDMI-S. The variant incorporates the full debug
functionality of the ARM7TDMI-S and is fully compliant
with RealView RVDS, RVDK, and other ARM software
debug tools.

CoreMP7S

The CoreMP7S is optimized for maximum speed and
minimum area, and has the same features as CoreMP75d
except that it does not include the ICE-RT debug block,
the TAP controller, or the coprocessor interface and is
Little Endian only, to reduce the size of the core. This
means that the standard debug tools cannot be used
with this variant of CoreMP7.

No Debug

This is the most obvious characteristic of the CoreMP7S
variant. To reduce area, the Debug EmbeddedICE-RT
macrocell, the EmbeddedICE-RT TAP controller, and the
scan logic have been optimized out. This means that
standard software debug tools cannot be used when
these variants of the CoreMP7 are instantiated. Users of
these variants can use the comparable variant that
includes debug for development, and when the
application has been fully tested and debugged, one of

these variants can be instantiated to reduce area in the
final shipping product.

No Coprocessor Interface

The coprocessor interface is a rarely used feature in
ARM7 family microprocessors and has been removed
from the CoreMP7S variant to minimize area.

Little Endian Only

Most microprocessor-based systems use Little Endian
byte ordering. The option of selecting Big Endian has
been removed from the CoreMP7S variant to minimize
area.

On-Chip RAM Consumed by Register Block

To minimize the area, the CoreMP7 variants map the
processor register block into on-chip RAM. RAM blocks
used to implement CoreMP7 registers are no longer
available for use in user designs.

v2.4 13

| CoreMP?7

Delivery and Deployment

The CoreMP7 is delivered as a series of files from the
Actel CoreConsole IP Deployment Platform (IDP)
development tool, and these files are directly imported
into the Design and Simulation folders for use in the
Actel Libero IDE FPGA tool suite. The CoreMP7 files
consist of the BFM files and test wrapper, AHB wrapper,
and the A7S secured CDB file, which is instantiated on
the user device at programming.

Bus Functional Model

During the development of an FPGA-based SoC, a
number of stages of testing may be undertaken. This can
involve some, or all, of the following approaches:

e Hardware simulation, using Verilog or VHDL

e Software simulation, using a host-based
instruction set simulator (ISS) of the SoC's
processor

e Hardware and software co-verification, using a
fully functional model of the processor in Verilog,
VHDL, or SWIFT form, or using a tool such as
Seamless

Due to the rapid prototyping capability of FPGAs,
however, integration of hardware and software often
occurs earlier in the SoC development cycle for FPGA
targets than it would for ASIC targets. Therefore,
hardware and software co-verification, which can be
very slow, is not a critical issue except in the most
complex FPGA-based SoCs.

The planned availability of ARM-based SoC solutions to
Actel FPGA customers necessitates that Actel provide
support for the test approaches described above. In
particular, there should be an emphasis on providing
solutions for hardware simulation and for software
simulation.

A software simulation solution is already available to
customers as part of the proposed ARM package. This
package contains the RealView Instruction Set Simulator,
which provides ARM7 instruction accurate simulation, as
well as powerful features, such as integration with the
RealView debugger.

Support for hardware simulation is also proposed. The
CoreConsole SoC configuration utility provides a means
for the developer to stitch together IP blocks using a bus
fabric of choice. It generates a system testbench,
controlled by a script-driven, bus functional model (BFM)
of the ARM7 processor. The ARM7 BFM allows the
developer to model low-level bus transactions, which
allow verification of connectivity of the various IP blocks
and the system memory map presented to the ARM7 by
the rest of the hardware.

This document specifies the following aspects of the
ARM7 BFM:

e Functionality

e BFM usage flow

* BFM script language

e Platforms

e Supported simulation tools

e Example BFM use case

BFM Usage Flow

As the BFM is part of an overall system test strategy, it is
helpful to look at the context in which it is used. Figure 9
on page 15 shows the various components within an
example system-level testbench that can be generated by
CoreConsole.

In Figure 9 on page 15, it is assumed that the developer
specifies an SoC subsystem by selecting the processor, bus
fabric, IP blocks, and memory subsystem in CoreConsole.
In this example, the user selects the following:

e ARMY7 processor,

e AMBA AHB bus fabric

e MAC 10/100 IP core

e CoreUART IP core

e External SSRAM and Flash memory

The user also specifies the memory map of the system.
Based on this information, CoreConsole generates the
following outputs, amongst others:

e Verilog/VHDL model of SoC subsystem
e Verilog/VHDL models of IP cores

¢ Verilog/VHDL model of ARM7 BFM

e BFM test script

e System-level skeleton testbench

The BFM acts as a pin-for-pin replacement of the
ARM7TDMI-S in the SoC subsystem. It initiates bus
transactions on the native ARM7 bus, which are cycle-
accurate with real bus cycles that the ARM7TDMI-S
would produce. It has no knowledge, however, of real
ARM?7 instructions.

At this point, the BFM may be used to run a basic test of
the SoC subsystem using the skeleton system testbench.
The BFM is fully integrated into the CoreConsole user
flow. In particular, if the user has an AHB-based CoreMP7
subsystem, CoreConsole automatically derives the
memory map of the user's subsystem. CoreConsole uses
this information to generate an overall BFM test script,
which includes customized "scriptlets" for each resource
attached to the AHB or APB buses.

The developer may edit the SoC Verilog/VHDL to add
new design blocks, such as the VideoCodec in the above
diagram. The system-level testbench may also be filled
out by the developer to include tasks that test any newly

14 v2.4

YActel

CoreMP?7

BFM Test
Script

BFM Log
File

SoC System
Testbench 50C Wrapper
SoC Subsystem
Memory ARM7-AHB ARM7 |4
| Controller Bridge BFM \
SSRAM [|
MAC 10/100 CoreUART
Flash |
Video Codec
PR ——
i
pouser | Video Test Stub
! Defined
ETasks and
i Function MAC Test Stub
1
o a

Figure 9 SoC System-Level Testbench Example

added functionality or additional stubs that allow more
complex system testing involving the IP cores. The BFM
input scripts may also be manually enhanced to allow the

user to test access to register locations in newly added

logic. In this way, the user can provide stimuli to

the

system from the inside (via the ARM7 BFM), as well as
from the outside (via testbench tasks).

Figure 10 shows the design flow into which the BFM fits.

Actel IP Core
Attributes (SPIRIT)

AN

User Input

Y

Memory Map Definition
IP Cores Selection
Bus Fabric Selection

/

Core Console

\

BFM Test Script p| SoC System Testbench

\

BFM Log File

Figure 10 ¢ BFM Flow Diagram

v2.4

15

| CoreMP?7

Functionality

This section describes the specific functionality of the
ARM7 BFM. The BFM models the ARM7 native bus.
Specifically, this models the following bus signals:

e ADDR, // address bus

o \WDATA, // write data bus

o RDATA, // read data bus

e TRANS, /I next transaction type (i, n, or s)
e WRITE, // indicates write access

e CLKEN, /l clock enable

The BFM also models the following control signals:
e CFGBIGEND, // big/little endian configuration
o CLK, // clock

* nFlQ, /l interrupt request
¢ nlRQ, /I fast interrupt request
e SIZE, /I memory access width

CoreConsole v1.1

ARM7 Pin Compatibility

The BFM model is pin-for-pin compatible with the
ARM7TDMI-S. This allows the model to be dropped into
the space that would be occupied by the ARM in the
Verilog/VHDL system testbench.

ARM7 Bus Cycle Accuracy

The bus cycle timings for the ARM7 native bus signals are
specified in the ARM7TDMI Technical Reference Manual.
The BFM models these bus cycles exactly.

Scripting

In order to provide a simple and extensible mechanism
for providing stimuli to the BFM, a BFM scripting
language is defined (see the "BFM Script Language"
section). The scripting language can initiate writes to
system resources, reads from system resources (with or
without checking of expected data), and to wait for
events.

Self-Checking

The BFM gives a pass/fail indication at the end of a test
run. This is based on whether any of the expected data
read checks failed or not.

Endianess

The BFM supports both big and little-endian memory
configurations. For byte and halfword transfers, it reads
and writes data from/to the appropriate data lanes.

Interrupt Support

The BFM has the ability to wait for either of the two
ARM?7 interrupt lines to be triggered, before proceeding
with the remainder of the test script.

Log File Generation
The BFM generates output messages to the console of

the simulation tool and also generates a plain text log
file.

BFM Script Language

The following script commands are defined for use by
the BFM:

memmap

This command is used to associate a label, representing a
system resource, with a memory map location. The other
BFM script commands may perform accesses to locations
within this resource by referencing this label and a
register offset relative to this base address.

Syntax
memmap resource name base address;

resource name
This is a string containing the user-friendly instance
name of the resource being accessed. For BFM scripts
generated automatically by CoreConsole, this name
corresponds to the instance name of the associated core
in the generated subsystem Verilog or VHDL.

base address
This is the base address of the resource, in hexadecimal.

write

This command causes the BFM to perform a write to a
specified offset, within the memory map range of a
specified system resource.

Syntax

write width resource name byte offset data;

width
This takes on the enumerated values of W, H, or B, for
word, halfword, or byte.
resource name
This is a string containing the user-friendly instance
name of the resource being accessed, as defined by the
user in the memory map (when input to CoreConsole).
byte offset
This is the offset from the base of the resource, in bytes.
It is specified as a hexadecimal value.
data
This is the data to be written. It is specified as a
hexadecimal value.
Example
write W videoCodec 20 11223344;

16 v2.4

YActel

read

This command causes the BFM to perform a read of a
specified offset, within the memory map range of a
specified system resource.

Syntax
read width resource name byte offset;

width
This takes on the enumerated values of W, H, or B, for
word, halfword, or byte.

resource hame
This is a string containing the user-friendly instance
name of the resource being accessed, as defined by the
user in the memory map (when input to CoreConsole).

byte offset
This is the offset from the base of the resource, in bytes.
It is specified as a hexadecimal value.

Example
read W videoCodec 20;

readcheck

This command causes the BFM to perform a read of a
specified offset, within the memory map range of a
specified system resource, and to compare the read value
with the expected value provided.

Syntax
readcheck width resource name byte offset data;

width
This takes on the enumerated values of W, H, or B, for
word, halfword, or byte.

resource name
This is a string containing the user-friendly instance
name of the resource being accessed, as defined by the
user in the memory map (when input to CoreConsole).

byte offset

This is the offset from the base of the resource, in bytes.
It is specified as a hexadecimal value.

data

This is the expected read data. It is specified as a
hexadecimal value.

Example
readcheck W videoCodec 20 11223344;

poll

This command continuously reads a specified location
until a requested value is obtained. This command allows
one or more bits of the read data to be masked out. This
allows, for example, poll waiting for a ready bit to be set,
while ignoring the values of the other bits in the location
being read.

CoreMP7
Syntax
poll width resource name byte offset data bitmask;
width

This takes on the enumerated values of W, H, or B, for
word, halfword, or byte.
resource name

This is a string containing the user-friendly instance
name of the resource being accessed.

byte offset
This is the offset from the base of the resource, in bytes.
It is specified as a hexadecimal value.

bitmask
The bitmask is ANDed with the read data and the result
is then compared to the bitmask itself. If equal, then all
the bits of interest are at their required value and the
poll command is complete. If not equal, then the polling
continues.

wait

This command causes the BFM script to stall for a
specified number of clock periods.

Syntax

wait num clock ticks;

num clock ticks
This is the number of CoreMP7 clock periods, during
which the BFM stalls (doesn't initiate any bus
transactions).

waitfiq

This command causes the BFM to wait until an interrupt
event (high to low transition) is seen on the nFIQ pin
before proceeding with the execution of the remainder
of the script.

Syntax

waitfig;

waitirq

This command causes the BFM to wait until an interrupt
event (high to low transition) is seen on the nIRQ pin
before proceeding with the execution of the remainder
of the script.

Syntax

waitirqg;

Supported Simulation Tools

BFM is delivered to the user as both a Verilog and VHDL
model.

v2.4

17

| CoreMP?7

Timing Shell

The BFM incorporates a timing shell, which performs
setup/hold checks on inputs and delays outputs by the
appropriate amount from the rising clock edge.

Example BFM Use Case

This provides an example use case of the ARM7 BFM. The
example SoC used in this section is the same as that
shown in Figure 9 on page 15. In this system, the
developer requires two Actel IP cores: the MAC 10/100
and the CoreUART.

SPIRIT Attributes

CoreConsole has access to a database of Actel IP cores
and a list of attributes for each core. These attributes are
organized according to the SPIRIT specification, in XML.
For example, in the case of the CoreUART, the attributes
would indicate that there are three registers, as in
Table 4.

Table 4 o CoreUART Attributes

Offset Register Read/Write Width
0 Uart Status Register R Byte
1 Uart Tx data w Byte
2 Uart Rx data R Byte

Based on these attributes, CoreConsole can determine
that when generating the BFM script, there are three
locations corresponding to the UART that can be
accessed. In this case, none of the registers are RW, so
there will not be any self-checking that can be
performed for the UART. Nevertheless, the bus
transactions do take place and the cycles may be viewed
in a waveform of the simulator.

Memory Map

The designer must feed in the memory map of the SoC to
CoreConsole. During this stage, the absolute address
ranges of the various system resources in the ARM7
memory map are fed in. Also, user-friendly instance
names of these resources are fed in.

For example, the user could feed the memory map
information into CoreConsole that is given in Table 5.

Based on the information in Table 5, CoreConsole
generates the SoC subsystem corresponding to the Actel
IP cores present. It also generates a BFM script, which
accesses all the registers in the Actel IP cores.

Table 5 o Memory Map Information

Resource Actel IP Core Address Range
ssram N 0-3fffff
flash N 400000-7fffff
uart Y c00000-c0000b
mac Y d00000-d00040
videocodec N e00000-e000ff

Processor Choice

In this example, the user selects an ARM7 as the
processor of choice in CoreConsole. The BFM in this
specification only relates to ARM7.

Bus Fabric Selection

The user may select one of a number of bus fabrics in
CoreConsole. For example, the user could select AMBA
AHB-Lite. However, this selection is irrelevant for the
ARM7 BFM, as it is concerned only with generating
native ARM7 bus based transactions.

Automatic BFM Scriptlet

At this point, having run CoreConsole to completion, a
BFM scriptlet is available. This would look something like
the following:

read B uart 0;
write B uart 4 bb;
read B uart 8;
write B mac 30 11;

readcheck B mac 11;

Run BFM

The developer can run the BFM with the automatic script
or edit the script to put in bus transactions to/from any
new logic that has been added to the SoC. For example,
transactions to/from the registers in the new VideoCodec
block could be added.

The skeleton system-level testbench, generated by
CoreConsole, could also be modified, to add some
external resources (e.g., models of SSRAM and Flash) and
some high-level tasks.

Upon running the system simulation, messages appear in
the console window of the simulation tool.

18 v2.4

AC Parameters

This section gives the AC timing parameters of the CoreMP7 processor.

Timing Diagrams

YActel

CoreMP?7

Timing diagrams are shown in Figure 11, Figure 12 on page 20, Figure 13 on page 20, Figure 14 on page 21, and

Figure 15 on page 21.

Data Access Timing

CLK | | | | |

TRANS[1:0] X TRANS X X
B E——
Tovtrans > | | <<
tohtrans
ADDR[31:0] X Addr X X
B ———
tovaddr > | |-
tohaddr
WRITE
SIZE[1:0] X Ctrl XX
PROTI[1:0] ‘ | | |<
tovctI tohctl

WDATA[31:0]

(write data) X X X X:
> > | |-
tovwc ata tohwd ata

M\ [N\
cltkeN —() D
tisclke-n> T
> | |-
tihclken
M\ [N\
ABORT —{ [} {1
tisabo-rt> T
> | |-
tihabort
RDATA[31:0]
(read data) N Datp
t.
isrdata | |<
tihrdata

Figure 11 o Data Access Timing

v2.4

19

| CoreMP?7

Coprocessor Timing
The Coprocessor timing is included for completeness although it is expected that the Coprocessor interface is omitted
in most deployments of the CoreMP7.

CLK | | | |

CPA
CPB
>
tiscpstart
— <
tihcpstar’c

CPnl X X

tovcpni tohcpni
CPSEQ
> — -
tovcpcil tohcpcil
CPnOPC
CPnTRANS X X
CPTBIT < > —| |-
tovcpcil tohcpcil

Figure 12 o Coprocessor Timing

Exception Timing

cak L1 L

nFIQ
nIRQ
- D
tisexc
- -+
tihexc
NRESET
> -
isexc
- -
tihexc
CFGBIGEND [g
- -
tiscfg - -
tihcfg

Figure 13 o Exception Timing

20 v2.4

YActel

CoreMP?7

Debug Timing
DBGRQ
t. > —H
isdbgctl” -
tihdbgctl
DBGBREAK
t > -
isdbgctl ' _p -
tihdbgctl
DBGEXT[1:0]
> ~+
tisdbgctl > -
t:
DBGACK ihdbgctl
DBGCOMMTX X X
DBGCOMMRX — -
t > -+
ovdbgstart tohdbgstart
DBGRNG[1:0] X X
- - > -
1:ovdbgs'cart tOhdbgstart

Figure 14 o Debug Timing

Scan Timing

DBGTCKEN
—> -
tsIcken
— -
tIhocken
DBGTMS
DBGTDI
— tS|Ci| -4
— -
Yhocil
DBGTDO X X
= [toyidol <+ - t<_
ohido

Figure 15 ¢ Scan Timing

v2.4

21

| CoreMP?7

AC Timing Parameter Definitions

AC Timing Parameters shows target AC parameters. All figures are expressed as percentages of the CLK period at
maximum operating frequency.

Note: Where 0% is shown, this indicates the hold time to clock edge plus the maximum clock skew for internal clock
buffering.

Table 6 o AC Timing Parameters

Symbol Parameter Min Max
teve CLK cycle time 100% -
YSCLKEN CLKEN input setup to rising CLK 60% -
YHCLKEN CLKEN input hold from rising CLK - 0%
tiSABORT ABORT input setup to rising CLK 40% -
YHABORT ABORT input hold from rising CLK - 0%
tiSRDATA RDATA input setup to rising CLK 10% -
tisRsT nRESET input setup to rising CLK 90% -
YSTRST DBGNTRST input setup to rising CLK 25%

YHRDATA RDATA input hold from rising CLK - 0%
tocpPTRIT Rising CLK to CPTBIT valid - 90%
tobsG Rising CLK to DBGnEXEC, DBGINSTRVALID valid - 40%
toLomo Rising CLK to DMORE, LOCK valid - 90%
toVADDR Rising CLK to ADDR valid - 90%
tOHADDR ADDR hold time from rising CLK >0% -
toveTL Rising CLK to control valid - 90%
toHCTL Control hold time from rising CLK >0% -
tOVTRANS Rising CLK to transaction type valid - 50%
tOHTRANS Transaction type hold time from rising CLK >0% -
toVWDATA Rising CLK to WDATA valid - 40%
tOHWDATA WDATA hold time from rising CLK >0% -
YiscpsTAT CPA, CPB input setup to rising CLK 20% -
YHCPSTAT CPA, CPB input hold from rising CLK - 0%
tovepeTL Rising CLK to coprocessor control valid - 80%
toHCPCTL Coprocessor control hold time from rising CLK >0% -
tovernl Rising CLK to coprocessor CPnl valid - 40%
toHCPNI Coprocessor CPnl hold time from rising CLK >0% -
tisExC nFIQ, nIRQ, input setup to rising CLK 10% -
YHEXC nFIQ, nIRQ, nRESET hold from rising CLK - 0%
tscrG CFGBIGEND setup to rising CLK 10% -
YHCcFG CFGBIGEND hold from rising CLK - 0%
tiSDRGCTL DBGBREAK, DBGEXT, DBGRQ input setup to rising CLK 10% -
tiSDBRGSTAT Debug status inputs setup to rising CLK 10% -

22 v2.4

YActel

CoreMP7
Table 6 AC Timing Parameters (Continued)
Symbol Parameter Min Max
{HDBGSTAT Debug status inputs hold from rising CLK - 0%
toVDBGCTL Rising CLK to debug control valid - 40%
toHDBCTL Debug control hold time from rising CLK >0% -
YSTCLKEN DBGTCKEN input setup to rising CLK 60%’ -
YHTCKEN DBGTCKEN input hold from rising CLK - 0%
tisTeTL DBGTDI, DBGTMS input setup to rising CLK 35% -
YHTCTL DBGTDI, DBGTMS input hold from rising CLK - 0%
tovTpo Rising CLK to DBGTDO valid - 20%
toHTDO DBGTDO hold time from rising CLK >0% -
tOVDBGSTAT Rising CLK to debug status valid 40% -
tOHDBGSTAT Debug status hold time >0% -

Debug

The ARM Debug Architecture uses a protocol converter
box to allow the debugger to talk via a Joint Test Action
Group (JTAG) port directly to the core. In effect, the scan
chains in the core that are required for test are re-used
for debugging.

The architecture uses the scan chains to insert
instructions directly in to the ARM core. The instructions
are executed on the core and, depending on the type of
instruction that has been inserted, the core or the system
state can be examined, saved, or changed. The
architecture has the ability to execute instructions at a
slow debug speed or to execute instructions at system
speed (for example, if access to an external memory was
required).

The fact that the debugger is actually using the JTAG
scan chains to access the core is of no importance to the
user, as the front end debugger remains exactly the
same. The user could still use the debugger with a
monitor program running on the target system or with
an instruction set simulator that runs on the debugger
host. In each case the debugging environment is the
same.

The advantages of using the JTAG port are:

e Hardware access required by a system for test is re-
used for debug.

e Core state and system state can be examined via
the JTAG port.

¢ The target system does not have to be running in
order to start debug.

A monitor program for example requires that some
target resources are running in order for the monitor
program to run.

e Traditional
available.

* On-chip resources can be supplemented.

e For example, the ARM Debug Architecture uses an
on-chip macro-cell to enhance the debugging
facilities available.

e A separate UART to communicate with the
monitor program is not required.

breakpoints and watchpoints are

The debugging of the target system requires the

following:

® A PC host computer running Windows to run the
debugger software

e An EmbeddedICE Protocol Converter, a separate
box which converts the serial interface to signals
compatible with the JTAG interface and a target
system with a JTAG interface and an ARM Debug
Architecture compliant core.

v2.4 23

| CoreMP?7

Once the system is connected, the debugger can start
communicating with the target system via the RVI-ME
(which is an EmbeddedICE Interface Converter).

The debug extensions consist of several scan chains
around the processor core, and some additional signals
that are used to control the behavior of the core for
debug purposes. The most significant of these additional
signals are as follows:

BREAKPT: This core signal enables external hardware to
halt processor execution for debug purposes. When
HIGH during an instruction fetch, the instruction is
tagged as breakpointed, and the core stops if this
instruction reaches execute.

DBGRQ: This core signal is a level-sensitive input that
causes the CPU core to enter debug state when the
current instruction has completed.

DBGACK: This core signal is an output from the CPU
core that goes HIGH when the core is in debug state so
that external devices can determine the current state of
the core.

RealView ICE uses these, and other signals, through the
debug interface of the processor core, for example by
writing to the control register of the EmbeddedICE logic.
For more details, refer to the debug interface section of
the ARM datasheet or technical reference manual for
your core.

