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Abstract. Increasing recent empirical evidence indicates the extensive
existence of heavy tails in the inter-event time distributions of various human
behaviors. Based on the queuing theory, the Barabási model and its variations
suggest the highest-priority-first protocol to be a potential origin of those
heavy tails. However, some human activity patterns, also displaying heavy-tailed
temporal statistics, could not be explained by a task-based mechanism. In this
paper, different from the mainstream, we propose an interest-based model. Both
the simulation and analysis indicate a power-law inter-event time distribution
with exponent −1, which is in accordance with some empirical observations in
human-initiated systems.
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1. Introduction

Human behavior, as an academic issue in science, has a history of about a century according
to Watson [1]. As a joint interest of sociology, psychology and economics, human behavior
has been extensively investigated during past decades. However, due to the complexity and
diversity of our behaviors, the in-depth understanding of human activities is still a long-
standing challenge thus far. Actually, in most of the previous works, the individual activity
pattern is usually simplified as a completely random point-process, which can be well described
by the Poisson process, leading to an exponential inter-event time distribution [2]. That is
to say, the time difference between two consecutive events should be almost uniform, and
long gaps are hardly observed. However, recently, empirical studies on e-mail [3] and surface
mail [4] communication show a far different scenario: those communication patterns follow
non-Poisson statistics, characterized by bursts of rapidly occurring events separated by long
gaps. Correspondingly, the inter-event time distribution has a much heavier tail than the one
predicted by an exponential distribution. The heavy tails have also been observed in many
other human behaviors [5, 6], including market transaction [7, 8], web browsing [9], movie
watching [10], short message sending [11], and so on. The increasing evidence of non-Poisson
statistics of human activity patterns highlights a question: what is the origin of those heavy
tails? Based on the queuing theory, Barabási et al proposed a simple model [3, 12, 13] where
the individual executes the highest-priority task first, and they suggested the highest-priority-
first (HPF) protocol, a potential origin of those heavy tails.

The queuing model has great success in explaining the heavy tails in many human-oriented
dynamics. However, some other human activity patterns, also displaying the similar heavy-tailed
phenomenon, could not be explained by a task-based mechanism. For example, the actions of
browsing the web [9], watching on-line movies [10] and playing on-line games [14] are mainly
driven by personal interests, which could not be treated as tasks needing to be executed. The in-
depth understanding of the non-Poisson statistics in those interest-driven systems requires a new
model out of the perspective of the queuing theory. In this paper, different from the mainstream
task-based models, we propose an interest-based model. Both the simulation and analysis
indicate a power-law inter-event time distribution with exponent −1, which is in accordance
with some empirical human-initiated systems.

2. Model

Before introducing the mathematical rules of our model, let us think of the changing process of
our interests on web browsing according to our daily experiences. If a person has not browsed
the web for a long time, an accidental visit to a browsing outlet may give him a good feeling
and arouse his interest in web browsing. Next, during the action, the good feeling continues and
the frequency of web browsing may increase. Then, if the frequency is too high, he may worry
about it, thus reducing the frequency of browsing. Such similar experiences can be found in the
case of many other daily actions, such as playing games, seeing movies, and so on. In a word,
we usually adjust the frequency of our daily actions according to our interest: greater interest
leads to higher frequency, and vice versa. Some simple assumptions extracted from our daily
experiences are as follows: firstly, for a given interest-driven behavior, each action will change
the current interest, while the frequency of actions depends on the interest. It is like an active
walker [15, 16], whose motion is affected by the energy landscape, while the motion track could
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Figure 1. Upper panel: the succession of events predicted by the present model.
The total number of events shown here is 375 during 106 time steps. Lower
panel: the corresponding changes of r(t). The data points are obtained with the
parameters a0 = 0.5 and T2 = 104.

simultaneously change the landscape. Secondly, the inter-event time τ has two thresholds: when
τ is too small (i.e. events happen too frequently), the interest will be depressed, thus the inter-
event time will increase; whereas if the time gap is too long, we will increase the interest to
mimic its resuscitation induced by a casual action.

According to these assumptions, we propose an interest-based model which is as follows:
(i) the time is discrete and labeled by t = 0, 1, 2, . . ., the occurring probability of an event at
time step t is denoted by r(t). The time interval between two consecutive events is called the
inter-event time and is denoted by τ . (ii) If the (i + 1)th event occurred at time step t , the value
of r is updated as r(t + 1) = a(t)r(t), where

a(t) =


a0, τi 6 T1,

a−1
0 