JTAG Debug Interface

The RVI-ME ICE run control unit is supplied with a short
ribbon cable. These both terminate in a 20-way 2.54 mm
pitch IDC connector. You can use the cable to mate with
a keyed box header on the target. The pinout is shown in
Figure 16.

VTref
nTRST
TDI

TMS
TCK
RTCK
TDO
nSRST
DBGRQ
DBGACK

Vsupply
GND
GND
GND
GND
GND
GND
GND
GND
GND

Figure 16 o JTAG Interface Pinout

24 v2.4

YActel

CoreMP?7
The signals on the JTAG interface are shown in Table 7.
Table 7 o JTAG Signals
Signal 1’0 Description
DBGACK - This pin is connected in the RealView ICE run control unit, but is not supported in the current

release of the software. It is reserved for compatibility with other equipment to be used as a debug
acknowledge signal from the target system. It is recommended that this signal is pulled LOW on
the target.

DBGRQ - This pin is connected in the RealView ICE run control unit, but is not supported in the current
release of the software. It is reserved for compatibility with other equipment to be used as a debug
request signal to the target system. This signal is tied LOW. When applicable, RealView ICE uses the
core's scanchain 2 to put the core in debug state. It is recommended that this signal is pulled LOW
on the target.

GND - Ground

nSRST Input/ Open collector output from RealView ICE to the target system reset. This is also an input to
Output RealView ICE so that a reset initiated on the target can be reported to the debugger. This pin must
be pulled HIGH on the target to avoid unintentional resets when there is no connection.

nTRST Output Open collector output from RealView ICE to the Reset signal on the target JTAG port. This pin must
be pulled HIGH on the target to avoid unintentional resets when there is no connection.

RTCK Input Return Test Clock signal from the target JTAG port to RealView ICE. Some targets must synchronize
the JTAG inputs to internal clocks. To assist in meeting this requirement, you can use a returned,
and retimed, TCK to dynamically control the TCK rate. RealView ICE provides Adaptive Clock
Timing that waits for TCK changes to be echoed correctly before making further changes. Targets
that do not have to process TCK can simply ground this pin.

TCK Output Test Clock signal from RealView ICE to the target JTAG port. It is recommended that this pin is
pulled LOW on the target.

TDI Output Test Data In signal from RealView ICE to the target JTAG port. It is recommended that this pin is
pulled HIGH on the target.

TDO Input Test Data Out from the target JTAG port to RealView ICE. It is recommended that this pin is pulled
HIGH on the target.

™S Output Test Mode signal from RealView ICE to the target JTAG port. This pin must be pulled HIGH on the
target so that the effect of any spurious TCKs when there is no connection is benign.

Vsupply Input This pin is not connected in the RealView ICE run control unit. It is reserved for compatibility with
other equipment to be used as a power feed from the target system.

VTref Input This is the target reference voltage. It indicates that the target has power, and it must be at least
0.628 V. VTref is normally fed from Vdd on the target hardware and might have a series resistor
(though this is not recommended). There is a 10 k pull-down resistor on VTref in RealView ICE.

v2.4 25

| CoreMP?7

The EmbeddedICE logic which implements the on-chip
debug function in the CoreMP7 debug architecture is
described in detail in the ARM7TDMI-S (rev 4) Technical
Reference Manual (ARM DDI0234A), published by ARM
Limited, and is available via Internet at www.arm.com.

The CoreMP7 debug architecture uses a JTAG port as a
method of accessing the core. The debug architecture
uses EmbeddedICE logic which resides on chip with the
CoreMP7 core. The EmbeddedICE has its own scan chain
that is used to insert watchpoints and breakpoints for
the CoreMP7. The EmbeddedICE logic consists of two
real-time watchpoint registers, together with a control
and status register. One or both of the watchpoint
registers can be programmed to halt the CoreMP7 core.
Execution is halted when a match occurs between the
values programmed into the EmbeddedICE logic and the
values currently appearing on the address bus, databus,
and some control signals. Any bit can be masked so that
its value does not affect the comparison. Either
watchpoint register can be configured as a watchpoint
(i.e., on a data access) or a break point (i.e., on an
instruction fetch). The watchpoints and breakpoints can
be combined such that:

e The conditions on both watchpoints must be
satisfied before the CoreMP7 is stopped. The
CHAIN functionality requires two consecutive
conditions to be satisfied before the core is halted.

An example of this would be to set the first
breakpoint to trigger on an access to a peripheral
and the second to trigger on the code segment
that performs the task switching. Therefore the
breakpoints trigger the information regarding
which task has switched out that will be ready for
examination.

e The watchpoints can be configured such that a
range of addresses are enabled for the
watchpoints to be active. The RANGE function
allows the breakpoints to be combined such that a
breakpoint is to occur if an access occurs in the
bottom 256 bytes of memory but not in the
bottom 32 bytes.

The CoreMP7 core has a Debug Communication Channel
function in-built. The debug communication channel
allows a program running on the target to communicate
with the host debugger or another separate host
without stopping the program flow or even entering the
debug state. The debug communication channel is
accessed as coprocessor 14 by the program running on
the CoreMP7 core. The debug communication channel
allows the JTAG port to be used for sending and
receiving data without affecting the normal program
flow. The debug communication channel data and
control registers are mapped in to addresses in the
EmbeddedICE logic.

Table 8 o Debug Communication Channel Signals

Signal Name Type Description

TMS Input Test Mode Select. The TMS pin selects the next state in the TAP state machine.

TCK Input Test Clock. This allows shifting of the data in, on the TMS and TDI pins. It is a positive edge triggered
clock with the TMS and TCK signals that define the internal state of the device.

TDI Input Test Data In. This is the serial data input for the shift register.

TDO Output | Test Data Output. This is the serial data output from the shift register. Data is shifted out of the device
on the negative edge of the TCK signal.

NnTRST Input Test Reset.The nTRST pin can be used to reset the test logic within the EmbeddedICE logic.

RTCK Output [Returned Test Clock. Extra signal added to the JTAG port. Required for designs based on COREMP7
processor core. Multi-ICE (development system from ARM) uses this signal to maintain synchronization
with targets having slow or widely varying clock frequency. For details, refer to the Multi-ICE System
Design Considerations Application Note 72 (ARM DAI 0072A).

26 v2.4

YActel

CoreMP?7

The EmbeddedICE logic contains 16 registers, as shown in Table 9. The CoreMP7 debug architecture is described in
detail in ARM7TDMI-S (rev 4) Technical Reference Manual (ARM DDI0234A), published by ARM Limited, and is
available via Internet at www.arm.com.

Table 9 e EmbeddedICE Logic Registers

Name Width Description Address
Debug Control 6 Force debug state, disable interrupts 00000
Debug Status 5 Status of debug 00001
Debug Comms Control Register 32 Debug communication control register 00100
Debug Comms Data Register 32 Debug communication data register 00101
Watchpoint O Address Value 32 Holds watchpoint O address value 01000
Watchpoint O Address Mask 32 Holds watchpoint O address mask 01001
Watchpoint O Data Value 32 Holds watchpoint O data value 01010
Watchpoint 0 Data Mask 32 Holds watchpoint 0 data mask 01011
Watchpoint O Control Value 9 Holds watchpoint O control value 01100
Watchpoint 0 Control Mask 8 Holds watchpoint 0 control mask 01101
Watchpoint 1 Address Value 32 Holds watchpoint 1 address value 10000
Watchpoint 1 Address Mask 32 Holds watchpoint 1 address mask 10001
Watchpoint 1 Data Value 32 Holds watchpoint 1 data value 10010
Watchpoint 1 Data Mask 32 Holds watchpoint 1 data mask 10011
Watchpoint 1 Control Value 9 Holds watchpoint 1 control value 10100
Watchpoint 1 Control Mask 8 Holds watchpoint 1 control mask 10101

v2.4 27

| CoreMP?7

Ordering Information

All variants of the CoreMP7 soft IP core are included in the CoreConsole IDP. To use CoreMP7, you need to download
CoreConsole, which is available for free at:
http://www.actel.com/custsup/updates/coreconsole/.

You can also request that a CoreConsole CD (which includes CoreMP7) be mailed to you.

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version |Changes in Current Version (v2.4) Page
v2.3 Table 1 was updated with AFS600 information. 2
The "Bus Functional Model" section was updated. 14
v2.2 The datasheet was updated to include Fusion devices. NA
Table 1 was updated. 2
The "CoreMP7 Variants" section was updated. 13
v2.1 Table 1 was updated. 2
v2.0 The "No Coprocessor Interface" section was updated. 13
The "Little Endian Only" section was updated. 13

Datasheet Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully
characterized. Datasheets are designated as "Product Brief," "Advanced," and "Production." The definitions of these
categories are as follows:

Product Brief

The product brief is a summarized version of an advanced or production datasheet containing general product
information. This brief summarizes specific device and family information for unreleased products.

Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production.

Unmarked (production)

This datasheet version contains information that is considered to be final.

28 v2.4

Actel and the Actel logo are registered trademarks of Actel Corporation.

Actel Corporation

2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

All other trademarks are the property of their owners.

VActel

www.actel.com

Actel Europe Ltd.

Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom

Phone +44 (0) 1276 401 450
Fax +44 (0) 1276 401 490

Actel Japan
www.jp.actel.com

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan

Phone +81.03.3445.7671
Fax +81.03.3445.7668

Actel Hong Kong
www.actel.com.cn

Suite 2114, Two Pacific Place
88 Queensway, Admiralty
Hong Kong

Phone +852 2185 6460
Fax +852 2185 6488

51700060-4/4.06

| Frame Capturing and Sending in FPGA Zahno Silvan

Appendix 6: Passive measurement infrastructure

25.03.2008

A Distributed Passive Measurement
Infrastructure

Patrik Arlos, Markus Fiedler, and Arne A. Nilsson

Blekinge Institute of Technology, School of Engineering,
Karlskrona, Sweden
{patrik.arlos,markus.fiedler,arne.nilsson}@bth.se

Abstract. In this paper we describe a distributed passive measurement
infrastructure. Its goals are to reduce the cost and configuration effort per
measurement. The infrastructure is scalable with regards to link speeds
and measurement locations. A prototype is currently deployed at our
university and a demo is online at http://inga.its.bth.se/projects/dpmi.
The infrastructure differentiates between measurements and the analysis
of measurements, this way the actual measurement equipment can focus
on the practical issues of packet measurements. By using a modular
approach the infrastructure can handle many different capturing devices.
The infrastructure can also deal with the security and privacy aspects
that might arise during measurements.

1 Introduction

Having access to relevant and up-to-date measurement data is a key issue for
network analysis in order to allow for efficient Internet performance monitoring,
evaluation and management. New applications keep appearing; user and proto-
col behaviour keep evolving; traffic mixes and characteristics are continuously
changing, which implies that traffic traces may have a short span of relevance
and new traces have to be collected quite regularly.

In order to give a holistic view of what is going on in the network, passive
measurements have to be carried out at different places simultaneously. On this
background, this paper proposes a passive measurement infrastructure, consist-
ing of coordinated measurement points, arranged in measurement areas.

This structure allows for a efficient use of passive monitoring equipment in
order to supply researchers and network managers with up-to-date and relevant
data. The infrastructure is generic with regards to the capturing equipment,
ranging from simple PCAP-based devices to high-end DAG cards and dedicated
ASICs, in order to promote a large-scale deployment of measurement points.

The infrastructure, which currently is under deployment at our university,
was designed with the following requirements in mind:

1. Cost. Access to measurement equipment should be shared among users, pri-
marily for two reasons: First, as measurements get longer (for instance for
detecting long-range dependent behaviour) a single measurement can tie

up a resource for days (possibly weeks). Second, high quality measurement
equipment is expensive and should hence have a high rate of utilization.

2. FEase of use. The setup and control of measurements should be easy from the
user’s point of view. As the complexity of measurements grows, we should
hide this complexity from the users as far as possible.

3. Modularity. The system should be modular, this to allow independent devel-
opment of separate modules. With separate modules handling security, pri-
vacy and scalability (w.r.t. different link speeds as well as locations). Since
we cannot predict all possible uses of the system, the system should be
flexible to support different measurements as well as different measurement
equipment.

4. Safety and Security. Measurement data should be distributed in a safe and
secure manner, i.e. loss of measurement data should be avoided and access
to the data restricted.

To solve these requirements we came up with an infrastructure consisting of
three main components, Measurement Point (MP), Consumer and Measurement
Area (MAr). The task of the MP is to do packet capturing, packet filtering, and
distribute measurement data. The approach to the second design requirement
was to use a system with a web interface. Through this interface users can add
and remove their desired measurements. The MAr then handles the communica-
tion with the MPs. The cost for implementing this architecture is not very high,
compared to a normal measurement setup you need two additional computers
and an Ethernet switch of suitable speed, and this basic setup can grow as the
requirements change.

There are several other monitoring and capturing systems available, here we
describe only a few.

CoralReef [1] is a set of software components for passive network monitoring,
it is available for many network technologies and computer architectures. The
major difference between CoralReef and our infrastructure is that CoralReef
does not separate the packet capturing and analysis as we do. Furthermore, the
CoralReef trace format does not include location information as our does.

IPMON [2] is a general purpose measurement system for TP networks. IP-
MON is implemented and deployed by Sprint. IPMON separates capturing from
analysis, similar to our infrastructure. On the other hand, the IPMONs store
traces locally and transfer them over a dedicated link to a common data repos-
itory. The repository is then accessed by analyzers.

Gigascope [3] uses a similar approach as IPMON, by storing captured data
locally at the capturer. This data is then copied, either in real time or during
off-peak hour, to a data warehouse for analysis. It uses GSQL as an interface to
access the data.

The IETF has (at least) two work groups that are relevant for this work;
Packet Sampling (PSAMP) [4] and IP Flow Information Export (IPFIX) [5].
PSAMP works on defining a standard set of capabilities for network elements to
sample subsets of packets by statistical and other methods. Recently an Internet
draft was published [6], which describes a system at a higher level than our in-

frastructure, but they are very similar and our system could benefit by adjusting
somewhat to the PSAMP notation. The IPFIX group is interesting since they
deal with how to export measurement data from A to B, thus it is interesting
with regards to consumers.

In Section 2 we will discuss the components and how they interact. This
is followed by Section 3 where we describe how the system handles rules and
filters. In Section 4 we discuss privacy and security related to the infrastructure.
In Section 5 we describe two cases where the system has been deployed. In
Section 6 we describe some of the ongoing and future work. And in Section 7 we
conclude the paper.

2 Components

The three main components in the infrastructure will be described in the follow-
ing subsections.

2.1 Measurement Point

In Figure 1 the components of a schematic MP are shown. This is the device
that does the actual packet capturing. It is managed from a Measurement Area
Controller (MArC) and transfers the captured data to consumers attached to
the Measurement Area Network (MArN). The MP can either be a logical or a
physical device. A logical MP is simply a program running on a host, whereas a
physical MP could either use a dedicated computer or custom hardware in order
to create high-speed high-performance MPs.

Link Under Test

Wire-
tap

Time
Synchronization

- Control
Data

Fig. 1. Schematic overview of a MP.

A MP can tap one or more links; each link is tapped via a wiretap. For
full-duplex Ethernets, a wiretap has two outputs, one for each direction. These
are connected to separate capture interfaces (CI). A receiver listens to a CI and
filters the packets according to the filter rules stated by the MArC. If the CI

hasn’t timestamped the packet the receiver will do so. The packets are then
delivered to the sender, which is responsible for sending the captured packets
to the appropriate consumers. Such a measurement frame can contain several
packets, where the number of packets is controlled by the maximum transfer
unit (MTU) of the MArN. Each MP also has a controller that is responsible
for the configuration of the MP and the communication with the MArC. A
time synchronization client (TSC) is used to keep all the MPs with in a MAr
synchronized, which can be done using a dedicated device or a simple NTP
server.

The filter rules used by the receiver specify, in addition to packet properties,
a consumer and the amount of the packet to be captured (currently the upper
limit is 96 bytes). For each frame that passes the filter, the MP attaches a cap-
ture header (Figure 2). In this header, we store a CI identifier, a MP identifier,
a timestamp when the packet was captured (supporting an accuracy of picosec-
onds), the packet length, and the number of bytes that actually were captured.
The filters are supplied to the MP from the MArC, and they will be discussed
in Section 3. Once a packet matches a filter, it is stored in a buffer pending
transmission. Once the buffer contents reaches a certain threshold the buffer is
transmitted using Ethernet multicast. This way, it is simple to distribute frames
to several consumers in one transmission. The duplication of data is done by the
MATrN. This approach will also reduce the probability of overloading the MArN,
and hence preventing loss of measurement frames as far as possible. However, in
order to detect frame loss each measurement frame is equipped with a sequence
number that is checked by the consumer upon reception. If a measurement frame
is lost it is up to the consumer to handle this particular loss and notify the
MArC. Given this information the MArC can take actions to prevent future
losses. Actions can be to alter filters as well as requesting additional switching
resources inbetween the MPs and the Consumers. The current implementation
only notifies the consumer ”user”, who has to take appropriate actions.

Cl
MAMPiId
Time
Time Length

CapLen

Fig. 2. Capture Header.

The capture header enables us to exactly pinpoint by which MP and on what
link the frame was captured, which is vital information when trying to obtain
spatial information about the network’s behaviour. This also enables us to use
several MPs to measure a single link, which is interesting when the measurement

task of a link speed becomes too great for a single MP to handle. This would
require a device that is capable of distributing the packets such that the wiretap
feeds different MPs in a round robin approach.

2.2 Measurement Area

In Figure 3 an example of a MAr is shown. The MAr provides a common point of
control for one or more MPs. It uses a dedicated network in between MPs and the
MAr subsystems for reasons of performance and security. A MAr consists of the
following subsystems: a MArC, a time synchronization device (TSD), a MArN
and at least one consumer and one MP. The MArC is the central subsystem
in a MA. It supplies the users with a GUI for setting up and controlling their
measurements. It also manages the MPs by supplying filters and by keeping
track of their status. The TSD supplies all the MPs in the MA with a common
time and synchronization signal. It can utilize the existing Ethernet structure to
the MPs, or it can utilize some other network to distribute the time signal.

——— Control

Data
4| Time Synchronization Device |
MArN
Switch 4' MArC UserSMA
Consumerl [—
Switch

Cn

Consumer2

SMArFilter

<+ MAIN——MMM >
~4—— Consumer-Network ——»

Fig. 3. Simple overview of a MA with three MPs, four consumers, one MArC and a
time synchronization unit.

The capacity of the MArN should be such that it can handle the peak rate
of the measured traffic. Assume that a MP monitors a 10Base-T link, with a
frame rate of 800 fps where each frame is 1500 bytes long (=~ 9.6 Mbps). From
each frame we collect 96 bytes, add a capture header of 36 bytes and store the
data in a measurement frame, see Figure 4. Given a MArN MTU of 1500, a
measurement frame can contain 1480 bytes of measurement data, consisting of
capture headers and frames, the remaining 20 bytes are used by a measurement
header (MH). In the current example we can store 11 frames in each measurement
frame (11 * (36 + 96) = 1452 < 1480 bytes), causing the MP to send only
800/11 = 72 fps into the MArN, see Figure 5. If the monitored link would have a

frame rate of 14000 fps, each frame would only be 85 bytes long (= 9.6 Mbps), the
measurement frame would contain 12 frames (12%(36+85) = 1452 < 1480 bytes),
yielding a frame rate of 14000/12 ~ 1167 fps. However, if the MArN MTU was
9000, the measurement frame could contain 74 frames, yielding a frame rate of
189 fps.

36 0-1500
MH | CH | Framej+1 | CH | Framej+2 | CH | Framej+n

A
\

MTU MArN

Fig. 4. Measurement frame encapsulation.

Captured frames

>t

l l l l Measurement frames

Fig. 5. After capturing N frames one measurement frame is sent from the MP.

A consumer that attaches to the MArN should not request more data than the
link that it is attached to can handle. For instance a consumer C1 is the recipient
of two measurement streams, S1 and S2, each generating 1272 measurement
frames per second. As long as the total frame rate of S1 and S2 is less or equal
to the capacity offered by link and switch there should be no problems, but if the
consumer desires to get full frames it might run into problems quite fast, since the
MP adds a capture header to each captured frame potentially generating more
traffic than it captures. The current implementation addresses this problem by
having a maximum capture size of 96 bytes. The MArC also provides the user
with an estimation of the frame rate on the links that the MPs are monitoring,
giving the user an indication of the amount of traffic that his consumer might
receive.

The example in Figure 3 contains a consumer network (CN). It is placed on
a separate switch to minimize processing required by the MArN, thus enabling
additional consumers to be easily connected to the MArN, for instance new
probes, analyzers etc. to be evaluated in parallel. If the number of consumers is
low, the MArN switch might handle them directly, and no CN switch is necessary.
This would be the normal setup, see Figure 6. In Figure 7 a minimal MAr is

shown. In both cases the MPs are using a separate network for the time signal

distribution.

4+— MAIN————— >

——— Control

Data

Users/SMA

MArC

Switch

I R

Fig. 6. Normal MAr

44— MAIN—— >

MArC

Switch

Users/SMA

Fig. 7. Minimal MAr

2.3 Consumer

Control
Data

A consumer is a user-controlled device that accepts packets according to the
format specified by the system. A consumer should filter the content of the
measurement frame that it receives, since the MP merges multiple user requests
some filters will capture packets that match several requests. Such a joint filter
might not perfectly match the desired frame description; this is discussed in the

following section.

3 Filters and Rules

A user supplies rules to the MArC. These rules describe what data the user
desires to collect, where the data should be collected, when the data should be
collected and where to send the data. The MArC uses this information to create
filters that the MPs understand. The filters that the MP uses are a combination
of all the user supplied rules, combined in such a manner that all requests are met
in a best effort style. The MArC keeps track of the MPs and their capabilities,
thus it knows how many filters a MP can handle before it runs into performance
problems. The MArC also monitors the performance of the MArN and reject
user rules that could cause performance problems within the MArN. If a MP is
to obtain a filter list that would push it into a region of potential performance
problems,; the MArC will alter the filters in order to minimize the number of
filters. By doing this the load on the MP is kept at a reasonable level, but this
approach requires the consumers to do some filtering of their own. Hence, it is
up to the user to supply the desired Consumer with a filter. The filters within a
MP are arranged in such a manner that no packet is reported twice by the MP.

Let’s give a simple example, we have one MP and two consumers C1 and C2.
Initially we have two rules (using BPF syntax):

R1 {tcp host A.a} which sends its data to C1.
R2 {ip net A} which targets C2

Here two approaches are possible; the first during low load would have the fol-
lowing filters sent to the MP:

F1 {tcp host A.a}— M1
F2 {ip net A}— C2

Here M1 is a multicast address that C1 and C2 listens to. If the load on the MP
approaches a high level then only one filter would be sent to the MP

F1 {ip net A}— M1

In this case the C1 consumer would need to perform filtering in order to select
the TCP segments of host A.a. By default a consumer should always filter the
measurement data that it receives, ensuring that it passes a correct stream to
the analysis/storage entity.

4 Privacy & Security Issues

A MP will see all the traffic passing on a link that it is tapping, which can be
viewed as a intrusion of privacy. Furthermore, since the majority of the network
protocols used today were not designed with security in mind, user credentials
might pass on the link and be clearly visible to the MP. This can be an intrusion
of privacy and should require special care on behalf of the measurement system
and its users. If the data collected from the system is only intended for internal

use, it might be enough that all users and the network-owner have agreed to
that their traffic can be monitored to allow for measurements. However, if the
data is to be shared with researchers in other organizations, the data should be
deprivatized. Deprivatization [7] can be done on various levels, from the removal
of parts in the application data to the removal of all network data. We believe
that the system should minimize the alternation of the captured data and leave
the anonymization to the consumers. If the MP would anonymize the data, e.g.
through scrambling of addresses [8], some consumers such as intrusion detection
systems or charging systems might not be able to operate anymore. However, if
the system does deprivatization by default, this should be done in the MPs. If
address scrambling is utilized, this causes problems when the user specifies the
measurement rules. If the unscrambled address was used, the user will obtain
scrambled addresses matching his requirement and then it is possible to reverse-
engineer the scrambling system. If the scrambled address was used, the user
would need to know how to create that scrambled address. Probably, the first
method should be chosen. In that case, the only person that is capable of reverse-
engineering the packet trace is the user requesting the trace, since he knows
both scrambled and unscrambled address. Now, if the packet trace is stolen, the
thief cannot match packets to individual hosts/users unless he has access to a
descrambler and the scrambling key.

Privacy issues will probably have to be addressed by specialized consumers.
For instance, we have two consumers, a intrusion detection system (IDS) and a
link utilization estimator (LUE). The IDS needs undistorted information. The
LUE could on the other hand use deprivatized data, but since the MP will not
send two copies of the same packet there is a problem. It is probable that a
network owner would like to have control of the information that leaves his net-
work, so it would be easier for the network owner to supply an export consumer
that deprivatizes the data according to his own policies, which might not meet
the particular desires of the user. For our own measurements, the agreement we
made with the system owner was the following: The MPs are only allowed to
capture headers, not user payload. Furthermore, the data leaving a consumer
may only be in statistical form, or deprivatized in such a manner that it is im-
possible to reverse-engineer the data to obtain information that allows you to
identify a particular individual.

From a security point of view, all components in the system should be pro-
tected from unauthorized access. The simplest way to do this is to have the sys-
tem operating on a separate network, with no connection to any other networks.
This would however be expensive and unpractical in measurements distributed
over a wide area. The solution to this it to utilize Super Measurement Areas
(SMAr), see Figure 8. SMAr’s are used to connect to MAr’s at different loca-
tions using existing infrastructure. A SMAr can be seen as a MAr at a higher
level, the MAr’s MP becomes SMArFilters (specialized consumers that attach
to the MArN), the MArs consumers are called SMArConsumers. Between the
SMArFilters and SMArConsumers TCP is used to provide reliable communica-
tion. The MPs and the MArN need to be protected from unauthorized access,

10

both physical and logically. Physical protection of the MAr subsystems is the
first requirement in giving logical protection; the consumers and the MArC need
to be protected from intrusions via their connection to the users.

——— Control
—— Data

SMAConsumerl

MA1-SMAfilter

SMAConsumer2

MA2-SMAfilter

Fig. 8. Example of a SMATr.

5 Examples of Use

As of writing two MAr have been implemented and used. One is available online
via http://inga.its.bth.se/projects/dpmi and is mainly used in a controlled envi-
ronment. The second MAr consisted of two measurement points each monitoring
a gigabit link on a campus network. In both cases only one physical consumer
was used, but it was sufficient to handle up to eight logical consumers. Examples
of consumers are: estimation of traffic distribution (at link, network, transport
and application level); link utilization; packet inter arrival time; communication
identification; and bottleneck identification [9]. At the time of writing we are
preparing a third MAr to be deployed in an ISP network, where it will initially
be used for bottleneck identification. In Figure 9 we visualize the result from a
analyzer that identifies bottlenecks. It uses two consumers to estimate the link
bit rate over a given time intervall, these are then transferred to a database
which is accessed by the visualizer that estimates the bottleneck.

In Figure 10 the MArC (prototype) interface for adding a rule is shown. In
this implementation all tasks are done manually, the goal was to develop the MP
not the MArC. The following filtering options are availible, the MASK fields are
used to mask the packet value.

— CI: Physical interface identifier.

VLAN_TCI: VLAN number and priority.

— ETH_TYPE: Ethernet type.

— ETH_SRC/DST: Ethernet source/destination address.
IP_PROTO: IP payload type.

— IP_SRC/DST: IP source/destination address.

11

Bottleneck
0.2 T T T T T

0.15 1

0.1 4

0.05 1

-0.05 B

-0.15f b

0.2 I I I I I
0 1 2 3 4 5 6

Bit rate [Mbps]

Fig. 9. Example of a consumer: Visualization of a bottleneck through bitrate histogram
difference plots (c.f. [9]).

12

SRC/DST_PORT: Transport protocol source/destination port numbers (if
applicable).

DESTADDR: What Ethernet address should receive the measurement data?
— TYPE: Which type of transport should the MP use? Ethernet, UDP or TCP.
— CAPLEN: How much of each captured frame should we store?

FilterID is a number that specifies in which order the MP should check its filters,
starting with number zero. Index will indicate which fields that are used in the
rule specification. For instance if we wish to collect all packets caught on a specific
CI the index would be 512, and the CI field would hold a string identifying the
CI. If we would like to capture IP packets caught on a specific CI, index would
be 640, ETH_TYPE=2048 and CI a string specifying the interface.

) Add Filter - Mozilla Firefox =]
Fie Edit Yiew Go Bookmarks Tools Help c
Filter Specification (DO NOT EDIT INDEX!!!)(If form handles it for you, =lse you do the math..)

INDEX |D

FILTER I

D

Packet Spacification

r cI I

= null

r rLan_tcr|||o vLAN_TCI_Mask (|0 Q

VLA I ther =

256 - = I I e J

Es ETH_TYPE ID ETH_TYPE_MASK |D |Other j

s ETH_sRC (000000000000 ETH_SRC_MAsK 000000000000 | Other 7|
M2 ETH_DST |DDDDDDDDDDDD ETH_DST_MASK |DDDDDDDDDDDD | Other j
Mis IP_PROTO ID IOther j

g IP_SRC |D IP_SRC_MASK |D | Other j
[Ma 1P_DST |D IP_DST_MASK |D | Other j
o SRC_PORT ID SRC_PORT_MASK ID I Other j

My DST_PORT) |D DST_PORT_MASK ID I Other j

Ethernet Multicast =
DESTADDR |D‘I nooooooood TYPE I‘I I,.]Cte, TCP requires EJ
running TCP consumer
CAPLEN |54-
|MP Receiving Filter
Name |C0mment Max filters

= mpo& 20

[mp05 20

Add Filter | _Reset |

Find: | () Find Next (&) Find Previous [=] Highlight %

Fig. 10. User interface for adding rules.

13

6 Ongoing and Future Work

Initial experiences with the system are encouraging, and development of con-
sumers is currently ongoing. The experience of the demo has indicated that the
MP’s software needs to be changed in such a manner that the MPs periodically
flush their measurement buffers, in order to prevent consumers from waiting
long times. We are considering a modification of the system so that the MArC
supplies the consumers automatically with the information that they need with
regards to filters and multicast addresses.

To handle the increased link speeds, new devices with better timestamping
accuracy are needed. Even if we can obtain this accuracy, a single device will
probably run into problems when measuring such a link. Hence another task
would be to investigate how to distribute the measurement task of a link onto
several MPs. Compression of frame data is also considered to be implemented,
this would could enable us to do full frame capturing without requiring a MArN
that is more powerful that the observed link. We also need to evaluate the
performance of a MArN.

The infrastructure is being considered as a part of the EuroNGI WP.JRA 4.3
[10] Measurement tool. This tool will support traffic generation, measurement,
analysis and visualization.

7 Conclusions

In this paper we have presented a distributed passive measurement infrastruc-
ture, which has separate components for packet capturing, control and analysis.
We discussed how the system deals with multiple users and their request for
data. Since the infrastructure is passive we addressed the security and privacy
issues associated with this. Furthermore, we gave examples of current usage and
future work.

References

1. CAIDA: CoralReef. (2005) http://www.caida.org/tools/measurement/coralreef
(Verfied in January 2005).

2. Sprint: IPMON (2005) http://ipmon.sprint.com (Verified in January 2005).

3. AT&T: Gigascope (2005) http://www.research.att.com/info/Projects/Gigascope
(Verified in January 2005).

4. IETF: PSAMP Workgroup. (2005) http://www.ietf.org/html.charters/psamp-
charter.html (Verfied in January 2005).

5. IETF: IPFIX Workgroup. (2005) http://www.ietf.org/html.charters/ipfix-
charter.html (Verfied in January 2005).

6. IETF: A Framework for Packet Selection and Reporting. (2005)
http://www.ietf.org/internet-drafts/draft-ietf-psamp-framework-10.txt (Ver-
fied in January 2005).

14

10.
11.

12.

Pang, R., Paxson, V.: A high-level programming environment for packet trace
anonymization and transformation. In: SIGCOMM ’03: Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for computer
communications, ACM Press (2003) 339-351

Xu, J., Fan, J., Ammar, M., Moon, S.B.: On the design and performance of prefix-
preserving ip traffic trace anonymization. In: IMW ’01: Proceedings of the 1st ACM
SIGCOMM Workshop on Internet Measurement, ACM Press (2001) 263-266
Fiedler, M., Tutschku, K., Carlsson, P., Nilsson, A.A.: Identification of performance
degradation in ip networks using throughput statistic. In: Proceedings of the 18th
nternational Teletraffic Congress (ITC-18), ELSEVIER (2003) 399-408
EuroNGI: Homepage (2005) http://www.eurongi.org (Verified in January 2005).
TCPDUMP Public Repository: Homepage. (2005) http://www.tcpdump.org (Ver-
fied in January 2005).

Endace Measurement Systems: Homepage. (2005) http://www.endace.com (Veri-
fied in January 2005).

| Frame Capturing and Sending in FPGA Zahno Silvan

Appendix 7: SimAP Design report

25.03.2008

Hes

Allinformation contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

MAC Ethernet for specific application

PROJECT
(MAC+)

DOCUMENT TITLE . 10-MAC design report

DOCUMENT NUMBER : SPAM-RPT-006-HEV

ISSUE/ REVISION D 21-

NAME FUNCTION SIGNATURE DATE

PREPARED BY | F. SEBASTIEN | Project Engineer October, 2007
CHECKEDBY | F.CORTHAY | Technical Manager October, 2007

Haute Ecole Valaisanne — route du Rawyl 47 — cp 2134 — 1950 Sion 2 — Suisse
Tél. 0041 27 606 85 00 - Fax 0041 27 606 85 15

H es Doc. Ref; MAC-RPT-000-HEV
MAC Project Issue/rev: 2/-

Date:
Page:

October, 2007
i

DISTRIBUTION LIST

ComMPANY / NAME QUANTITY
HES-SO : F. Corthay 0
F. Sébastien 0
M. Clausen 0
CHANGE RECORD
ISSUE /
REVISION DATE PAGES MODIFICATION
1/- July 2007 All First Edition
2/- October 2007 All Second Edition

All information contained in this document is the property of

the Hes-so.

Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV
Hes oc. Re C 000

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: ii

CONTENTS

PAGE

(@00]\ = 1 I T I
L AN 1 N I
1 BN IO 1510 L O 1 O T 5
2 LYY L@ 1 4 N 6
D R © =N =0 A/ = ST 6
2.2 PARSING ..ottt e 6

3 I 1 S B A Y 7
Bl GLOBALITY utuvuuuuuuursrusnnsssnsssssnsssnsnssnsssnsnnsnnnssnnnsnnnnnnnn 7
3.2 ETHERNET FIELD ..uuvuuuuuurusuussnsssnssnnssssssnsssnsnnsnnnsssnnsnnnnnnnn 7
BTG TS 1V AN = = T =T o I 7
B4 OTHERSPARTS ..uuuuuturuuuurrsnsssnsssssssnsssssnssnsssnssnnsnnsssnnnsnnnnnnn 8

4 GLOBAL FUNCTIONING ..ottt ettt e e ettt s s e e s s et et s s e e e s e e et b s s e eesseesbbssseeeseeerbaannes 9
5 CONTENT OF DESIGN .. ittt ettt e e e e ettt s s e e e e s e et s s e e e s ee st b s s eeeseesaba s eessseesbaaanses 10
6 INTERFACE ETHERNET ...ttt e ettt e e e e sttt s s e e e s e eab b s s eeasseesbbasreeaanes 11
.1 FFUNCTIONALITY 1rvuuuururuuurnunsnssnssnssssssnnsssnnnsnnssnsnnnnsnsnnnnsnnnn 11
6.2 CONTENT SUMMARY ..evvuuruununrnnsssnsssnnsssssnsnsssnsnnssnsssnnnsnnnn 11
6.3 CONTENT DESCRIPTION ..uuuuuuussusssnnssssnssnsssnsnnsnnsssnnnsnnnn 12
LSRR T R 1= AV, G 12

B.3. L1 FUNCHONBIITY. ..ottt ettt b et e b et s e e e bt et e e ae e b e e bt esn e b e e bt e nn et e enreennen 12

6.3.1.2 CONENE SUMIMEBIYeeirieieeeiee et siee et et e st e ssreesseeeseeaaseesaeeesaeeeabeeareeeaseesaneeasneenbneareesneesnneennnean 12

6.3. 1.3 CONLENT JESCIIPIION ... ettt ettt ettt b et e b e e bt s e e s bt e bt e ae e ek e e bt eseeabeenesnnenbeennesnnas 13

6.3.1.3.1 (0712 R (0 1Yo (o IR 13

6.3.1.3.2 Lo o= 72T 13

B.3.1.3:3 SYNCIIONIZEN ...ttt ettt b et e bt et e e bt e bt e e bt et R e bt e nne e re e 14

B.3.1.3.4 FEIEL SYNCN ..ttt et b e bbb e bt n e e re e 14

B.3. .35 FAIM D ittt bRt bRt bt Rt R e e Rt r e b e e bt e nne s be e re e 14

6.3.1.3.6 10 = 0 1 7= = VRS 14

6.3.1.3.7 (oS AVL< e 0 11 (0] 1= SRR 15

LSRRI 1 4= 1= 1 0111 G 17

B.3. 2.1 FUNCHONBIITY . . .eeteeeeeeieesteete ettt b et b et s e e b e e et e an e e b e e bt e s e e b e e bt e nn e b e enreennan 17

6.3.2.2 CONENE SUMIMEBIYeeurieieeeiee et eatee et e et esreesse e sse e e neeeaseesareeaa et e abeeaseeeaseeamneeasneeaneeareesneesnneennnean 17

6.3.2.3 CONLENT JESCIIPIION ...ttt ettt ettt ettt se e b et s e e s b e e bt e ae e sk e e bt ese e et e e b e snnesbeenneennas 18

6.3.2.3 1 DYLE IO NMIDDIE. ... r e 18

6.3.2.3.2 Lo o= 72 SRR 18

B.3.2.3.3 SYNCIIONIZEN ...ttt b et e bttt h e bt e e e Re e bt et h e b e e nne s he e re e 18

B.3.2.3.4 FEIEL SYNCN ...ttt b et b e b b e ne e re e 18

B.3.2.3.5 FAIM D ettt bRt bt et bt Rt e Rt n e b e e bt e e be e re e 19

6.3.2.3.6 10 =0 1 7= = VSRR 19

6.3.2.3.7 L S LS e o g)| 1= 20

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV
Hes

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: iii
7 CONTROLLER SIMARP ..ottt ettt ettt e sttt e e saee e sate e sn e e s be e e ntee e snteesnteeantenensanenneeas 22
T.1 FUNCTIONALITY uttteeeitteeeeautereeaaueesasaseesesanseeeesassasesasseeesansenessassesessnssesessnsensesansesessnsseeessnseesesansenessnns 22
7.2 CONTENT SUMMARY ...outiiieiiuteeeeiauteeesaseeeesanteeeesasseeesaassesesanseeessassesessnssesessnsensesassessssnssesessnseeeesansenessnns 23
7.3 CONTENT DESCRIPTION ..ttitiutttteiatteeessseesesanteesesasseeesaaseeeesansesessassesessnssesesansensssassesessnssesessnsseeesansenessnns 24
S 5 R oo |4 o = SRS 24
A R = 0 To: o g 7=] /T TS PP PRSPPSO PR OUPTPRPRP 24
7.3 L2 State MAECNINE SUMIMBIY.......eiueeiteeteiteestteeeeteesteeee st e e st e e be e bt eseesbe e bt essesbe e bt e asesbe e bt asseabeenessneabeennesnnan 24
7.32 reader A00rESS FEOITENS. . oo iti ittt sttt ettt st st e st bt e st bt e s b e e sb e e st e e sbeesbeesbeesbeenbeenreen 25
7321 FUNCHONBIITY. ... eeeeee ittt et b ettt b et s et b e bt e ae e ke e bt ehe e et e e bt s an e b e ennesnnas 25
S T T o 1 1= o2 SRS 25
7331 FUNCHONBIITY. ..ottt b ettt skt s e e b e et e e ae e ek e e bt e se e et e e b e snn e b e enresnnas 25
A T o Q= [= PP PRRRRPRN 25
T34 FUNCHONBIITY. ..ottt ettt b et e b et s e e bt e bt e ae e b e e bt ehseeb e e bt san e b e enresnnas 25
FAC R I < 1= v (o g 4= = SOOI 25
7351 FUNCHONBIITY. ... eeteeee ettt etttk e bt s et b e e bt e an e ek e e bt e sn e et e e nesnneebeenresnnas 25
7.3.6 DIOCKS: MUX AN AEIMIUXeeieeeeieieeceieesieeestee e stee e se e e st e e sree e sseeesneeesteeenseeessseesnseesnseeenseeenneees 25
T.3.6.1 FUNCHONBIITY. c..eetteeeiie ettt b ettt b et s e e bt e bt e e e ek e e bt e se e et e e e e s snenbeennesnnas 25
7.37 application adareSS FEJISIENS.....ccuii ittt ettt ettt b et sb e b e b e nreenreen 25
7371 FUNCHONBIITY. ¢ eeteete ettt b ettt b et s e e b e e bt e ae e ke e bt eae e et e e b e s nn e b e ennesnnas 25
7.3.8 Qroup CONfig AOOrESSING.......eeiuiertiertiertie sttt sttt sttt sb e bt st e st e e st e e st e e st e e sbeesbeesbeesbeesbeesaeens 26
7.3.8. 1 FUNCHONBIITY. ..ottt b ettt b et s e e bt e bt e ae ekt e bt ehe e et e e nesnneebeennesnnes 26
7.3.9 QrOUP CONFIG MEIMIONY ..eetieitieitee st st st e st e st e st e e st e bt e st e e sbeesb e e sbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeenbeens 26
7391 FUNCHONBIITY. ..ottt ettt b et s e e bt e bt ae e b e e bt e se e et e e nesnneebeennesnnas 26
AR I (o 1 = SRS 26
7.3.10 WETTEr A0ONESS FEOISIEN S, .. ittt sttt 26
7.3.101 FUNCEEONBIITY. ...ttt ettt b et e e e e s b e e bt e nnesreenne e 26
8 N o I N I] 27
S I R U N T T Y I PSSP 27
8.2 CONTENT SUMMARY ...uutieieiiuteeeeiautesessseeeesanteeessasseeesassesesanseeessassesessassesesansenessassesessnssesessnseneesansenessnns 27
8.3 CONTENT DESCRIPTION ...eiitututteitterassseesessntereesasseeessaseesesansenessassesessnssesesansensesassesessnssesessnseesesansenessnns 28
8.3.1 blIOCKS: MUX AN EIMIUX ... eeiveeeieieeseieesieeesiee e ste e se e se e et eeseee e sseeesneeesteeenseeesnsnesnseesnseeenseeenseees 28
S 0t R 00 To: o g 7=] /O TS PP PRSPPSO PR OUPTPRPRP 28

8.3.2 blocks: ROM registers, params registers, program memory, groupe value registers, groupe
0[S o g oo g = o = (= T PP PRRRRPRIN 28
8.3.2. 1 FUNCH ONAIITY . ..ottt ettt sttt b et s e e bt e bt an e b e e bt ne e bt e e ne b e reenean 28
LGRS B o] o) [Tor= i) 0 1 (= AP PR PRRRRPRN 28
8.3.3. 1 FUNCH ONAIITY . ..ottt ettt b et b et s e bt e bt e e e e b e e bt e ne e bt e n e ar e b e reeneen 28
R Y 0 =0 = O TPR PSR PRRRPRN 28
8341 FUNCHONAIITY . ..ottt ettt b btk et s e e bt e bt e ae e b e e bt e ne e b e e nennn e b e rennean 28
9 IS Y I =1 1 N[S 29
0.1 RECEIVER _TB .t iutteiuteeiteeestetessteessseesse s ase e e sseeesaseesa e e aas e e e b et e ah et e as b e e sab e e e b et e bee e ab st e sn R e e saneeeaneeennneennreena 29
Lo 50 0 R [o1 (o 1o I 1 7= (= SRS 29
S B 1= s <o (11 o PO ST VPP P PPRRPT 29
O0.1.2.1 Part: RESEL SEOUEICE.eeeeeeuieeiuteeeitee st et e et e st e sare e s st e sseesaseesar e e sae e e abe e et e e eaneesareeasneenneareesneesnneennnean 29
9.1.2.2 Part: Detail of avalid frame WIthOUL EITOFuiiiiiiiierie e e e ee st eaesnae s 30
9.1.2.3 Part: CRC error and MUItIPIE RX EITOIS.civiiiiiieiieesie ettt st ne e ne s 31
9.1.2.4 Part: Fill the RAM and test the limit Of frEE RAMccuii i 32
9.1.25 Part: Fill the RAM and test the limit Of frEE RAMccuii it 34
9.1.2.6 Part: Test if reader Can MOVE COMTECLIY.uiuuiiiiiiiiesiee ettt bbb ne s 36
LS 50 T T (o) 38
0.2 TRANSMITTER _TB .uutttiutetesteeessteesureassesaasesesseeessseessseesaseeaabee e ss et e sa bt e sab e e e b e e e abee e asneesareesareeeaneeennneennreenn 39
0.3 IMAC _PLUS TB ..ettiiutii it ettt ettt si et ettt sh e sa e st e et et e b e e e b et e s e bt e e b e e e b et e b et e ss e e e sn R e e s n e e e ane e e nnneennreen 40
9.3.1 Littledescription of MAC_plus tester fasvid..........ccocoieiiiiiiiienieneseeee e 40
S R I 1= s <o (11 o T OSSPV PT P PPRRPT 40
9.3.21 Part: Send only WItING FraMES........ciiiiiiiiiie e re s 40

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es _ Doc. Ref: MAC-RPT-000-HEV
MAC Project Issue/rev: 2/-
Date: October, 2007
Page: iv
9.3.2.2 Part: Send only reading fraMES.........viiiii et 41
0.3.2.3 Part: SENG ONIY EVENT ..ottt ettt et b et an e ke e bt e s e e b e e n e ene e b e e rennean 41
9.3.24 Part: Send all frames With NOt SIMAP fTaMEvvi i e eneeas 41
9.3.25 Part: Send With tranSMiSSION EITONuvveiiieeiieeieeie e ettt e e e e e et e e e e e e e s br e e e e e e e ssbbaaeeeeeesesbaaseeeeeaans 42
0.3.2.6 Part: TranSMISSION [OSS.......ccceuireiiieeiiiiiteie e e e e e eette e e e e e e e s iaaeeeeseesesbaeeeeaeesaassbaaaeeesesaabsssssseesssssrtsnsaeseaans 42
Lo R A A == 11 SO 1 1= £ 42
O T I Y IO] o 10T =1 Y 0 N 43
10.1 L0 T 1=V 1= PSRN 43
10.2 N [1 1 T 43
11 IMPROVEMENTSTO MAKE. ..o ittt ettt e e e ettt s s e e s s e e et s e e e s seeaab s e eeeseenaren 44
11.1 o101 =1 AV = = N 44
11.2 TRANSMITTER etuuiitttutiietuteretusseresssresesaseresaseresasesesaseresssaressseresssseresssseressseeressseersssseerssnseerenree 44
11.3 CONTROLLER ..ettttuuieeesieettttaeeeeseeesstataaseeessessssasneeassesssanasaeesseessaannseeessesstannnseeessessssnnnseeeeseessrnnnnes 45
11.4 Y Y @] 1 =N 45
115 1 = = I 107) 45
11.6 L= 46
11.7 OTHE RS, 1.ttt tettetttt et eeeeeeestt it teeeeeee sttt teeeesesssaaasaeaesesssaaansaaesesssaannsseeaseesssannnseeessessssnnnsseeesenssrnnnnsns 46
11.8 Y TSN 46
VYA o Dl o o e O [0 K O o 1T 47
12.1 INTERFACE ETHERNET ..ottt ettt e e e e e et s e e e e s e e et s e e s s e e eabbanseeaeees 47
12.1.1 FECEIVET ..o 47
12.1.1.1 (o (0P PPPPPPPPPPRt 47
12.1.1.2 7N 1Y o o TS URPRPPR 48
12.1.1.3 (S A< e 0 11 (0] 1= SO 49
12.1.2 L= 1S 11T 50
12.1.2.1 LU S L= e o 1)< 50
12.2 CONTROLLER SIMAP .ottt ettt s e e e e et et s e e e e s e ea b sseeeseeab b seeessereraanses 51
12.2.1 (010011 o 1 1= GRS PP RRPTPRRRPPPRTR 51
12211 22 65 1 o TP P TP PO PR PRRUPTPRTPRRPPTPR 52
122111 physical addreSSiNG MOOE.cc.eiiiiiieitieie ettt r et be s r e b e e e e beenreenes 54
12.2.1.1.2 group addreSSING MOOE.eeitiereiieestieite sttt ettt ettt ettt e e bt n et e nneennesbeenreenee 56
12.3 F AN e o I L7 AN I 1 TN 57
12.3.1 (1001010 o (<100 U) T 57
12.3.2 blocks: ROM registers, params regigers, program memory, groupe value registers, groupe
o[o g oo W = o = (= TR PRR RPN 57
12.33 2o o [z o g I (- PSPPSR PRI 57
12.34 oS g =0 = T PP PPR RPN 57
G T AN N I3 T TN 58
13.1 PN =TT V- 1) N 58
13.2 FILES AND FOLDERS FOR THE PROJECT .vvuuuiiiiiiestrsnsseeessesstsnsssssssesssssssesseessssnsseessessssnnseseseessne. 59
13.3 RAM STRUCTURE ..ttuuiiiietiieetttes st eeeeeettaee s s e e ettt sasaassseas s e st baseses s e s e s b sseese e et baan s ssesseessbannseeeseersren 60
13.3.1 RS (00X =T 60
13.3.2 HEAAET ... 60
13321 EMPLY NEBOEY ...ttt b et r et e nee e 60
13.3.2.2 [g0 gl 1= o (< (R 61
13.3.2.3 [= 1151 115 = 0 (< (ORI 61
13.4 ABREVIATIONS TIREE DU 802.3. .. e eiieeettiei i e et ettt s e e e s s eettae s s s s e s s eeabbassssesseesbbasssesseessbnasssesseessres 62

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV

H €S MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 5

1 INTRODUCTION
In this document, there is a lot of abbreviation. To know the signification of these, it
must to go on: "appendices" and to see: "abbreviation".

The network topology is quite similar to a standard EIB infrastructure.
The following illustration shows a typical SImAP installation:

1.1.0

AV AL A

input output input input input output outputoutput
12/0/1 12/0/2 3/5/125 3/5/12 12/0/2 12/0/1 3/5/12 3/5/125

Figure 1: SAOE network topology

In this project, only the SD (SAOE Device) is realized.

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es Doc. Ref; MAC-RPT-000-HEV
MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 6
2 WORK

To realize a design that can be downloaded in a FPGA of a SD so it can
communicate with other SD.

All devices are connected with Ethernet.

The communication is based on SIimAP.

So the design must to receive Ethernet frames, to work with these frames respecting
the protocol SimAP and be able to send Ethernet frames.

2.1 Objectives

The device can realise a simple Ethernet node without processor. The 10s are
directly connected on the device. The used protocol is SIimAP (Simple Automation
Protocol). The design of the device must be composed be three parts: an Ethernet
interface (receiver and transmitter), a controller and a specific part to the application.

2.2 Parsing

Receiver
To receive correctly the frames
To be synchronized with Rx clock
To store the frames
To calculate CRC
To check all errors on the frames

Transmitter
To be synchronized with Tx clock
To read the frames
To calculate CRC
To send correctly the frames

Controller
To read the received frames
To get the events
To identify the frames
To work with the registers or the memories
To create frames
To store the created frames

Application specific
To work with the outputs or the inputs
To work with the registers or the memories
To store the events

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es Doc. Ref: MAC-RPT-000-HEV

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 7
3 THE USED FRAME
3.1 Globality
The complete Ethernet frame that it is possible to see on the twisted pair Rx or Tx:
SSD | Preamble | SFD | Fhermet Data PAD | FCS | Extension | ESD | IFG
1 6 1 14 0 - 1500 46-0 | 4 ? 1 >11

On SImAP project, the used frame to work with the SimAP protocol and the PHY
(Intel chip: LXT972A):

Ethernet | SIimAP
Preamble SFD field field Data | PAD | FCS
0-
7 1 14 10 1372 36-0 4
3.2 Ethernet field
Destination Address Source Address Type
6 bytes 6 bytes 2 bytes
The Ethernet field is composed of 3 parts:
- Destination Address . it's the MAC address from recipient.
- Source Address . it's the MAC address from issuer.
- Type . it's to know the contents of data.

3.3 SimAP field

PCF GID NPCI TPCI APCI

1 byte | 2bytes | 2 bytes | 1hbyte | 4 bytes

The SImAP field is composed of 5 major parts:

- PCF . it's to have information about the frame.

- GID . it's the group identifier.

- NPCI . it's to have information about the data.

- TPCI . it's the transport protocol control information.
- APCI . it's to know how to use the data.

Notice:

The parts: PCF, GID, NPCI, TPCI and APCI are composed by small parts that
depend from addressing mode.

(To know contents, see part: 13.2.1.1 parsing)

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es _ Doc. Ref; MAC-RPT-000-HEV
MAC Project Issue/rev: 2/-

Date: October, 2007

Page: 8

3.4 Others parts
The others parts:

- SSD . it's to indicate the start of stream of frame.

- Preamble : it's for physical medium stabilization and synchronization.

- SFD . it's the start frame delimiter.

- Data . it's data of the frame.

- PAD . it’'s used to complete the frame so as to have the min length.
- FCS . it's to check and to validate the frame sequence.

- Extension : it's an extension for the frame.

- ESD . it's to indicate the end of stream of frame.

-1IFG . it's the min time to wait before to send another frame.

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

1/7

Doc. Ref: MAC-

H es MAC Project Issue/rev:
Date:
Page:

RPT-000-HEV
21-

October, 2007
9

4 GLOBAL FUNCTIONING

Receiver

PHY

Ethernet Controller <Z> Application
L ﬂ IN/OUT
chip

Transmitter

tx_clock

Figure 2: Global functioning

1: The PHY receives the stream of a frame from the twisted pair Rx.
2: The PHY transmits a frame with some signals drivers to the receiver.
The receiver stores a frame with her frame header in a RAM.

3: The controller reads a stored frame.

The controller parses a read frame.

4: The controller stores data in registers or memories.

The application reads data in registers or memories.

The application stores events.

The controller gets the next event.

The application stores data in registers or memories.

The controller reads data in registers or memories.

5: The controller stores a created frame with her frame header in a RAM.

6: The transmitter reads a frame.

The transmitter sends a frame with some signals drivers to the PHY.
7: The PHY transmits the stream of a frame on the twisted pair Tx.
8: The application sets outputs.

The application reads inputs.

All information contained in this document is the property of the Hes-so.

sys_clock

Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV

H €S MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 10

5 CONTENT OF DESIGN

The following figure shows the SimAP architecture. Each block will be described in
the next chapters.

(F g N\
rx_clock FPGA MAC-IO
start of framf write)
MR > Rgseaddress selreg blog Ay
_address address .
b data i
PHY » wd ; o
Ethernet interface controller I e
chip base address _SimAP _SImAP
_address _example
MII] Tx a2 vent n
< write
end of frame;
tx_clock L) sys._clock

Figure 3: SimAP architecture

For this project, there are 3 important libraries:
- interface_Ethernet_lib (block: interface)
- controller_SimAP_lib (block: controller_SimAP)
- application_SimAP_lib (block: application_SimAP_example)

In the library: interface_Ethernet_lib, there are all elements to make the reception of
frames with the storage and to make the transmission of frames with the storage.

In the library: controller_SimAP_lib, there are all elements to communicate respecting
the protocol: SImAP and to store data in registers or memories.

In the library: application_SimAP_lib, there are only the elements to make a little
example comprising all registers or memories to be able to test elements describes in
SIimAP documentation.

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Hes

Doc. Ref:
Issuelrev:
Date:
Page:

MAC Project

MAC-RPT-000-HEV

21-
October, 2007
11

6 INTERFACE ETHERNET

6.1 Functionality

The interface receives data from PHY Ethernet chip and saves them on a RAM.
A structure is created to recognize what is saved (See part: 14.3 RAM structure).
To read correct data, it's necessary to set the signals: base address and address.

A signal will be transmitted when the SFD (Start Frame Delimiter) is detected.
(This signal, it's a pulse which depends of rx_clock.)

And interface transmits data to PHY Ethernet chip.

6.2 Content summary

The following figure shows the interface architecture. Each block will be described in
details in the next chapters.

r
T T Interface

Rx > receiver P

\ 4

A 4

2 4

29900502 125555444522292990545%%
R R,
t i“"“‘i t““ .x\s.a\{.x\s.a\{.x\s.a\{.x\s.a\{.x\s.a\{.x\s.a\{.x\s.a\{.x\#.\{.J\H.\{.J\H.\{.J\H.\{.x\#.\{.x\#.\{ﬂ‘._

Figure 4: Interface architecture

All information contained in this document is the property of the Hes-so.

base address

start of frame
base address

sys.ctock

Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref:
H es MAC Project Issue/rev:

Date:

Page:

MAC-RPT-000-HEV
21-

October, 2007

12

6.3 Content description
6.3.1 receiver

6.3.1.1 Functionality
The receiver receives data from PHY Ethernet chip.

When the SFD (Start Frame Delimiter) is detected, a pulse is sent.
(This signal isn’t synchronize.)

He checks the received data to detect a CRC error or the transmission error signal.

With signal: base address, it's possible to check free memory.

He writes data in RAM with a specific format (see part: 14.3 RAM structure).

These data can be read by changing address.

6.3.1.2 Content summary

rreceiver

p start of frame

data |
synch |-*

data

data |Wword

receiver

base-address

p——] data

Rx » to >
word controller AfPTEsEy dp
= < address
A
word
crc_ok
VvV
cre32 reset
synch
\ -/

rx_clock sys.clock

Figure 5: Receiver architecture

All information contained in this document is the property of the Hes-so.

Its contents cannot be reproduced or divulged without the school's

approval.

H es _ Doc. Ref; MAC-RPT-000-HEV
MAC Project Issue/rev: 2/-

Date: October, 2007

Page: 13

6.3.1.3 Content description

6.3.1.3.1 data to word

6.3.1.3.1.1 Functionality
He adapts the parallel bits number.

6.3.1.3.1.2 Notice

At this moment, it's only possible to have at entry a parallel bits number smaller than
the parallel bits number at exit.

6.3.1.3.2 crc32

6.3.1.3.2.1 Functionality

He calculates CRC as long as calculate is high and enable is high.
He compares CRC with residue as long as enable is low.

6.3.1.3.2.2 Notice

crc32 is created with crcgen.pl (Version: 2.0)
(2007 HES-SO // Valais — Wallis)

http://hevs-cof.dynalias.net:8057/internet/ CRC/

Specifications of CRC 32
constant input_width : positive := 8;
constant crc_width : positive := 32;

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

http://hevs-cof.dynalias.net:8057/internet/CRC/

H es _ Doc. Ref; MAC-RPT-000-HEV
MAC Project Issue/rev: 2/-

Date: October, 2007

Page: 14

6.3.1.3.3 synchronizer

6.3.1.3.3.1 Functionality
He synchronizes data input to rx clock.

6.3.1.3.4 reset synch

6.3.1.3.4.1 Functionality
He synchronizes reset input to rx clock.

6.3.1.3.5 ramdp

6.3.1.3.5.1 Functionality

It's a ram with dual port.
A port works with rx clock and he is used for the writing.
The other port works with system clock and he is used for the reading.

6.3.1.3.5.2 Notice
The implementation is based on XST User Guide (xst.pdf) page 147.

6.3.1.3.6 muXx ram data

6.3.1.3.6.1 Functionality
He picks a data input to set the output.

6.3.1.3.6.2 Notice

In this case, he is used to make believe that the data read are that of an empty
header while the memory is initialized.

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es Doc. Ref: MAC-RPT-000-HEV

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 15

6.3.1.3.7 receiver controller

6.3.1.3.7.1 Functionality

He guides and drives all signals to have the receiver functionality.
(He is the receiver brain.)

6.3.1.3.7.2 Content summary

7

receiver controller
p start of frame

base address

A 4
——— =
e rc frame & rc address g eSS
detector registers |length R

c

error name
T rc errors
registers errar niimher
— » [cdaa jword valid header
| register
errar header

LY

> rc mux
> data_~ —— (8112
frame data = | to write
init data =
\. J
word crc_ok
rx_clock vy
Figure 6: Receiver controller architecture
Notice:

To see content of all data type (valid header, error header, frame data and init data),
open HDL designer and open receiver controller struct.

6.3.1.3.7.3 Content description
6.3.1.3.7.3.1 rc frame detector

6.3.1.3.7.3.1.1 Functionality

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es _ Doc. Ref; MAC-RPT-000-HEV
MAC Project Issue/rev: 2/-

Date: October, 2007

Page: 16

He sends a pulse when the SFD (Start Frame Delimiter) is detected.
(This pulse is asynchronous.)

6.3.1.3.7.3.2 rc dataregister

6.3.1.3.7.3.2.1 Functionality

It's a register to delay the data frame signals because in this case it's necessary to
have 16 bits to write data frame in RAM.

6.3.1.3.7.3.3 rc address registers

6.3.1.3.7.3.3.1 Functionality

He is constituted 3 registers (for current address, begin address and end address)
and process driven by rc heart to control the registers.

This is used to check and to send the state of the RAM.

6.3.1.3.7.3.4 rc errors registers

6.3.1.3.7.3.4.1 Functionality

He is used to store, to check and to send the state of current error and previous
error.

6.3.1.3.7.3.5 rc mux datato write

6.3.1.3.7.3.5.1 Functionality
He picks a data input to set the output.

6.3.1.3.7.3.5.2 Notice
In this case, he is used to select data type which will be written in RAM.

6.3.1.3.7.3.6 rc heart

6.3.1.3.7.3.6.1 Functionality

He directs all rc (receiver controller) internal blocks to realize a sequence of work.
(He is the receiver controller heart.)

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es MAC Project

Doc. Ref: MAC-RPT-000-HEV

Issue/rev: 2/-
Date: October, 2007
Page: 17

6.3.2 transmitter

6.3.2.1 Functionality

The transmitter reads a frame in RAM with a specific format (see part: 14.3 RAM

structure).

He calculates the CRC.

He sends the stream of a frame with all signals control to the PHY.

When all data are sent, a pulse is created.
(This signal: end of frame isn’t synchronized.)

6.3.2.2 Content summary

el P aS € AdArEss

transmitter et
controller
............ I

.. sys. clock
...... i
3 UL sttt gl
G R R R R R R R L L LR LR L L LT LLLLL L
A A A A A A A A AR A A A5

Figure 7: Transmitter architecture

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV
Hes oc. Re C 000

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 18

6.3.2.3 Content description

6.3.2.3.1 byte to nibble

6.3.2.3.1.1 Functionality
He adapts the parallel bits number.

6.3.2.3.1.2 Notice
At this moment, it's usable only with nibble because the PHY gets 4 works by 4 bits.

6.3.2.3.2 crc32
6.3.2.3.2.1 Functionality

He calculates CRC as long as calculate is high and enable is high.

6.3.2.3.2.2 Notice

crc32 is created with crcgen.pl (Version: 2.0)
(2007 HES-SO // Valais — Walllis)

http://hevs-cof.dynalias.net:8057/internet/ CRC/

Specifications of CRC 32
constant input_width : positive := 8;
constant crc_width : positive := 32;

6.3.2.3.3 synchronizer

6.3.2.3.3.1 Functionality
He synchronizes data input to tx clock.

6.3.2.3.4 reset synch

6.3.2.3.4.1 Functionality
He synchronizes reset input to tx clock.

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

http://hevs-cof.dynalias.net:8057/internet/CRC/

Doc. Ref: MAC-RPT-000-HEV

H es MAC Project Issue/rev:
Date:
Page:

21-
October, 2007
19

6.3.2.3.5 ramdp

6.3.2.3.5.1 Functionality

It's a ram with dual port.
A port works with tx clock and he is used for the writing.

The other port works with system clock and he is used for the reading.

6.3.2.3.5.2 Notice
The implementation is based on XST User Guide (xst.pdf) page 147.

6.3.2.3.6 muXx ram data

6.3.2.3.6.1 Functionality
He picks a data input to set the output.

6.3.2.3.6.2 Notice

In this case, he is used to make believe that the data read are that of an empty

header while the memory is initialized.

All information contained in this document is the property of the Hes-so.

Its contents cannot be reproduced or divulged without the school's approval.

Hes

MAC Project

Doc. Ref:
Issue/rev:

Date:
Page:

MAC-RPT-000-HEV
2/-

October, 2007

20

6.3.2.3.7 transmitter controller

6.3.2.3.7.1 Functionality

He guides and drives all signals to have the transmitter functionality.

(He is the transmitter brain.)

6.3.2.3.7.2 Content summary

tc IFG
counter

word to
data

tc address
registers

Figure 8: Transmitter controller architecture

6.3.2.3.7.3 Content description

6.3.2.3.7.3.1 tc address registers

6.3.2.3.7.3.1.1 Functionality

He is constituted 3 registers (for current address, begin address and end address)

and process driven by tc heart to control the registers.

This is used to check and to read the state of the RAM.

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV
Hes oc. Re C 000

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 21

6.3.2.3.7.3.2 tc IFG counter

6.3.2.3.7.3.2.1 Functionality

He is used to wait a minimum time before to send the next frame.
6.3.2.3.7.3.3 word to data

6.3.2.3.7.3.3.1 Functionality

He adapts the parallel bits number.

6.3.2.3.7.3.4 tc heart

6.3.2.3.7.3.4.1 Functionality

He directs all tc (transmitter controller) internal blocks to realize a sequence of work.
(He is the transmitter controller heart.)

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV
Hes

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 22

7 CONTROLLER SIMAP

7.1 Functionality

There are 2 information sources:
- Rx RAM (from Ethernet)
- event register (from inputs)

And there are 2 storing places:
- TXx RAM (for Ethernet)
- registers and memories (for outputs)

With that, it is possible to have various functionalities:
- an event leads a broadcasted frame on Ethernet.
- a frame with physical addressing can be write or read anything in registers or
memories and returns a response on Ethernet.
- a frame with group addressing can be write or read anything in registers (not
in memories) and returns a response on Ethernet.

So the controller reads the frames in the Rx RAM.

He gets the events.

He parses the frames using the structure (See part: 14.3 RAM structure).
He reads or writes in registers or memories.

He stores the created frames in the Tx RAM.

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es _ Doc. Ref; MAC-RPT-000-HEV
MAC Project Issue/rev: 2/-

Date: October, 2007

Page: 23

7.2 Content summary

The following figure shows the controller SimAP architecture. Each block will be
described in details in the next chapters.

sys:-clotk
& .
controller- SimAP
checker
v, W =
XEOES
o8 R%R =X X7
el i = Q
e=] B=1 BN i, 4
rxsclock start of frame T i
rx-base address < reader
rx-address ¢ address selgc;tor - selreg block
registers) register
-| receiver S50000
rx‘data »| controller P write-data
tx-data < < read-data
tx'basé-address > \év(;'ter apgl(ljcatlon S
tx address. ¢ address address p address
registers registers
BB AA A A A eventnb
work
register
\ J

Figure 9: Controller SimAP architecture

Notice:
To see the exact contents, open HDL designer and open controller SimAP struct.

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Y/ Doc. Ref: MAC-RPT-000-HEV
HES'SQ%/ ALAIS oc. Re

WALLIS MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 24

7.3 Content description
7.3.1 controller

7.3.1.1 Functionality

The controller guides and drives all signals to have the controller SimAP functionality.
(It's the brain of controller SImAP.)

7.3.1.2 State machine summary

2 new event
1: Rx RAM not empty
& TXRAM not full & Tx RAM not full

3: others

Figure 10: State machine of controller

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es _ Doc. Ref; MAC-RPT-000-HEV
MAC Project Issue/rev: 2/-

Date: October, 2007

Page: 25

7.3.2 reader address registers

7.3.2.1 Functionality

He is constituted 3 registers (for current address, begin address and end address)
and process driven by controller to control the registers.

This is used to check and to read the state of the RAM.

7.3.3 checker

7.3.3.1 Functionality

This block compares data combined with a mask to a value.
7.3.4 work register

7.3.4.1 Functionality

The work register stores data.

7.3.5 selector register

7.3.5.1 Functionality

The selector register selects a memory so as to work with.
7.3.6 blocks: mux and demux

7.3.6.1 Functionality

They are used to direct the data flow.

7.3.7 application address registers

7.3.7.1 Functionality

He is constituted 3 registers (for current address, begin address and end address)
and process driven by controller to control the registers.

This is used to write or to read memory block.

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es _ Doc. Ref; MAC-RPT-000-HEV
MAC Project Issue/rev: 2/-

Date: October, 2007

Page: 26

7.3.8 group config addressing

7.3.8.1 Functionality

He adapts the address to read the correct part of config RAM.
7.3.9 group config memory

7.3.9.1 Functionality

It's a ram with dual port.
Where is stored the GID and the EIB flags.

7.3.9.2 Notice
The implementation is based on XST User Guide (xst.pdf) page 147.

7.3.10 writer address registers

7.3.10.1 Functionality

He is constituted 3 registers (for current address, begin address and end address)
and process driven by controller to control the registers.

This is used to write frame in the RAM.

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es _ Doc. Ref; MAC-RPT-000-HEV
MAC Project Issue/rev: 2/-

Date: October, 2007

Page: 27

8 APPLICATION

8.1 Functionality

The block: "application SImAP example" has been created so as to have a functional
demo.

8.2 Content summary

The following figure shows the application SImAP example architecture. Each block
will be described in details in the next chapters.

rapplication SimAP.example)
sel.reg-block
write . .
ik All memories or registers :
2 ;ess - ROM registers,
ynedas - params registers,
- program memory,
- groupe value registers, o
Fohd-dath g -group description registers. application
test * Ay
event nb 4 Ve IK———
& registers ‘
\. J
sys.<clock

Figure 11: Application SImAP example architecture

Notice:

It's only an example of something that runs.

To see the exact contents, open HDL designer and open application SIimAP example
struct.

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es _ Doc. Ref; MAC-RPT-000-HEV
MAC Project Issue/rev: 2/-

Date: October, 2007

Page: 28

8.3 Content description
8.3.1 blocks: mux and demux
8.3.1.1 Functionality

They are used to direct the data flow.

8.3.2 blocks: ROM registers, params registers, program memory, groupe
value registers, groupe description registers

8.3.2.1 Functionality

It is necessary that they are readable or writable as a RAM from controller interface.
And from application, it is possible to read or to write as a RAM or as a register.

8.3.3 application test

8.3.3.1 Functionality

The application test is an example to use the registers with 10s.
8.3.4 event register

8.3.4.1 Functionality
It is an example to store and to send events.

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es _ Doc. Ref; MAC-RPT-000-HEV
MAC Project Issue/rev: 2/-

Date: October, 2007

Page: 29

9 TEST BENCH

9.1 receiver_tb

9.1.1 Info on the test

A table is used to describe the test of receiver.
Table contents:

RAM
total time| run time what occurs addr (hex)| content (hex)

Regularly, a little sentence summarizes the part of test and why it’s tested.
And some time, there is a graph of waves.

9.1.2 Test sequence
To start, the test of reader is locked to address: 0 hex and to base_address : 0 hex.

9.1.2.1 Part: Reset sequence

The test begins with a reset.
It's to check signals and state of RAM.

0 to 1999 => don't know XXX XXXX
2000 ns| => begin of reset XXX XXXX
2216 216 ns| => end of reset 000 0000

wave

memory

00000000 (0000 3000 20000 ROO0k 20000 POO00 20000 OO0 FOOOK o000 00N 000K ROODON oD WOROOn WK
00000010 [REE00 30000 20000 POOOk 20000 POO00 20000 OO0 WOOOK PoDO0 0D OO0 WOOON WorDOK WOROOn WK
00000020 [RE000 30000 20000 POOOK 20000 POO00 20000 OO0 WOOOK OO0 ORI 00O WODON ORI WOROOn WK

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es Doc. Ref: MAC-RPT-000-HEV

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 30

9.1.2.2 Part: Detail of a valid frame without error

The writing of a valid frame.
It's to check if all data of frame is written in RAM.

7540 5324 ns|=> begin of frame NC NC
640 ns|=> SFD (Start Frame Delimiter) NC NC

196 ns|=> write first byte of the frame 001 FFFF

160 ns|=> write next byte of the frame 002 FFFF

160 ns|=> write next byte of the frame 003 FFFF

to O1E ADF

13176 4480 ns |=> write first byte of CRC 01F E625
160 ns|=> write second byte of CRC 020 c4c7

160 ns|=> write empty header 021 0000

13576 80 ns |=> write frame header 000 8021

Rem

NC : Not Change
ADF : All Data of Frame

T JoTi INT M IN0 BT TR) e T TP D T TN WA W LT ST TRT ST TR RATIO T RRTUR PR TN T b AT W T TR BTN (I P e T T (R

[T P T R]
i n e e e mwn e e
I TR T e

memory

noooooao |so<l FFFF FFFF FFFF 5341 4501 0203 FAQE 3345 06581 0002 0000 0001 0000 000d oooo
oooooolo joooo 0000 0000 0000 0000 Qo000 0000 0000 0000 0000 Qo000 0000 0000 0000 000 E6z25
00000020 |C4CT 0000 3000 20000 20000 FO000 OGO OO0 PoO00 20000 MO0 FODRDOn OO HODOn HoDon WO
QOO00030 B30 X000 30000 20000 20000 2000 ROOO0)OOOD MOO00 20000 2000 ROOOI OO MOOOL 30000 3000

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es _ Doc. Ref; MAC-RPT-000-HEV
MAC Project Issue/rev: 2/-

Date: October, 2007

Page: 31

9.1.2.3 Part: CRC error and multiple Rx errors.

The writing of an invalid frame (CRC error).

It's to check if after the writing of frame, he places correctly the new empty header

and correctly writes the error header.

| | 6480 ns |=> write empty header | 022 | 0000 |
20136 80 ns|=> write error header: CRC error 021 1001

An Rx error during the writing of a valid frame.
It's to check the detection of Rx error and the validation of previous error header.

5480 ns |=> write empty header 023 0000
80 ns|=> validation of the previous error header 021 9001
25736 40 ns |=> write error header: Rx error 022 2001

An Rx error during the writing of a valid frame.
It's to check the detection of a same error, the counter of error and if the error header
is correctly places.

6360 ns|=> write empty header 023 0000
32216| 120 ns|=> write error header: second Rx error | 022 2002 |
An Rx error during the writing of a valid frame.
It's to check a second time.
6400 ns |=> write empty header 023 0000
| 38736| 120 ns|=> write error header: third Rx error | 022 2003 |

wave

memory

gooooond |(g02l FFFF FFFF FFFF 5341 4501 0203 FAOQOE 5345 0831 0002 0000 0001 0000 Qooo oooo
Qooooold (0000 o000 Qoo QooQ 0000 Q000 0000 o000 Qo000 0000 o000 Q0000 o000 0000 Qo000 Eez2s
oooooozo (C4C? 9001 2003 0000 FFFF FFFF FFFF 5341 4501 0203 FAOE 5345 0651 0002 0000 0001
0ooooos0 (0000 o000 Qoo QooQ 0000 Q000 0000 o000 Qo000 o000 o000 Q000 o000 0000 Qooo oooo
00000040 (1925 CACT Q000 000K F000] PooOn FOOon FOood OO 2ol WOnoOel POl JoeDnol WOl Woleln FODOK

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es _ Doc. Ref; MAC-RPT-000-HEV
MAC Project Issue/rev: 2/-

Date: October, 2007

Page: 32

9.1.2.4 Part: Fill the RAM and test the limit of free RAM.

A complete frame is written in RAM to easily see where the pointer of writing is in
RAM.

The writing of a valid frame.
It's to check if all data of frame is written in RAM and previous error header are
correctly validated.

7240 ns |=> write empty header 044 0000
120 ns|=> validation of the previous error header 022 A003
46136 40 ns |=> write frame header 023 8021

At this moment, the test of reader stays locked but the address becomes 47 hex and
the base_address becomes 47 hex in order to fill quickly the buffer and to see if
anything is write at base_address.

The writing of a valid frame.
It's to check detection of full buffer and if the security of 1 RAM line is sufficient.

1480 ns|=> write empty header 045 0000
| 47696| 80 ns|=> write error header: buffer is full (first time) | 044 4001 |
The writing of a valid frame.
It's to check a second time the security of 1 RAM line.
6240 ns|=> write empty header 045 0000
| 54056| 120 ns|=> write error header: buffer is full (second time) 044 4002 |

The writing of a valid frame.
It's to check a second time the security of 1 RAM line.
6400 ns |=> write empty header 045 0000
| 60576| 120 ns|=> write error header: buffer is full (third time) | 044 4003 |

The writing of a valid frame.
It's to only to increment error counter.
6360 ns|=> write empty header 045 0000
| 67056| 120 ns|=> write error header: buffer is full (fourth time) | 044 4004 |

The writing of a valid frame with an Rx error.

It's to check the priority when the buffer is full.

| | 5640 ns |=> write empty header | 045 | 0000 |
72816 120 ns|=> write error header: buffer is full (fifth time) 044 4005

The writing of a valid frame.
It's to check if this error is considered as another error.
7120 ns|=> write empty header 045 0000
| 80056| 120 ns|=> write error header: buffer is full (sixth time) | 044 4006 |

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Hes

Doc. Ref: MAC-RPT-000-HEV

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 33

The writing of a valid frame.

It's to only to increment error counter.

6400 ns |=> write empty header 045 0000
| 86576| 120 ns|=> write error header: buffer is full (seventh time) 044 4007 |
The writing of a valid frame with an Rx error.
It's to check a second time the priority when the buffer is full.
5600 ns |=> write empty header 045 0000
| 92296| 120 ns|=> write error header: buffer is full (eighth time) | 044 4008
The writing of a valid frame with an Rx error.
It's to check when Rx error is sent 2 times.
| | 6400 ns |=> write empty header | 045 | 0000 |
98816 120 ns|=> write error header: buffer is full (ninth time) 044 4009
The writing of a valid frame.
It's to only to increment error counter.
7120 ns|=> write empty header 045 0000
| 106056| 120 ns|=> write error header: buffer is full (tenth time) | 044 | 400A |

wave

memory

[—
LILRE 14 N[)

ooooooon
ooooooLo
oooooozo
oooooosn
ooooooga

g0zl
oooo
CACT
aooo
oooo

FFFF FFFF
oooo o000
Q001 A003
oooag oooo
0000 EazZs

FFFF
oooo
g021
oooo
c4c?

5341 4501 0Z03 FAODE 3345 0631 000Z 0000 0001 QOO0 0000 Qoo
0000 0000 0000 0000 0000 0000 Q000 0000 0000 0000 000l Eezs
FFFF FFFF FFFF 5341 4501 0203 FAOQE 5345 0681 0002 0000 QoO0l1
0000 o000 0oQa 0000 0000 0000 0000 0000 0000 Qo000 o000 Qooo
4004 0000 FFFF 3300 X000 ROOOk RO FOOein Forledn WOoiol WOlinl ¥oieln

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Hes

Doc. Ref: MAC-RPT-000-HEV

MAC Project Issue/rev:
Date:
Page:

2/-

October, 2007

34

9.1.2.5 Part: Fill the RAM and test the limit of free RAM.
This part is different of the previous part because it starts with Rx error and not buffer

is full.

At this moment, the test of reader stays locked but the address becomes 49 hex and
the base_address becomes 49 hex in order to fill quickly the buffer and to see if
anything is write at base_address.

The writing of a valid frame with an Rx error.

111816

5640 ns |=> write empty header 046
80 ns|=> validation of the previous error header 044
40 ns |=> write error header: Rx error 045

The writing of a valid frame with an Rx error.

| 119016|

7080 ns
120 ns

=> write empty header 046
=> write error header: second Rx error 045

The writing of a valid frame.
It's to check detection of full buffer and if the security of 1 RAM line is sufficient.

125696

6320 ns|=> write first word of frame 046
240 ns |=> write empty header 047
80 ns|=> validation of the previous error header 045
40 ns |=> write error header: buffer is full (first time) 046

The writing of a valid frame.

| 132016|

6200 ns
120 ns

=> write empty header 047
=> write error header: buffer is full (second time) 046

The writing of a valid frame with an Rx error.
It's to check the priority when the buffer is full.

5680 ns |=> write empty header 047
137816 120 ns|=> write error header: buffer is full (third time) 046
The writing of a valid frame.
7080 ns |=> write empty header 047
145016 120 ns|=> write error header: buffer is full (fourth time) 046
The writing of a valid frame with an Rx error.
It's to check the priority when the buffer is full.
5680 ns|=> write empty header 047
150816 120 ns |=> write error header: buffer is full (fifth time) 046

All information contained in this document is the property of the Hes-so.

0000
CO0A
2001

0000
2002

0000
0000
A002
4001

0000
4002

0000
4003

0000
4004

0000
4005

Its contents cannot be reproduced or divulged without the school's approval.

Hes

Doc. Ref: MAC-RPT-000-HEV

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 35

memory

aooaoonn
ooooooln
aooooozn
oooooosn
aooooodn
aooooosn

g0zl
aooa
cac’y
aooa
aooa

FFFF FFFF
oooo ooao
2001 A003
oooo ooao
o000 EaZs
OO OO

FFFF
ooao
g0zl
ooao
c4cTy

5341 4501 0203 FAOQE
ooog aooo oooo o000
FFFF FFFF FFFF 5341
ooog aooo oooo o000
CO0A A00E 4005 0000
OO OROROR ORI OO

3345 0681 0002 0000 0001 0000 0000 ooo0
0000 0000 0000 0000 0000 0000 0000 ESEs
4501 0203 FAOE 8345 0631 0002 0000 000l
0000 0000 0000 0000 o000 0000 0000 ooo0
ORI ORTROR WORDRON ORDHOR ORDROn, OXDROR WOROnOR WOORIK
ORI ORTROR WORDRON ORDHOR ORDROn, OXDROR WOROnOR WOORIK

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV

H €S MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 36

9.1.2.6 Part: Test if reader can move correctly.

At this moment, the test of reader becomes unlocked and starts checking of data to
place correctly the base_address at the next reading point.
And, the base_address and the address become 0 hex.

Only the same valid frame is sent infinitely.

] [) Il [|]
DM T LT T O L0 O T TR O O T O il G T D D O P T T O T L O T O T [Tl i el

LI] e p o1 p e | 1 1 LI D O I R NN I R I I B | it

g8 L L L _J_ g _J J I JJ 1o b e ujr gy Jr 1 J_p s pujgoutrjuy
I [N N NN NN N NN N N NN N N NN N D N N N N O NN N N O N N N N B B BN N N BB
| BF = S EEEE R AL EL N RS EE AL S B N LS B SR Sk EE A N N L NS B AW B B e B

I I . Y I U I N N N N N N D N N N N L L
EIXININ IX INTH|/ON [N CH|CNCY 16 IN & I4 I8 X IE] 1N IX IN 1IN TE O IX|(N CF (N IN CW (4@ §§ IN I4 4 14 13 1€ 14 13 IN IX1X 1

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Hes

MAC Project

Doc. Ref: MAC-RPT-000-HEV
Issuelrev: 2/-
Date: October, 2007
Page: 37

memory

oooooooo
ooooooLo
oooooozn
ooooo030
00000040
oooooos0
ooooooesn
oooooo7o
0ooooosn
oooooos0
oooo0ooan
000000ho
0ooo0ooco
oooooodan
0000o0en
ooooooen
ooooolo0
oooooLio
ooooo0Llzo
00000130
00000140
00000150
ooooolean
00ooo17o
oooooLlsn
0oooo1an
oooo0lan
000001bo
oooo0lco
000o0o1dn
00o000len
0000olED
ooooozo0
0oooozlo
00000220
000o0oz30
00000z40
000o0ozs0
0ooo00zan
000o0oz70
oooo00zs0n
000o0ozan
oooo0zan
00000zbo
00o0o00zco
0000o0zdn
00000zen
00000ZLn
oooo0300
00000310
00000320
00000330
00000340
00000350
00000360
00000370
00o0003a0
00000390
oooo03an
000003b0
00o0003co
oooo034an
000003en
00o0o003e0

oooo
oooL
oooo
oooo
oooo
oooz
oooo
068l
oooo
9345
oooo
FAOE
oooo
0203
oooo
4501
oooo
5341
oooo
FFFF
oooo
FFFF
oooo
FFFF
oooo
g0zl
oooo
cacy
oooo
E625
oooo
oooo
oooo
oooo
oooL
oooo
oooz
oooo
0esl
oooo
8345
oooo
FAOE
oooo
0z03
oooo
4501
oooo
5341
oooo
FFFF
oooo
FFFF
oooo
FFFF
oooo
G021
oooo
C4c?
oooo
EGZ5
oooo
oooo
oooo

oooo
oooo
oooo
oooL
oooo
oooo
oooo
oooz
oooo
0681
oooo
G345
oooo
FAOE
oooo
0203
oooo
4501
oooo
5341
oooo
FFFF
oooo
FFFF
oooo
FFFF
oooo
g0zl
oooo
cacy
oooo
EEZ5
oooo
oooo
oooo
oooo
oooo
oooo
oooz
oooo
0&sl
oooo
G345
oooo
FA0E
oooo
0z03
oooo
4501
oooo
5341
oooo
FFFF
oooo
FFFF
oooo
FFFF
oooo
G021
oooo
C4c?
oooo
E625
oooo

EEZ5
oooo
oooo
oooo
oooo
oooL
oooo
oooo
oooo
oooz
oooo
0681
oooo
G345
oooo
FAOE
oooo
0203
oooo
4501
oooo
5341
oooo
FFFF
oooo
FFFF
oooo
FFFF
oooo
g0zl
oooo
cacy
oooo
EEZ5
oooo
oooo
oooL
oooo
oooo
oooo
oooz
oooo
0681
oooo
G345
oooo
FA0E
oooo
0z03
oooo
4501
oooo
5341
oooo
FFFF
oooo
FFFF
oooo
FFFF
oooo
G021
oooo
C4c?
oooo

c4acy
oooo
Egzs
oooo
oooo
oooo
oooo
oooL
oooo
oooo
oooo
oooz
oooo
0681
oooo
G345
oooo
FAOE
oooo
0203
oooo
4501
oooo
5341
oooo
FFFF
oooo
FFFF
oooo
FFFF
oooo
g0zl
oooo
c4acy
oooo
oooo
oooo
oooo
oooL
oooo
oooo
oooo
oooz
oooo
0681
oooo
G345
oooo
FA0E
oooo
0z03
oooo
4501
oooo
5341
oooo
FFFF
oooo
FFFF
oooo
FFFF
oooo
G021
oooo

g0zl
oooon
c4c?
oooon
E6zs
oooon
oooo
oooon
oooo
oooL
oooo
oooon
oooo
onnz
oooo
06a1
oooo
G345
oooon
FADE
oooon
0203
oooon
4501
oooon
5341
oooon
FFFF
oooon
FFFF
oooon
FFFF
oooon
oooo
oooon
E6z2s
oooon
oooo
oooon
oooo
oooL
oooo
oooon
oooo
onnz
oooo
06a1
oooo
G345
oooo
FANE
oooo
0z03
oooo
4501
oooo
5341
oooo
FFFF
oooo
FFFF
oooon
FFFF
oooon

FFFF
aooon
g0zl
aooon
c4cT
aooon
E6zs
aooon
Qooo
aooon
Qooo
oooL
Qooo
aooon
oooo
onnz
oooo
06a1
aooon
G345
aooon
FAOE
aooon
0zo3
aooon
4501
aooon
5341
aooon
FFFF
aooon
FFFF
aooon
FFFF
aooon
c4c?
aooon
E6z2s
aooon
Qooo
aooon
Qooo
oooL
Qooo
aooon
Qooo
onnz
Qooo
06aa1
Qooo
G345
Qooo
FANE
Qooo
0z03
Qooo
4501
Qooo
5341
oooo
FFFF
aooon
FFFF
aooon

FFFF
aooon
FFFF
aooon
g0zl
aooon
c4acy
aooon
E6Z5
aooon
Qooo
aooon
Qooo
oooL
oooo
aooon
oooo
onnz
aooon
06E1
aooon
G345
aooon
FAOE
aooon
0203
aooon
4501
aooon
5341
aooon
FFFF
aooon
FFFF
aooon
g0zl
aooon
c4ac?
aooon
E6z5
aooon
Qooo
aooon
Qooo
oooL
Qooo
aooon
Qooo
onnz
Qooo
06aaL
Qooo
G345
Qooo
FADE
Qooo
0203
Qooo
4501
oooo
5341
aooon
FFFF
aooon

FFFF
aooon
FFFF
aooon
FFFF
aooon
g0zl
aooon
c4acy
aooon
E6Z5
aooon
Qooo
aooon
oooo
oooL
oooo
aooon
aooon
onnz
aooon
0651
aooon
G345
aooon
FAOE
aooon
0203
aooon
4501
aooon
5341
aooon
FFFF
aooon
FFFF
aooon
g0zl
aooon
c4ac?
aooon
E6z5
aooon
Qooo
aooon
Qooo
oooL
Qooo
aooon
Qooo
onnz
Qooo
06aaL
Qooo
G345
Qooo
FADE
Qooo
0203
oooo
4501
aooon
5341
aooon

5341
aooa
FFFF
aooa
FFFF
aooa
FFFF
aooa
G021
aooa
c4acy
aooa
E6Z5
aooa
aooo
aooa
aooo
oool
aooa
aooa
aooa
ooonz
aooa
o6&l
aooa
G345
aooa
FAQE
aooa
0z03
aooa
4501
aooa
5341
aooa
FFFF
aooa
FFFF
aooa
g0zl
aooa
c4ac?
aooa
E6Z5
aooa
aooo
aooa
aooo
oool
aooo
aooa
aooo
oooz
aooo
065l
aooo
G345
aooo
FAOE
aooo
0z03
aooa
4501
aooa

4501
oooo
5341
oooo
FFFF
oooo
FFFF
oooo
FFFF
oooo
021
oooo
c4acy
oooo
EfZ5
oooo
aooo
oooo
oooo
oool
oooo
oaoo
oooo
ooz
oooo
o6&l
oooo
5345
oooo
FAQE
oooo
0z03
oooo
4501
oooo
FFFF
oooo
FFFF
oooo
FFFF
oooo
g0zl
oooo
c4acy
oooo
E625
oooo
ululula]
oooo
ululula]
oool
ululula]
oooo
ululula]
oooz
ululula]
065l
ululula]
G345
aooo
FAOE
oooo
0203
oooo

0z03
oooo
4501
oooo
5341
oooo
FFFF
oooo
FFFF
oooo
FFFF
oooo
g0zl
oooo
c4acy
oooo
E6Z5
oooo
oooo
oooo
oooo
oool
oooo
oooo
oooo
oooz
oooo
063l
oooo
§345
oooo
FAQE
oooo
0z03
oooo
5341
oooo
FFFF
oooo
FFFF
oooo
FFFF
oooo
g0zl
oooo
c4cy
oooo
E6Z5
oooo
oooo
oooo
oooo
oool
oooo
oooo
oooo
000z
oooo
068l
oooo
9345
oooo
FAOE
oooo

FAQE
oooo
0z03
oooo
4501
oooo
5341
oooo
FFFF
oooo
FFFF
oooo
FFFF
oooo
g0zl
oooo
c4acy
oooo
E6Z5
oooo
oooo
oooo
oooo
oool
oooo
oooo
oooo
ooz
oooo
0631
oooo
§345
oooo
FAQE
oooo
4501
oooo
534l
oooo
FFFF
oooo
FFFF
oooo
FFFF
oooo
g0zl
oooo
c4cT
oooo
E6Z5
oooo
oooo
oooo
oooo
oooL
oooo
oooo
oooo
oooz
oooo
0681
oooo
8345
oooo

§345 0651 0002 0000
oooo oooo o000 0000
FAQE §345 0631 0002
oooo oooo o000 0000
0203 FADE §345 0831
oooo oooo o000 0000
4501 0Z03 FAQDE §345
oooo oooo o000 0000
5341 4501 0Z03 FAQE
oooo oooo o000 0000
FFFF 5341 4501 0203
oooo oooo o000 0000
FFFF FFFF 5341 4501
oooo oooo o000 0000
FFFF FFFF FFFF 5341
oooo oooo o000 0000
d0Z1 FFFF FFFF FFFF
oooo oooo o000 0000
C4C7 80Z1 FFFF FFFF
oooo oooo o000 0000
E6Z5 CA4C7 8021 FFFF
0000 0000 0000 0000
0000 EeZ25 C4C7 8021
0000 0000 0000 0000
o000 o000 E&Z5 C4C7
000l 0000 0000 0000
oooo oooo 0000 E&Z5
0000 0001 0000 0000
oooo oooo o000 0000
000z 0000 0001 0000
oooo oooo o000 0000
0631 0002 0000 0001
oooo oooo o000 0000
§345 0651 0002 0000
oooo oooo o000 0000
0203 FADE §5345 0631
oooo oooo o000 0000
4501 0203 FAQE 5345
oooo oooo o000 0000
5341 4501 0203 FAQE
oooo oooo o000 0000
FFFF 5341 4501 0203
oooo oooo o000 0000
FFFF FFFF 5341 4501
oooo oooo o000 0000
FFFF FFFF FFFF 534l
oooo oooo o000 0000
§0Z1 FFFF FFFF FFFF
oooo oooo o000 0000
C4C7 8021 FFFF FFFF
oooo oooo o000 0000
E6Z5 C4C7 g0zl FFFF
oooo oooo o000 0000
0000 Eg25 C4C7 8021
oooo oooo o000 0000
0000 0000 EGZ5 C4C7
oool oooo o000 0000
0000 0000 0000 ESEZS
oooo oool o000 0000
0000 0000 0000 o000
000z o000 0001 o000
oooo oooo o000 0000
0681 0002 0000 0001
oooo oooo o000 0000

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV

H €S MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 38

9.1.3 Notice

In a first time, only frames of mode: group addressing are sent.

(It's not necessary to have frames of type: physical addressing to test receiver. When
the block: interface Ethernet is connected to the block: controller SImAP, it’s
necessary to have all possible frames.)

It's possible to have any little change in the timing.

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV

H €S MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 39

9.2 transmitter_tb

| would not describe this part because | haven't correctly made this part.
(I have found more bugs when | have used the MAC_plus_tb.)

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV
Hes

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 40

9.3 MAC plus_tb

9.3.1 Little description of MAC_plus_tester_fas.vhd

A small index : from line 1 to line 20
Definition of all signals : from line 27 to line 160

Clocks signals : from line 168 to line 187
Reset process : from line 191 to line 208
Process to create and to send an Ethernet frame: from line 218 to line 452

Test sequence : from line 456 to line 2363

9.3.2 Test sequence
The test sequence is composite by 7 parts:

- Send only writing frames => line: 467
- Send only reading frames => line: 608
- Send only event => line: 701
- Send all frames with not SImAP frame => line: 770
- Send with transmission error => line: 900
- Transmission loss => line: 1069
- Others => line: 1947

9.3.2.1 Part: Send only writing frames

No event for this part (no buttons).
Reset and wait end of reset before send anything.

Sent frames:

- configure the device

- write dimming

- write led0 switching on
- write led0O switching off
- write led0 switching on
- write led0 switching on
- write led1 switching on

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es Doc. Ref:

MAC Project Issue/rev:

Date:
Page:

MAC-RPT-000-HEV
2/-

October, 2007

41

9.3.2.2 Part: Send only reading frames

No event for this part (no buttons).
No reset because this part uses the previous information.

Sent frames:
- read the configuration of the device
- read dimming
- read led0 switching
- read led1 switching

9.3.2.3 Part: Send only event
See the design of application_test because, it's special.
No reset because this part uses the configuration of the device.

Buttons pressed:
- all in same time => 1 frame is transmitted

- all 1 by 1 => 3 frames are transmitted (two buttons have the same event

number)
- button 0 a long time => 1 frame is transmitted
- button 2 => see effect of full Tx RAM

9.3.2.4 Part: Send all frames with not SImAP frame

Init buttons positions (all to low).
Reset and not wait end of reset before send anything.

Sent frames and buttons pressed:
- a frame with false SFD (Start Frame Delimiter)
- button 0

- configure the device with false SFD and with false destination address

- other Ethernet Type
- other address type
- button 2

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es Doc. Ref:

MAC Project Issue/rev:

Date:
Page:

MAC-RPT-000-HEV
21-

October, 2007

42

9.3.2.5 Part: Send with transmission error

No event for this part (no buttons).
Reset and not wait end of reset before send anything.

Sent frames:
- configure the device
- write dimming
- read dimming
- write ledO switching on with wrong CRC
- write ledO switching on with rx error
- write ledO switching on with rx error
- write led0 switching on
- read led0 switching
- read led0 switching with rx error
- read led0 switching with a biggest size

9.3.2.6 Part: Transmission loss

Init buttons positions (all to low).
Reset and wait end of reset before send anything.

In a first time a lot of frames are sent with a lot of events.
In a second time a lot of frames are sent.

In two times, it's possible to change the length of the frame, the number of the frames
and (only for the first time) the number of times that the button 2 stays at high.

9.3.2.7 Part: Others

Init buttons positions (all to low).
Reset and wait end of reset before send anything.

Sent frames:
- configure the device with an offset
- write anything in RAM of uP with offset
- send a fluid situation (from line 2056 to line 2193)
- an infinite loop (from line 2199 to line 2361)

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es MAC Project

Doc. Ref:
Issue/rev:

Date:
Page:

MAC-RPT-000-HEV
21-

October, 2007

43

10 TEST OF DEMO

10.1 Equipment

From Planet; www.planet.com.tw
A Ethernet switch PoE: FSD-804P
A PoOE splitter 5V: POE-151S-5V

Software: Ethereal or WireShark (To parse all frames)

From school

2 boards: FPGA-EBS

2 boards: HEB_ETHERNET PHY
2 boards: HEB_LCD _12C

(It's 2 devices. When the design is loaded in FPGA, it's 2 SDs).

With software, frames are created and sent.

10.2 Notice

This test is made with a switch because it must work with mode: full duplex (no CRS

and no COL).

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

http://www.planet.com.tw

Doc. Ref: MAC-RPT-000-HEV
Hes oc. Re C 000

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 44

11 IMPROVEMENTS TO MAKE

11.1 receiver

- to standardize the streaming (nibble -> byte -> word) so that this be more easy
to use the GBits Ethernet.

- to add a system to know the number of valid byte at the last line of structure in
Rx RAM (and that must be correct with generic RAM).

- to update to work with the mode: “half-duplex” => with HUB (CRS, COL, ...)

- to manage the signals: PRIO and ACK

- to not store the part: CRC in Rx RAM

- to add generic value so to know the limits of the used Ethernet frame and to add
the checking of these limits.

11.2 transmitter

- to standardize the streaming (nibble -> byte -> word) so that this be more easy
to use the GBits Ethernet.
- to add a system to know the number of valid byte at the last line of structure in
Rx RAM (and that must be correct with generic RAM).
- to update to work with the mode: “half-duplex” => with HUB
=> to check CRS before to send a frame.
=> to send JAM when a collision is detected.
=> to wait the timing who be calculate with the rule: “Binary exponential
Backoff” before to resend a frame.
=> to update RTRY when a frame is resent.
= ...
- to manage the signals: PRIO and ACK
- to add generic value so to know the limits of the used Ethernet frame and to add
the checking of these limits.
- to manage error header to use the signal: “Tx error”.
- (to add the PAD when the frame is smaller as the min Ethernet frame
=> | think:"This is not his job.”.)

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV
Hes oc. Re C 000

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 45

11.3 controller

- to use the MAC address stored in the parameters registers block.
(Currently, the MAC address is wrote in design.)
- to add a system to know the number of valid byte at the last line of structure in
Rx RAM (and that must be correct with generic RAM).
- to manage PRIO and ACK (and the management to resend a previous frame).
- to define if a device can have more one resister with the same GID.
(Currently, only the first found GID is used.)
- to define the constants in lib to remove the values in design.
=> code more readable.
- to check part to enable or disable (communication, read, write, transmit, update).
- to update the block to easily modify generics.
- to parse and to use a frame in physical addressing mode with EIB mode.
- to check all possible data in all field of an frame.

11.4 memories

To make a discussion about all memories because | haven't correctly understood the
documentation: SimAP.
- to choose which memories are in the block: “controller_SimAP “ or which are in
the block: “application_SimAP_example”.
- to define were are the information to define a GID (EIS, ECMD, PRIO, ACK, ...).
- to add a memory block to enable or to disable (communication, read, write,
transmit, update).
- to define how use the program memory block.
- to develop a system to work with offset and various sizes of RAM.
- to update memories types => initializable RAM => EEPROM
- to define the result on memories block after a reset
(to restore the default value => MAC address, ...).

11.5 application

- to add all registers to test all possible data define in SImAP.
- to modify the block: “application_test” to use all possible data.

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV

H €S MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 46

11.6 test

- to add at the receiver test bench all possible Ethernet frames.

- to make a new transmitter test bench.

- to make test for the reception and the transmission of a string.

- to make test for the reception and the transmission of a register > 8 bits.

11.7 others

- to create a generic to enable or disable the debug mode.
- to update the doc: SImAP (before make that, see part: 11.4 memories).
- (to add an auto reset for all RAM to be sure to do not stay with a full RAM.)

11.8 misc
The small frames are favoured by the checker of free space in RAM.

A GID has only a data type.

An event number must correspond at the address of all registers about the
correspond GID.

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es _ Doc. Ref; MAC-RPT-000-HEV
MAC Project Issue/rev: 2/-

Date: October, 2007

Page: 47

12 WHY THESE CHOICES ?
The device doesn’t work in mode: “half duplex”.

The big problem is when the transmitter sends a frame and receives the signal of a
collision.

He must to send JAM (This is 32 bits send for all devices can detect the collision.).
He must to calculate the waiting time before to resend the frame (To calculate this

waiting time, it is necessary to use the rule: “Binary exponential Backoff".).

So the interface works in mode: “full duplex” to simplify the management.
In this case, the signals: CRS and COL aren’t used.

To have a simple management, this interface doesn’t work with neither the priority of
a frame and nor acknowledge.

12.1 INTERFACE ETHERNET

Currently, the interface only works correctly with frames that have an even number of
bytes.

(Because at the beginning, | haven't created the header with an indication of the
number of the valid bytes at the last line of the frame in the RAM.)

12.1.1 receiver

The receiver doesn’t check the length of received frame because I’'m not sure that is
only used with an Ethernet frame without extension.

12.1.1.1 crc32

The Ethernet frame length is 64 to 1'518 bytes.
And because that, if one takes 16 bits to 16 bits (or more), it is necessary to have
signals to indicate how many bits are valid.

So to have the signals minimum, the data length of the block: crc32 is 8 bits.

This is why, the block: data_to_word was created.
(He assembles two received nibbles (4 bits) to have a word of 8 bits).

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV
Hes

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 48

12.1.1.2 RAMdp

There is a RAM dp for 2 reasons.

The first, as soon as the data are stored, it's possible to take the received data any
time, in any order and many times.

The second, it is of more easily being able to coordinate the data between the
Ethernet interface and the SimAP controller. The RAM makes it possible to
synchronize the two clocks (rx_clock and sys_clock) and there is not many signals to
drive communication, only a specific structure (see part: 14.3 RAM structure).

Because the maximum length of an Ethernet frame is 1’518 bytes (12’144 bits) and
the RAM width is 16 bits (choice to have a sufficient gap in order to write the header
data), the maximum space taken in RAM is 759 lines.

With the valid header and the empty header, there is 761 occupied lines.

So it's necessary to have 10 bits to write the length of a frame and 10 bits, it's too the
minimum number of RAM address (with 10 bits, there is 1’024 lines in RAM).

In this case, the data length is 16 bits and the address length is 10 bits.

This is why, the block: rc_data_register was created.
(He delays a word of 8 bits so that it is assembled with current word of 8 bits to have
a data of 16 bits).

As it's not possible (I haven't found) to init a RAM dual port for a FPGA: Spartan I,
the block: mux_ram_data was created.

(He makes it possible to mislead the reader so that it reads an empty header during
the RAM initialization.)

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV
Hes

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 49

12.1.1.3 receiver controller

To not have a too complicated schema, all blocks to drive the receiver are in receiver
controller.

The block: rc_heart coordinates all others blocks in the block: receiver. So to not
have memory elements in the heart of the receiver, the blocks: rc_data_registers,
rc_address_registers and rc_errors_registers were created.

The block: rc_heart has only time: interframe gap to build the RAM structure.
Because it's the min time during which the data stream is stopped.

Notice: interframe gap (from wikipedia)

Ethernet devices must allow a minimum idle period between transmission of Ethernet
frames known as the interframe gap (IFG) or interpacket gap (IPG). It provides a brief
recovery time between frames to allow devices to prepare for reception of the next
frame. The minimum interframe gap is 96 bit times (the time it takes to transmit 96
bits of raw data on the medium), which is 9.6 ps for 10 Mbit/s Ethernet, 960 ns for
100 Mbit/s (fast) Ethernet, and 96 ns for 1 Gbit/s (gigabit) Ethernet.

In this specific case, the block: interface_Ethernet is connected with the LXT972A
that is an IEEE compliant Fast Ethernet PHY Transceiver.

He transmits nibble by nibble (4 bits by 4 bits) each clock blow. And because the
minimum interframe gap is 96 bits, it's possible to build the RAM structure of the
received frame during 24 clock bows.

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV

H es MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 50

12.1.2 transmitter

The transmitter is similar to the receiver (The main difference is the direction of data
stream).

The transmitter doesn’t create the padding of transmitted frame because I'm not sure
that is only used with an Ethernet frame without extension.

12.1.2.1 transmitter controller

To not have a too complicated schema, all blocks to drive the transmitter are in
transmitter controller.

The block: tc_heart coordinates all others blocks in the block: transmitter. So to not
have memory elements in the heart of the transmitter, the block:
tc_address_registers was created.

The block: tc_IFG_counter is used to create the interframe gap timing.

In this specific case, the block: interface_Ethernet is connected with the LXT972A
that is an IEEE compliant Fast Ethernet PHY Transceiver.

The transmitter sends nibble by nibble (4 bits by 4 bits) each clock blow. And he
waits the minimum interframe gap (96 bits) before sends another frame.

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV
Hes oc. Re C 000

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 51

12.2 CONTROLLER SIMAP
The controller SImAP is connected with others parts as RAMs.

To not have a too complicated schema, all blocks to drive the controller SImAP are in
controller.

The block: controller coordinates all others blocks in the block: controller SimAP. So
to not have memory elements in the controller of the controller SImAP, the blocks:
reader_address_registers, writer_address_registers, application_address_registers,
selector_registers checker and work_register were created.

For the first version, the config memory is included in the block: controller_SimAP
because this memory isn’t used in the block: application_SimAP_example.
But he doesn’t used a part of config memory

12.2.1 controller

For the first version:

- the controller works only with the MAC address which is implemented in design.

- he works without constants.

- he checks only the minimum part of SImAP field to use or not the frame.
(Look below, the part: 13.2.1.1parsing.)

- he doesn’t work with a physical addressing frame when the EIB mode is
selected.
(Because, | don't know how use this frame.)

- he doesn’t resend a frame even if she wasn't sent.

- he doesn’t work with the part of config to enable or to disable (communication,
read, write, transmit and update).

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV

H €S MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 52

12.2.1.1 parsing

1) Read the line header in the Rx RAM.
1514 13121110 9 8 7 6 5 4 3 2 1 O

header

2) Wait on the flag: “header valid”
1514 13121110 9 8 7 6 5 4 3 2 1 O

\%

3) Check error name

a) if the frame hasn’t an error then b) if the frame has an error then to
to continue the parsing. go to the next line to read the next
151413121110 9 8 7 6 5 4 3 2 1 0 header
15 14 13121110 9 8 7 6 5 4 3 2 1 O
1 noerror - - frame length +1
1 error - - frame number with this error
next header
Ethernet field
Data
FCS

next header

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es _ Doc. Ref; MAC-RPT-000-HEV
MAC Project Issue/rev: 2/-

Date: October, 2007

Page: 53

4) Check Ether Type
a) if the frame is a SAOE frame then

to continue the parsing.
1514 13121110 9 8 7 6 5 4 3 2 1 O

b) if the frame is not a SAOE frame
then to go to the next header
15 14 13121110 9 8 7 6 5 4 3 2 1 O

10 0 0 - - frame length +1
Destination MAC Address (part 2)
Destination MAC Address (part 1)
Destination MAC Address (part 0)
Source MAC Address (part 2)
Source MAC Address (part 1)

Source MAC Address (part 0)

1 0 0 O

- - frame length +1
Destination MAC Address (part 2)
Destination MAC Address (part 1)
Destination MAC Address (part 0)

Source MAC Address (part 2)
Source MAC Address (part 1)
Source MAC Address (part 0)

OXFAQE EtherType
SAOE Field
Data
SAOE Data
FCS FCS

next header

next header

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref:
H es MAC Project Issue/rev:

Date:
Page:

MAC-RPT-000-HEV
2/-

October, 2007

54

Contents of SAOE field.

PCF GID (part 1)
GID (part 0) NPCI (part 1)
NPCI (part 0) TPCI

APCI (part 1)
APCI (part 0)

5) Check addressing mode in part PCF

AM - - - - R PRIO GID (part 1)
GID (part 0) NPCI (part 1)
NPCI (part 0) TPCI

APCI (part 1)
APCI (part 0)

If AM = 0 then the frame is in physical addressing mode
else (AM =1) the frame is in group addressing mode.

At this moment, the parsing changes with the addressing mode.

12.2.1.1.1 physical addressing mode

6) Check destination address
15 14 13121110 9 8 7 6 5 4 3 2 1 O

10 0 0 - - frame length +1
0x53 0x41

0x45 0x00 area
0x00 line device

Source Address (part 2)

Source Address (part 1)

Source Address (part 0)
EtherType => SAoE

0 - - - - R PRIO GID (part 1)
GID (part 0) 0 PM ACK size (part 1)
size (part 0) TPCI
RBSEL RBOFF
RBOP RBSIZE

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es Doc. Ref: MAC-RPT-000-HEV

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 55
7) Check protocol mode
0 - - - - R PRIO GID (part 1)
GID (part 0) 0 PM ACK size (part 1)
size (part 0) TPCI
RBSEL RBOFF
RBOP RBSIZE
b) if PM = 0 then to go to the next
a) if PM = 1 then 8) check TPCI. header
0O - - - - R PRIO GID (part 1) 0O - - - - R PRIO main intermediate
GID (part 0) 0 1 ACK size (partl) groupe 0 0 ACK - - - -
size (part 0) TPCI - - - - EIS TPCI
RBSEL RBOFF
RBOP RBSIZE ECMD - e o oo oo oo
b) if TPCI = 0x00 then to go to the
a) if TPCI = 0x00 then to get size. next header
0 - - - - R PRIO GID (part 1) 0 - - - - R PRIO GID (part 1)
GID (part 0) 0 1 ACK size (part 1) GID (part 0) 0 1 ACK size (partl)
size (part 0) 0x00 size (part 0) TPCI
RBSEL RBOFF RBSEL RBOFF
RBOP RBSIZE RBOP RBSIZE

9) Check the selected register and get the offset of registers.

0 - - - - R PRIO GID (part 1)
GID (part 0) 0 1 ACK size (partl)
size (part 0) 0x00
RBSEL RBOFF
RBOP RBSIZE

10) Check the selected operation and get the size of data.

0 - - - - R PRIO GID (part 1)
GID (part 0) 0 1 ACK size (partl)
size (part 0) 0x00
RBSEL RBOFF
RBOP RBSIZE

End of parsing

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es _ Doc. Ref; MAC-RPT-000-HEV
MAC Project Issue/rev: 2/-

Date: October, 2007

Page: 56

12.2.1.1.2 group addressing mode
6) Check broadcast.

151413121110 9 8 7 6 5 4 3 2 1 0

10 0 0 - - frame length +1
Broadcast (part 2)
Broadcast (part 1)
Broadcast (part 0)
Source Address (part 2)
Source Address (part 1)
Source Address (part 0)
EtherType => SAoOE
1 - - - - R PRIO main intermediate
groupe 1 - - - - - - -
- - - - EIS TPCI

ECMD - - - - - - - - - - - -

7) Get GID

1 - - - - R PRIO main intermediate
groupe 1 - - - - - - -

. EIS TPCI

ECMD - - - - - - - - - - - -

8) Search GID in config memory
if GID is in the config memory then to continue the parsing.
else (GID isn’t in config memory) to go to the next header.

9) Check EIS and TPCI

1 - - - - R PRIO main intermediate
groupe 1 - - - - - - -
- - - - EIS TPCI
ECMD - - - - .- . e
a) if EIS and TPCI are correct then b) if EIS and TPCI aren’t correct
check ECMD. then to go to the next header
1 - - - - R PRIO main intermediate 1 - - - - R PRIO main intermediate
groupe 1 - - - - - - - groupe 1T - - - - - - -
- - - - EIS 0x00 - - - - EIS TPCI
ECMD - - - - - - - - - . . . ECMD - - - - - - - - - . . .

End of parsing

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

H es _ Doc. Ref; MAC-RPT-000-HEV
MAC Project Issue/rev: 2/-

Date: October, 2007

Page: 57

12.3 APPLICATION

The application_SimAP_example receives and transmits data as a RAM with her
selector.
He sends an event when the signal: “get_next_event” is high.

This part is not too complicate because it's only a basic example to make test and to
have a small demo.

12.3.1 mux and demux
They are here so that the controller_SimAP see only a RAM with her selector.

12.3.2 blocks: ROM registers, params registers, program memory,
groupe value registers, groupe description registers

For this part, | have chosen blocks with registers or a RAM to display a part of
memories that be can used.

Each of these blocks has only a writer (the controller_SimAP or the application_test).

12.3.3 application_test

This block has a simple connectivity between registers and 10s.
He assigns an event number at a state of an input.

12.3.4 event_registers

The tail is used to store the event until be called.
The tail_contents is used to not write a second time the same event if it has not been
again called.

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Hes

Doc. Ref:
MAC Project Issue/rev:

Date:
Page:

MAC-RPT-000-HEV
21-

October, 2007

58

13 APPENDICES

13.1 Abbreviation

APCI
CRC
ESD
ET
FCS
GID

Application Protocol Control Information
Cyclic Redundancy Check

End of Stream Delimiter

Ethertype

Frame Check Sequence

Groupe ID

IDentifier

Inter-frame gap

Internet Protocol

Medium Access Control

Media Independent Interface
Network Protocol Control Information

Packet Control Field

PHYsical layer entity sublayer
Simple Automation over Ethernet
Simple Automation over IP

SAOE Device

Start-of-Frame Delimiter

Simple Automation Protocol
SAOE/SAo0IP Network Bridge

Shared Physical Destination Address
Shared Physical Source Address
Start-of-Stream Delimiter

Transport Protocol Control Information

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV

H €S MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 59

13.2 Files and folders for the project

The folder where all information about this project must be store:
I\Institut\Projets\MAC

The folder to find information about the board with PHY (Intel chip: LXT972A):
P:\PCB\Produit\Logica\FPGA-EBS-ETH

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Hes

Doc. Ref: MAC-RPT-000-HEV

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 60

13.3 RAM structure

To read data in RAM, there are specific headers.

A header indicates when he is valid, when there’s an error and where are the

beginning and the end.

There are 3 headers:
§ empty header

§ frame header
§ error header

13.3.1 Structure

15

frame header

error header

frame data

empty header

empty header

If it's a frame valid:
1. frame header

2. frame data
3. empty header

By adding the length from frame
header to address of frame header,

one obtains address of empty header.

13.3.2 Header

13.3.2.1 Empty header
15

If an error is occurred:
1. error header

2. empty header

To have address of empty header, it is
necessary to add 1 to address of error
header.

0 0 0 0 0 0 0

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV
H es MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 61
13.3.2.2 Error header
15 14 12 9 0
HV error name 0 0 error number
HV: Header Valid
Error name:
§ “000”: nothing
§ “001”: CRC error
§ “010": Rx error
§ “100": buffer is full
13.3.2.3 Frame header
15 9 0
HY | 0 0 0 0 0 length

HV: Header Valid

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV
Hes

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 62

13.4 Abreviations tirée du 802.3

10P label to indicate “pertains to 10PASS-TS port-type”
10P/2B label to indicate “pertains to 10PASS-TS and 2BASE-TL port-types”
2B label to indicate “pertains to 2BASE-TL port-type”
2-PAM two level pulse amplitude modulation

8802-3 ISO/IEC 8802-3 (IEEE Std 802.3)

8802-5 ISO/IEC 8802-5 (IEEE Std 802.5)

AIS Alarm Indication Signal

ANSI American National Standards Institute

ASIC application-specific integrated circuit

ASN.1 abstract syntax notation one as defined in ISO/IEC 8824: 1990
AUI attachment unit interface

BER bit error ratio

BERT Bit Error Ratio Tester

BIP Bit Interleaved Parity

BPSK binary phase shift keying

BR bit rate

BT bit time

CAT3 Category 3 balanced cable

CAT4 Category 4 balanced cable

CATS5 Category 5 balanced cable

CDO clocked data zero

CD1 clocked data one

CDR clock and data recovery

CID Consecutive Identical Digit

CJPAT continuous jitter test pattern

CMIP common management information protocol as defined in ISO/IEC 9596-1.:
1991

CMIS common management information service as defined in ISO/IEC 9595: 1991
CMOS complimentary metal oxide semiconductor

CO central office

CPE customer premises equipment

CPR coupled power ratio

CRC cyclic redundancy check

CRPAT continuous random test pattern

CRV code rule violation

CSO0 control signal zero

CS1 control signal one

CVH clocked violation high

CVL clocked violation low

CW continuous wave

DA destination address

DCD duty cycle distortion

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Hes

Doc. Ref: MAC-RPT-000-HEV

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 63

DDJ data dependent jitter

DFE decision feedback equalizer

DJ deterministic jitter

DMT discrete multi-tone

DSL digital subscriber line

DTE data terminal equipment

EFM Ethernet in the first mile

EIA Electronic Industries Association

ELFEXT equal-level far-end crosstalk

EMI Electromagnetic Interference

EPD End_of_Packet delimiter

ERDI Enhanced Remote Defect Indication
FC-PH Fibre Channel—Physical and Signaling Interface
FDDI fibre distributed data interface

FEC forward error correction

FEXT far-end crosstalk

FIFO first in, first out

FLP fast link pulse

FOIRL fiber optic inter-repeater link

FOMAU fiber optic medium attachment unit
FOMDI fiber optic medium dependent interface
FOPMA fiber optic physical medium attachment
FOTP fiber optic test procedure

FSW frame synchronization word

GMII Gigabit Media Independent Interface

HH header hub

IB indicator bits

IEC International Electrotechnical Commission
IH intermediate hub

IPG inter-packet gap

IRL inter-repeater link

ISI penalty intersymbol interference penalty
ISO International Organization for Standardization
LACP Link Aggregation Control Protocol
LACPDU Link Aggregation Control Protocol Data Unit
LAG Link Aggregation Group

LAG ID Link Aggregation Group Identifier

LAN local area network

LCD Loss Of Code-Group Delineation

LLC logical link control

LLID logical link identifier

LOF Loss Of Framing

LOP Loss Of Pointer

LOS Loss Of Signal

LSDV link segment delay value

LT line termination

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref:
H es MAC Project Issue/rev:

Date:
Page:

MAC-RPT-000-HEV
21-

October, 2007

64

LVDS Low-Voltage Differential Signals

MAN Metropolitan Area Network

MAU medium attachment unit

MC message code

MDELFEXT multiple-disturber equal-level far-end crosstalk
MDFEXT multiple-disturber far-end crosstalk
MDI medium dependent interface

MDIO management data input/output
MDNEXT multiple-disturber near-end crosstalk
MIB management information base

MMD MDIO Manageable Device

MMF multimode fiber

MP message page

MPCP multipoint control protocol

MPS Maintain Power Signature

Mux Multiplexer

NEXT Near-end Crosstalk

NLP normal link pulse

NPA next page algorithm

NRZI non return to zero and invert on ones

NT network termination

NTT Need To Transmit

OAM operations, administration, and maintenance
OAMPDU operations, administration, and maintenance protocol
ODN optical distribution network

OFL overfilled launch

OFSTP optical fiber system test procedure

OH overhead

OIF Optical Internetworking Forum

OLT optical line terminal

OMA Optical Modulation Amplitude

ONU optical network unit

ORLT optical return loss tolerance

P2MP point to multipoint

P2P point to point

P2PE point-to-point emulation

PAF PME aggregation function

PAM pulse amplitude modulation

PCB printed circuit board

PCS physical coding sublayer

PD Powered Device

PDU Protocol Data Unit

PDV path delay value

PI Power Interface

PICS protocol implementation conformance statement
PIPO parallel in parallel out

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref:
H es MAC Project Issue/rev:

Date:
Page:

MAC-RPT-000-HEV
21-

October, 2007

65

PISO parallel in serial out

pk-pk peak-to-peak

PLL phase locked loop

PLM Path Label Mismatch

PLS physical signaling sublayer
PMA physical medium attachment
PMD physical medium dependent
PME physical medium entity

PMI physical medium independent
PMS-TC physical media specific - transmission convergence
ppd peak-to-peak differential

PRBS pseudo random bit sequence
PSD power spectral density

PSE Power Sourcing Equipment
PVV path variability value

RD running disparity

REI Remote Error Indication

RFI radio frequency interference

RIN relative intensity noise

RJ random jitter

ROFL radial overfilled launch

RS reconciliation sublayer

SA source address

SDH Synchronous Digital Hierarchy
SDV segment delay value

SEF Severely Errored Frame

SELV Safety Extra Low Voltage
SERDES serializer and deserializer circuit
SES Severely Errored Second
SHDSL single-pair high-speed digital subscriber line
SIPO serial in parallel out

SMF single-mode fiber

SMSR side mode suppression ratio
SNR signal-to-noise ratio

SONET Synchronous Optical Network
SPD Start_of Packet delimiter

SPE Synchronous Payload Envelope
SR symbol rate

ST symbol time

STA station management entity

STP shielded twisted pair (copper)
STS Synchronous Transport Signal
SVV segment variability value

TBI Ten-Bit Interface

TC transmission convergence

TCM trellis coded modulation

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

Doc. Ref: MAC-RPT-000-HEV
Hes

MAC Project Issue/rev: 2/-
Date: October, 2007
Page: 66

TDR time domain reflectometer

TIA Telecommunications Industry Association

TLV Type/Length/Value

TPS-TC transport protocol specific transmission convergence sublayer
TSS Test Signal Structure

UCT unconditional transition

Ul unit interval

UP unformatted page

UPBO upstream power backoff

UTP unshielded twisted pair

VC Virtual Container

VDSL very high speed digital subscriber line

VLAN Virtual Bridged Local Area Network (see IEEE P802.1Q)
VTU VDSL transceiver unit

VTU-O VTU at the central office end

VTU-R VTU at the remote end

WAN Wide Area Network

WCMB worst-case modal bandwidth

WIS WAN Interface Sublayer

WWDM wide wavelength division multiplexing

XAUI 10 Gigabit Attachment Unit Interface

xDSL generic term covering the family of all DSL technologies
XGMII 10 Gigabit Media Independent Interface

XGXS XGMII Extender Sublayer

XS Extender Sublayer

XSBI 10 Gigabit Sixteen-Bit Interface

All information contained in this document is the property of the Hes-so.
Its contents cannot be reproduced or divulged without the school's approval.

| Frame Capturing and Sending in FPGA Zahno Silvan

Appendix 8: Time and frequency synchronization

25.03.2008

Time and freguency synchronization

Acknowledgements

The research described in this thess has been accomplished
with the support from many people — mentors, colleagues - whom
we would like to fully acknowledge. Your support, idess,
comments and energy were essential in alowing them to
successfully complete this thesis.

Patrick ARLOS, supervisor of the thesis. We would like to
thank you for the time and energy you invested. Y ou guided them
through our first steps in electrical research, your advices and ideas
were useful to complete this project. Your drive is contagious. We
could not have wished for abetter supervisor.

Oliver A. GUBLER, former graduate student. Your
contribution helps them to solve specific issues we had in VHDL
programmation. Thank you for your time and interest for our work.

Jorgen ANDERSSON, universitetadjunkt. Your explanation
guided them to understand VHDL language. Thanks also aways
for being available when we needed your help.

Karoliina HAKKINEN, International coordinator exchange
student. You warmly welcomed them in Blekinge Institute of
Technology and aways been friendly and kind with them.

Time and freguency synchronization

Table of contents

1.1
1.2
1.3
131
1.3.2
1.3.3
1.34
1.4
1.5

2.1
2.2
2.3
2.3.1
2.3.2
2.3.3

31
3.2

| ntroduction
Global Positionning System

5
6

Field of Programmable Gate Arrays 8

Other components
RS-422

RJ45

Edge connector
DB-25 connector
VHDL

UART

Design

Functional description
Hardwaredesign
Software design

M aster

Slave

Client

| mplementation

Har dwar e implementation
Softwar e implementation

Results obtained

Conclusion

10
10
11
11
12
13
14

16
17
19

22
22
27
29

33
33
35
36

38

Time and freguency synchronization

Table of contents
Appendix A Abbreviations A2
Appendix B Schematics Ad
M aster A4
Slave A6
Client A8
Appendix C VHDL Programs A3
Master program A9
Slave program A 14
Client program A 21
AppendixD FPGAstable address A 2°
Master's FPGA table address A 26
Slave’'s FPGA table address (4 RJ45) A 27
Slave’s FPGA table address (6 RJ45) A27
Client's FPGA table address A 28
A 28

Appendix E References

Time and freguency synchronization

1. Introduction

Clock synchronization is a well-known problem in distributed
systems. All algorithms are more or less sensitive to the drift of the
network’s internal clock. There are different types of
synchronizations: it can be asolute, relative, global (through the
entire network) or local, depending on its needs. Certain solutions
just use information provided by a close environment. In our
project, we will use a GPS solution.

Work stations, and even office automation are more and more
networked. The synchronization problem on devices like these is
important. Indeed, when you create a file on a station, it is
physically created on a server at the server's date and not the
station’s one. Thus, if both are not synchronized, we can have files
whose date of modification is more recent or older than the
server's.

To solve this problem, we have to synchronize every single
device on a universal time basic: UTC (coordinated universal
time), and receive data viaa GPS.

Many applications require synchronization between the
elements of a network. For instance account to account flow of
money between banks must be synchronized to insure security.
There is adso synchronized data exchange between severd
manufactures of the same brand located on different places which
could be useful to save money.

In the following part you will find all the explanation on the
devise we used to build our solution and a presentation of the
language used to program.

Time and freguency synchronization

1.1 Global Positioning System (GPS)

T 0 measure time, it is necessary to have a scale of time, an
origin on this scale, and an interva of time which will be used as
unit. Any series of reproducible events can be used as scale of
time. Astronomy provides us several of them: rotation of the earth
on itself or around the sun.

Once the scale defined, we need to check specific properties
allowing usto scientific work:

- Universality, this scale of time must be used and understood by a
lot of people.

- Reliability, it is necessary that this scale cannot be stopped, and to
create holes in the measurement of time.

- Precision, the reading must be as precise as possible.

- Uniformity, the measurement value shouldn’t depend on the time
or the place it has been done.

If we take as oscillator the rotation of the earth on itself, we can
see that this rotation is not uniform over a few days. That's the
reason why we have to find another solution, more reliable.

Since 1955 with the appearance of the atomic clocks we
noticed a drift of the seconds defined thanks to natural clocks.
Today, we use artificial oscillators, more precise than quartz clocks
crystal controlled and the atomic clocks. Those are used more as
standard of frequencies or timekeeping solutions that direct time
measures.

There are two interesting ways to achieve this synchronization.
We are able to design the solution through the internet. On the
basis that we cannot synchronize computers with a great accuracy,
utilization of a more precise clock via the internet is required. The
drift istoo important when using high-speed networks.

Time and freguency synchronization

On the other hand, a Global Positioning System (GPS)
approach is more suitable in terms of price and accuracy.

Each satellite is equipped of an atomic clock with a precision
of 1 picosecond (1*10"-12 s). Then we can transport the precision
of the satellite towards the receiver by synchronization signal: the
satellite and the receiver generate signas having the same form.
The recelver compares its signal with that received from the
satellite and appreciates the shift between the two coded signals.
This operation makes it possible to be sure to measure the time in
the same way to the ends and, being sure of the signa course
duration’s measurement and, finally, the measurement of the
distance.

The atomic clocks on the satellites are set to "GPS time",
which is the number of seconds since 00:00:00 UTC, January 6,
1980. In 2006, GPS time is 14 seconds ahead of UTC, because it
does not follow leap seconds. Receivers thus apply a clock-
correction offset (which is periodicaly transmitted along with the
other data) in order to display UTC correctly, and optionaly adjust
for alocal time zone.

In order to get the time needed later in the device we had to use
The Acutime™ 2000 GPS smart antenna designed by Trimble
Company.

This antenna is designed for long-term reliability and features
Trimble's latest GPS technology. It generates a pulse-per-second
(PPS) output synchronized to UTC within 50 nanoseconds,
outputting atiming packet for each pulse.

It isthe idea solution for precise timing and synchronization of
data networks and provides a cost-effective and independent
timing source for any application.

Time and freguency synchronization

1.2 Field of Programmable Gate Arrays

A field-programmable gate array or FPGA is a semiconductor
device containing programmable logic components and
programmabl e interconnects. The programmable logic components
can be programmed to duplicate the functionality of basic logic
gates (such as AND, OR, XOR, NOT) or more complex
combinatorial functions such as decoders or simple math functions.
In most FPGAS, these programmable logic components (or logic
blocks) aso include memory elements, which may be simple flip-
flops or more complete blocks of memories.

A hierarchy of programmable interconnects alows the logic
blocks of an FPGA to be interconnected as needed by the system
designer, somewhat like a one-chip programmable breadboard.
These logic blocks and interconnects can be programmed &fter the
manufacturing process by the customer/designer (hence the term
"field-programmable”) so that the FPGA can perform whatever
logical function is needed.

FPGAs are generally slower than their application-specific
integrated circuit (ASIC). However, they have several advantages
such as a shorter time to market, ability to re-program in the field
to fix bugs, and lower non-recurring engineering costs.

To define the behavior of the FPGA you need a hardware
description language (HDL) or a schematic design. Common
HDLs are VHDL and Verilog. In our case, we worked with
VHDL.

Applications of FPGAs include DSP, software-defined radio,
aeropace and defense systems, ASIC prototyping, medica
imaging, computer vision, speech recognition, cryptography,
bioinformatics, and a growing range of other areas. FPGAS
originally began as competitors to CPLDs and competed in a
similar space, that of glue logic for PCBs.

As their size, capabilities and speed increased they began to
take over larger and larger functions to the state where they are

8

Time and freguency synchronization

now marketed as competitors for full systems on chips. They now
find applications in any area or agorithm that can make use of the
massive pardlelism offered by their architecture.

There are 4 principal categories of architecture (see figure 1).
FPGAs interna structure is represented on figure 2.

Byrnmetrical Array Fow-B ased

CIC I voge o | CTTTTITT

T)

Interconnect [(T T T [T 111

Zea-ofGates Hierarctued FLD

| Logic Block

PLD Block

N

| =

Fig.1: FPGAs different architectures

Interconnect Resources

v e[OO0 O]
0
]
0

oo ogooaoo
E B B B
E B B B
- - -

oo oo odaoad

sk Bheks 1100 OO OO OO

Fig. 2: FPGAs internal structure

Time and freguency synchronization

1.3 Other Components

1.3.1) RS-422

RS422, is a seriad data communication protocol which
specifies 4 wire, full-duplex, differentia line, multi-drop
communications. It provides for balanced data transmission with
unidirectional/non-reversible, terminated or non-terminated
transmission lines. RS-422 does not alow multiple drivers but only
multiple receivers. You can see on the figure 3 below the RS-422
receiver and transmitter used on the solution

A [yu 118 Yoo | An 1 [~ e Vg
Ang 2[H° 15 P | A J‘Eﬁ 15 Dy
Agur 3 [f—— E] i Dis: | R 310 v D
BN s3> 13 Dour | EN 4] w D
Bayr 5] Y 112 EN Boyr 5 m BN
Bz s, |] 17 Cour | Bour €[] 1 Co
By ? [j:l?i E] 19 Ciz | B 20— i Copy
GHD a] s Gy GND &[] e Oy

Fig. 3: RS422 Receiver and RS-422 Transmitter

Severa key advantages offered by this standard include the
differential receiver defined in RS-423, a differential driver and
datarates as high as 10 Mega baud.

The mechanica connections for this interface are mostly
specified by DB-25 connector, however devices exist which have 4
screw-posts to implement transmit and receive par only. The
maximum cable length is 1200 m. Maximum data rates are 10
Mbaud/s at 12 m or 100 kbit/s a 1200 m. RS-422 cannot
implement a truly multi-point communications network, athough
only one driver can be connected to up to ten receivers. A common
use of EIA-422 isfor RS-232 extenders.

10

Time and freguency synchronization

1.3.2) RM45

RM5 (Registered Jack 45) is aphysica interface often used for
terminating twisted par type cables. It has eight "pins' per
connector.

1.3.3) Edge connector

An edge connector is the portion of a printed circuit boards
consisting of traces leading to the edge of the board that are
intended to plug into an edge connector socket as you can see on
figure 4 below.

An edge connector socket, often popularly referenced simply as
a "dslot", is any type of female electrical connector for use with
printed circuit boards having matching edge connectors. They
consist of a plastic "box" open on one side, with pins on one or
both side(s) of the longer edges, sprung to push into the middle of
the open center.

The edge connector is a money-saving device because it only
requires a single female connector, and they also tend to be fairly
robust. For atime they were used in the vast mgority of connectors
found in computers, but modern computers have demanded many
more pins than can easily be accommodated on the edge of a
reasonable size board, and today more traditional male/femae
connectors are more common.

g P ey)
#.FAFRFAFAAATAS RE G S0 AR FAAARSAAARFRARARRARARARARS

Fig. 4: Edge connector

11

Time and freguency synchronization

1.3.4) DB-25 Connector

The DB-25 connector (named for its "B"-size "D"-shaped shell
and 25 pins) is practically ubiquitous in the electronics industry.
The DB-25 connector is used for a variety of purposes. Two
common applications are the parallel printer interface on the IBM
PC and the RS-232 connections.

Figure 5 is a good set of figures for DB-25 male and female
connectors, as viewed from the pin side.

1 13
QOO0 0000000 00
Qo000 000

14 23

DB-25 Mae

_ ._..._..._._..._._._..17

23 14

DB-25 Femade

Fig 5: DB-25 Connectors

12

Time and freguency synchronization

1.4VHDL

VHDL or VHSIC Hardware Description Language is
commonly used as a design-entry language for field-programmable
gate arrays (FPGA) and application-specific integrated circuits in
electronic design automation of digital circuits.

Har dwar e description language

In electronics, a hardware description language or HDL is any
language from a class of computer languages for formal
description of electronic circuits. It can describe the circuit's
operation, its design, and tests to verify its operation by means of
simulation.

An HDL is a standard text-based expression of the tempora
behavior and circuit structure of an electronic system. In contrast to
a software programming language, an HDL's syntax and semantics
include explicit notations for expressing time and concurrency
which isthe primary attributes of hardware. L anguages whose only
characteristic is to express circuit connectivity between hierarchies
of blocks are properly classified as net list languages.

HDL s are used to write executable specifications of some piece
of hardware. A simulation program, designed to implement the
underlying semantics of the language statements, coupled with
simulating the progress of time, provides the hardware designer
with the ability to model a piece of hardware before it is created
physicaly. It is this executability that gives the illusion of HDLs
being a programming language. Simulators capable of supporting
discrete event (digital), and continuous time (analog) modeling
exist and HDL 's targeted for each are available.

13

Time and freguency synchronization

1.5 UART

A UART or Universal Asynchronous Receiver-Transmitter is a
piece of computer hardware that translates between parallel bits of
data and seria bits. A UART is usually an integrated circuit used
for serid communications over a computer or periphera device
seria port. UARTs are now built into some microcontrollers

Basics

Bits have to be moved from one place to another using wires or
some other medium. Over many miles, the expense of the wires
becomes large. To reduce the expense of long communication links
carrying several bitsin pardlel, data bits are sent sequentialy, one
after another, using a UART to convert the transmitted bits
between sequentia and parallel form at each end of the link. Each
UART contains a shift register which is the fundamental method of
conversion between serial and parallel forms.

By convention, teletype-style UARTSs send a "start” bit, five to
eight data bits, least-significant-bit first, an optiona "parity” bit,
and then a "stop" bit. The start bit is the opposite polarity of the
data-line's normal state. The stop-hit is the data-line's normal state,
and provides a space before the next character can start.

A stretched "stop" bit aso helps resynchronization. The parity
bit can either make the number of bits odd, or even, or it can be
omitted. Odd parity is more reliable because it assures that there
will aways be a data trangition, and this permits many UARTS to
resynchronize.

Speeds for UARTs are in bits per second (bit/s or bps),
athough often incorrectly caled the baud rate. Standard
mechanica teletype rates are 45.5, 110, and 150 bit/s. Computers
have used from 110 to 230,400 bit/s. Standard speeds are 110, 300,
1200, 2400, 4800, 9600, 19,200, 28,800, 38,400, 57,600, and
115,200 bit/s. Concerning our project we will use 9600 bps speed.

The UART usually does not directly generate or receive the
voltage levels that are put onto the wires interconnecting different
equipment. An interface standard is used, which defines voltage
levels and other characteristics of the interconnection. Examples of
interface standards are EIA, RS 232, RS 422 and RS 485.
Depending on the limits of the communication channel to which

14

Time and freguency synchronization

the UART is ultimately connected, communication may be "full
duplex" (both send and receive at the same time) or "half duplex”
(devices take turns transmitting and receiving). Beside traditional
wires, the UART is used for communication over other seria
channels such as an optical fiber, infrared, wireless Bluetooth in its
Serid Port Profile (SPP) and the DC-LIN for power line
communication

Today, UART is commonly used with RS232 for embedded
systems communications. It is useful to communicate between
microcontrollers and also with PCs. Many chips provide UART
functionality in silicon, and low cost chips exist to convert uart to
RS232 signals

15

Time and freguency synchronization

2. Design

T he most important point in our solution was the clock’s
accuracy and reliability. The solution had to synchronize the
different units towards a single input source: GPS receptions. All
devices had to use the same time format, that’s the reason why we
chose to use UTC. Indeed, this format is easy to manage and
compatible with different hardware configurations.

In order to make easier future upgrades, our solution had to be
scaable. That's the reason why we managed to design boards as
small as possible. Each unit, also called tier, aso had to run
without any other source than the Master’s. An adapted solution
was also required to face to different setups.

Each unit should run on a single power source except the
master which uses two sources. Each unit should be able to detect
erroneous timing signals in order to prevent spreading of incorrect
information.

The GPS acquisition was done by the Trimble Acutime 2000 kit
[4], based on a multi-channel receiver which needs to be outside at
the beginning to see if the GPS was working and to configure the
Port A. The accuracy of the system depends on the satellites
accessibility: we can't of course receive signas from every
satellite. In the best case the system accuracy should be around 50
ns.

For each tier, the utilization of an FPGA isrequired as you can
see on figure 6 below. We used three Spartan 3 FPGA kits [5], [6]
operating at a frequency of 50 MHz based on Epson SG-8002JF
crystal oscillator. Unfortunately and because of climatic conditions
(temperature, humidity, etc...), these devices do not operate at
exactly the same frequency. So we always had to check and
measure their exact frequency. By using the GPS reference of 1
pulse per second, we just had to increment a counter at each FPGA
clock’s pulsation. After 1 PPS we noted the number of pulsation
which gives us the exact Fog's frequency (f = 1/T). By default we
should have 50x10° oscillations.

16

Time and freguency synchronization

GPE

| Froa | | Froa | | Frea | | Froa | | Froa | | Froa |

Fig.6: System’s overview

2.1 Functional description

T he solution suggested by Henrik Forsberg in his thesis
consists of a hierarchica approach centradized by the first tier
where the time source is. The tiers are named:

1% tier: Master. Receiving the PPS, which are the highest
accurate reference signal used and the UTC from GPS.

2" tier: Saves, dispatching the signals from the master to
different clients.

3" tier: Clients (or measurement points). In our fina
design, we can have up to 6 Clients per Save.

We receive signals from the GPS station on the first tier
(Master) and then transmit it to the Slaves which can be servers of
different networks, in the end leading us to the third and last tier,
what we call Clients: workstations for instance. We can process
without slave if the distance is shorter than 1200m or if only four

17

Time and freguency synchronization

clients are requested. In our application the client receive directly
the data from the master as shown on figure 6.1.

Client

?<:>-<1:> Slave | <> | Client

Client

Fig.6.1: Functional description

As you can see on this figure, the Master communicates with
the GPS Antenna. The Master sends data to configure the antenna
(with Trimble Acutime in our case) and to enable the
communication and receives dl the data from it. With those data
the Master obtains a Time and PPS. It will transmit that
information to al the boards linked to it. For the Time we use two
UARTSs. The first to decode the data send by the antenna, then we
choose the gppropriate data we need, and finally the second UART
alow to send those datato Clients or Slaves

The Master receives Delay request from Clients or Slaves.
When it receives this request (abit high), it can resend directly this
bit or wait few seconds before to resend it if there is adelay due to
the wire between the Antenna and it (this delay is a constant that
we can define in our code).

When the Client receives the answer from the Master, it can
calculate its delay (due to the wire) dividing the time between
sending and receiving by two. It also receives Time and PPS from
the Master. With an gppropriate UART we decode the Time sends
by the Master and adding the Delay we obtain the correct time. We
can display thistime on the FPGA or use it by a different way.

The Slave allows to connect more Clients and to increase the
distance between Clients and Master. It receives Time and PPS
that it transmits directly to the Clients linked to it. It aso calcul ates
the Delay between Master and it. When it receives the delay
request from one its Clients, the Slave wait during the delay due to
the wire between Master and it before resending the bit.

18

Time and freguency synchronization

2.2 Hardware design

We designed three boards; the schematics are presented in
appendix (from page A4 to A8) In Table 1 we list the equipment
needed to build the boards. In Figure 7, 8 and 9 we show an
overview of the boards.

_ FPGA

2(3

= RS422T

2

GPS N
U"|:> RS422R
MASTER |; |; |;

Transmitter \Il I_|7 \Il T_,T

Receiver Time PPS Delay ou{ [Delay in
RJ45 connector
To slave or client

Fig. 7: Master board

19

Time and freguency synchronization

FPGA (SLAVE)

> [Rrsazzr
> [Rsazzr

—>
—>

> RsazzR]

RS422T

(o <]
Sl —
=] [>

el
nel
wn

Time PPS Delayin| [Delay out Delay ou{ |Delay in

RJ45 connector RJ45 connector

From master To slave or client

Fig. 8: Saveboard

FPGA Client
t
[—

(=]
P

Time PPS Delay outf Delay in

RJ45 connector

From slave or master

Fig. 9: Client board

In order to reach the objectives we needed different software
and tools. Find alist of below:

- Proteus Software
- PCB Express (freeware: http://www.expresspcb.com)

20

http://www.expresspcb.com

Time and freguency synchronization

- Oscilloscope

- Cutting pliers

- Soldering station

- Soldering pump

- Multimeter

- Electric cables of different colors

Moreover we needed the components we described before. Thanks
to documentations we founded [2],[3]we made a list of dl the
items -the number needed are specified in the table below. Plastic
boards are aso requested to solder components on it. You need a
100mm*160mm for Master and Slave and a smaler 80 mm*60mm
for the Client one.

Elfa Reference Master Save Client Tota
DIN 25 FCC17B25PE-A50 2 2
RJ5 FRJA-408 4 1 1 6
RJ45 dual FRJA-408-02 3 3
Socket 16 pins 0-0390261-4 5 5 1 11
Socket 8 pins 0-0390261-2 4 10 1 15
Connector 40 C3510- 1 1 2
pins 40SPGBOOR
Power supply 1 1
GPS
LED 204-10SURD 2 1 2 5
Resistor RD18JN100TJ2 1 1 1 3
100ohms
R$422 quad DS26L S31CN 3 3 6
transmitter
R$422 quad DS26L S32ACN 2 2 1 5
receiver
R$A22 single SN75176A 4 7 1 12
transmitter
R$422 single SN7517A 3 3
receiver

Table 1: Equipment used in board construction

21

Time and freguency synchronization

2.3 Software design
Objectives of the software part:

- All the clients have to be synchronized on time.

- Thedave haveto calculate is own delay with the master.

- Theclient have to calculate is own delay with the slave.

- The GPS send the PPS. Master and slave have to transmit it.
Master, slave and client must post it.

- Cdculate continuously the number of seconds since the
creation of the UTC Time (6" January 1980) (32 bits)

- Cadculate fraction of second (64 bits).

In order to build the VHDL programs for each tier, we needed to
understand exactly how master, slave and client worked. Thus we
have built module and schematics for each tier. Module helped
them to understand the globa operation, ways in and ways out for
the PPS, time and delay when the schematics where useful to build
the program itself.

231 MASTER

Master’ s objective

The Master receives and treats the data of time and frequency. It
is the starting point of our solution and the only source of time that
must synchronize all the other devices theresafter.

It receives the PPS, which is the highest accurate reference signa
used and the UTC from GPS.

Master’s module

You can see this module on figure 10. Each circle represents a
module of our program. Arrows are the inputs and outputs required
by every module to work. Concerning the Master, we have got 5
different modules: Clock, PPS handler, GPS configuration &
control, Delay and Time handler.

The module Clock is a 32 bits counter which counts each FPGA
Pulse from the CLK and gives the counter value. This one
represents the oscillation of the FPGA Clock.

The PPS Handler needs the PPS GPS (the Pulse Per Second
coming from the GPS Antenna) and the Clock counter (described

22

Time and freguency synchronization

above) to calculate the Frequency of the FPGA Clock. It also
transmits the PPS with PPS OUT.

The DELAY module allows the calculation of the delay time due
to the wire between the master and the board linked to (Slave or
Client). So it needs asigna DELAY BIT IN (the number indicate
on which RM5 the signa come from) coming from the Slave or
Client.

When the Master receives it, it sends another signal DELAY BIT
OUT to the Slave or Client (calculating the time between the bit
sent and the one received, it could know its delay). We aso have a
constant called OWN DELAY which can indicate the theoretical
delay between the Master board and the GPS Antenna.

Then we have the TIME HANDL ER which transforms the GPS
TIME (coming from the GPS Antenna) in a TIME OUT
transmitted to the linked board.

Finally we have the GPS Configuration & Control which permit
the communication GPS — Computer thanks to the FPGA.

23

Time and freguency synchronization

Signal [0.1] Signal [0.1]

PPSOUT
PPS GPS
PPSHANDLER

Result value

Signal [0.1]

[0.1] Delay bit out 1

Delay bit in 1
0.1] \4 /
. [0.1] Deayhbitout2
Delay bitin 2 [0.1] = 4

[0.1]
A Ddaybitout 3

[0‘1]\‘ Delay bit out 4

Own delay
i g RS232 Port B out
ial data i
Pocleet RS232PortBin [0.1] [0.1] RS232 Port A out
Ox8F-AB i
GPS RS232 Port A in
TIME araion N,
GPS Configuration
[0.1] & Control [0.1]
Seridl data RS422 PortAin — 7 RSA22Port A out
[0.1]
[0.1] RS422 Port B out
Time out RS422 Port B in

Fig 10: Master’s module

Master’' s schematics

To understand each module, we need to take a look inside and
describe any single operation, what we called the schematics.

On the Master’s Clock, see figure 11, you can see how works the
32 bits counter. We have the Frequency (which is the oscillation of
the FPGA Clock) and we count each pulse. Then we transmit this
32 bits value to the others modules.

24

Time and freguency synchronization

CLOCK

CLK 32 bits

counter /
/3

Fig.11: Master’s clock

For the PPS Handler, on figure 12, we need the Clock (32 bits
value) and the PPS. With the software (piece of code you can see
into the Master Program in the Appendix) we put the value of
Clock into a LATCH for the first PPS goes high. For the second
PPS we put the value into another latch. Then we do a subtraction
with the two Latch to know the number of pulse during one second
(it isthe out called Frequency). We also relayed the PPS with PPS
OUT.

PPS Handler

Clock
- e
32 32
ﬁ,/;
Latch 32
32 —————741————1
— | — set 3z
Sub 32 Pulse count
Software Latch 33
32
Set
PP3 PPF3 OUT

Fig.12: Master’ sPPS handler

25

Time and freguency synchronization

The Time handler permits to transform the Time received by the
GPS Antenna into a time easier to transmit. For that we use two
UART as shown on figure 13. The Time coming from the GPS is a
serid signal, so we need a UART Receiver to have a parallel
message. Then we can transform the data and just keep the
interesting part. When we got it, we transform the parallel message
into a serial signa with the UART Transmitter and we have the
TIME OUT.

Time handler

GPS Time

UART

Serial Z parallel

Message data

GEZ/UTC time

Time Out

UART

Start bit
End bit

Parallel Z serial

32
Fig 13: Master’s Time handler

The Delay module is very easy to understand. When we receive a
Bit coming from the board linked to the Master (called Delay PPS
in) we wait during OWN DELAY (its vaue is O in theory) and
resend it, see figure 14.

DelyyPPSinl — WAIT

Delar FES in2 J; WAIT

Dielay FES in3

Delar FES in4

Crwm Delay
Hhruber

Delay PES ont 1

Delay FFS ot 2

Dielay FES ot 3

/f——b

WAIT

——— Deelay FFS ot 4

Fig 14: Master’'sDeay

26

Time and freguency synchronization

23.2SLAVE
Save' s objective

The Save is connected to the Master. We could have many
daves, but chose to focus on only one. Its accuracy must not
depend on the distance from the Master. Finally it has to keep the
time and frequency synchronization as precise as possible, and
transmit it to the Clients. It acts as arelay between the Master and
Clients and is very useful when working on long distances (more
than 2 km) where RS422 would lose the signal.

Save’ smodule

You can see this module on figure 15. It is the same kind of
figure than the Master’s module. We have just 4 modules in this
case. CLOCK is exactly the same than the master.

PPS HANDLER does the same operation but doesn’t return the
Frequency (in our Slave Program in the Appendix we calcul ate the
Freguency so we can useit later, or just display it on a screen)

TIME HANDLER just relay the TIME from the Master to the
Client.

Finally the DELAY is the only part redly different from the
Master. Delay bit in is the signa received from the client and
Delay bit out is the signal sent to it (the number indicate which
RJ5 we are using). Delay bit out M is the signal that the Slave
sends to the Master and of course Delay bit in M is the signal
received fromit.

27

Time and freguency synchronization

Signa [0. 1]

PPS IN Signal [0. 1]

PPSOUT

PPSHANDLER

Counter Vdue

Signal [0. 1]

—— CLK

Signal [0. 1]
Delay bitin 1 \ 0.1 Delay bit out 1
n .
¥ o [A]/

(0.1

Dday bitin 2

Delay bitin3 ——»
[0.1]

Delay hitin 4 ﬁ]

[Of

Delay bitinM Delay bitinM

. Serial Data
Serid Data

Timein Time out

Fig. 15: Save'smodule
Save' s schematics

Slave's Clock and the Slave’'s PPS Handler is exactly the same
than the Master’s Clock and the Master’ s PPS Handler.

Slave's Time Handler just relay the time received from the master
and sends it to the client, see figure 16.

Timein » Timeout

Fig. 16: Save' sTimeHandler

The Delay works like on the Master but the Wait statement is not
define by a constant (like OWN DELAY), see figure 17. Actually
the Slave calculates his “OWN DELAY”. For that every X second
(we can define the number in second into the Save program) the

28

Time and freguency synchronization

Slave send a bit (Delay Bit Out M) with the BIT GENERATOR.
When it send the bit we start the COUNTER 32 bits and we put its
value into a Latch (Latch 32 bits) when we receive the bit from the
Master (Delay Bit in M). Then we DIVIDE BY 2 to have to delay in
the wire in one way. Here we have the delay needed to implement
the WAIT. Like in the Master when we receive a bit from the Client
(Delay BIT in) we wait during this delay before sending it back
(Delay BIT out).

Dielay BIT i 1 BIATT Delay BIT ot 1

Delay BIT in 2

WIAIT Dielay BIT out 2

ity IR
(
(
|

E WAIT |~ Delay BIT ot 4

Dielay BIT ind

:
(
|

Delay BIT mM ‘ K >
Bit Dielay BIT ot M
— T l ‘ ‘ ‘
Clock —{ Coumiter | Latch | Driwide
3ibis 31t byl
Fig: 17. Save's Delay
233 CLIENT

Client’s objective

Clients are our measurement points. They are connected to the
Slave or the Master and located at the last tier of our hierarchy.
Their purpose is obviously to give us information on the overall
system performance by measuring time and frequency. We tested
our final design with only 2 clients. Of course we could have a
better idea of the solution's performance by multiplying Clients,
but we would also need more FPGAS, which are quite expensive.
However, we can plug up to 6 Clients on the Save, increasing by
this way the solution’ s flexibility.

29

Time and freguency synchronization

Client’s module
Y ou can see thismodule on figure 18.

CLOCK and PPS HANDLER are exactly the same than those in
the Master.

The DELAY module is quiet similar than the Slave one. We send
abit (Delay bit out) and when we receive the bit from the Slave or
the Master (delay bit in) with the CLK and the Frequency
(cdlculate into the PPS Handler) we can calculate the DELAY
ESTIMATION.

In the TIME HANDLER we receive the time coming from the

Master and we add the DELAY ESTIMATION to obtain the
SYSTEM TIME.

Signal [0. 1] Signal [0. 1]

PPSHANDLER

PPSIN PPSOUT

Frequency value

Delay bit in

Delay estimation Delay bit out

Serial Daa

\%iallel Data

Timein System Time
§ 32-bit: Number of
second

Fig. 18: Client’smodule

30

Time and freguency synchronization

Client’s schematics

Client’s Clock and the Client’s PPS Handler is exactly the same
than the Master’s Clock and the Master’ s PPS Handler.

We receive the Time (Time in) into the TIME HANDLER, as you
can see on figure 19. Then we use a UART receiver to transform the
serid into a parallel message and we use a Time Builder to get the
format we want. Finally we add Delay estimation to have the correct
time.

Time in
UART

Serial to
parallele

.

Time builder

Dielay A0
estithation — ™| Srystem Time

Fig. 19: Client’s time handler

The DELAY, figure 20 below, is aimost the same than the Slave
one. We generate a bit and start (or reset) a Counter. When we
receive the bit from the Master or the Slave we put the counter value
into a Latch. We divide by two to have the delay in one way. At this
moment we have the delay in number of pulse. We divide by the
frequency to obtain a Time that we send to the Time Handler (Delay
Estimation).

31

Time and freguency synchronization

Delay m »
Eit Dialay out
Fadiniing
Y
—{ Beset D SetLatch | Diwide
Clock Coniter 32 I2hite by 2
bits
Tiirids g Dely ectimatinn
Frequency

Fig. 20: Client’sDelay

32

Time and frequency synchronization

3. Implementation

3.1 Hardwareimplementation

The first job was to understand the way the RS 422 worked
both in transmitter and receiver. Thus we made test on IDL-600
Analog Lab device with RS 422 on test board linked with
oscilloscope to see the evolution of the signal on the different pins.

Once we had understood and validated the exact operation of
that device we had to determine the number needed for each board
before building the schematics.

Then we have started drawing the schematics through Proteus
software first. After a lot of modifications due to some
improvements, afirst set of boards was drawn.

According to the schematics we have built the three first tiers
and tested and validated it with the different FPGAs (Find the list
of test in the software part — See chapter 3.4 page 31) Find the tiers
in figure21, 22 and 23 below.

RE422 T quack |.,H_

_,| RN :Comesben th he srve |

T

| Pt gl 0 P

'tmurmm:n-,ml '-: : R _.-I tmm\rlhmﬁiﬁ:mﬂ

Fig. 218: Magter’ shoard

33

Time and frequency synchronization

RE4) T srge

REAL2 A singles

Cannechon with the FPGA

RE4Z [quad

—

Fig. 23: Client’s board

We continuously improve the boards thus we succeed in
reducing the number of entrance data in the FPGA which helped
them to facilitate the programmation.

Finally we have drawn the final boards through PCB software.
It allowed the building of printed circuit boards instead of cable
boards. (Find the schematics in appendix B from page A 4 to A 8).

Time and freguency synchronization

3.2 Softwar e implementation

The main aim was to build a VHDL program for each master,
dave and client. In order to reach this goa, we made severa
programs, helped with books [7], [8], to improve our programming
skillsfirst and to help to build the final one for each tiers.

Hereisthelist of all the programs we made before building the
fina one.

- Xilinx tutorials to know how to use ISE 7.1

In depth tutorial
Quick start tutoria

- Connector polarity test
- FPGA Communication

LED utilization

Switch utilization

Expansion connector utilization for FPGA’s externd
communication

FPGA s clock utilization

Time reception test

PPS reception test

FPGA’s serid port communication test (We used
HyperTermina software to observe the received signals)

Bit generation test

Frequency calculation test

UART test

Once all those programs built, we started to program the fina
code for each master, slave and client. Thanks to the module and
schematics drew before and the programming skills developed
with the different previous programs we succeeded in
programming the codes for each tiers. Find the three codes in
appendix C (Comments are added in the different programs to
explain the different parts)

35

Time and freguency synchronization

4. Results obtained

We built one Master board, two Slaves - one featuring 4 RJ}45
and the other 6 RJ45 - and aso two Clients and all of them are
working properly.

We aso drawn all the schematics corresponding to those
boards in cable configuration as well as in printed circuit
configuration in case of a future industrialization

We succeeded in calculate delays for each tier. To sum up we
send a bit and start a counter simultaneously. When the upper level
tier (Master for slave and dave for client) receive this bit, it sends
it back to the transmitter tier. We stop the counter when we receive
the bit back. The delay is the time needed to realize this operation.

We also succeeded in transmitting and posting the PPS for each
tier.

We are able to send the Port A on the three different tiers but
we didn’t treat the data received because UART doesn’t work. We
can a o receive the complete “Time” message sended by the GPS.

Futurework

Hardware part

If we the decision to use mechanical UART is taken, the main
work to do at this step of the project will be to look forward how to
introduce UARTSs on the boards in understanding properly how it
works. This document should be redly useful for that.
(http://www .elfa.se/pdf/73/737/07375322.pdf)

Software part

Create a UART receiver to receive the Port A on the Master
and treat the data of the Ox8F-AB
(http://www.diamondpoint.co.uk/manuals/gps/trimbl e/Acutime200
0.pdf, see page 181) to select only the useful data and send those
onesto the client thanksto a UART transmitter.

36

http://www.elfa.se/pdf/73/737/07375322.pdf
http://www.diamondpoint.co.uk/manuals/gps/trimble/Acutime200

Time and freguency synchronization

The client, helped with a third UART, will treat and post the
message received. It will receive 96 bits of data (32 bits for the
number of second and 64 bits for the fraction of second)

For instance for the number of second, the master select the 8F-
AB packet and keep only the useful data such Time of week
(TOW), Week number,UTC Offcet and UTC Time and send the
selected data to the client which use the formulate below to
calculate the number of second.

Number of second = UTC Time + GPS Week number* number of
second in a week + Time of Week + UTC Offset

37

Time and freguency synchronization

Conclusion

One interest of this project was to improve our skills in
working in a team in an international environment. Indeed each
member worked on a different part, thus forced us to work hand by
hand and communicate every single day to progress in the same

way.

We aso improved our knowledge in project management after
building a project plan a the beginning, we tried to follow it as
close asit was possible and correct it when it was necessary.

We learned a lot in electrical engineering after carried out a
project of five months in this specific department and more
specifically on schematics building and VHDL programmation.

Unfortunately we didn’t succeed in finishing the whole project,
even if we did a lot of work. We needed a bit more time to
conclude the unit. We hope this will be done by our successors
thanks to our work and this project will be useful for a possible
industrialization to answer issues of synchronization for many
applications.

38

	Titlepage
	Report diplomawork
	1 Acknowledgments
	2 Preface
	3 Overview
	4 Hardware
	5 Passive Measurement Infrasturcture
	6 Software
	7 Tests
	8 Actual state
	9 Further work
	10 Conclusion and remarks
	11 Glossary
	12 References
	13 Appendix
	Appendix1: Reprot Semesterproject
	Appendix2: Schematic Interface
	Appendix3: Schematic Converter
	Appendix4: CoreMP7 developement kit users guide
	Appendix5: Datasheet CoreMP7
	Appendix6: Passive measurement infrastructure
	Appendix7: SimAP Design report
	Appendix8: Time and frequency synchronization

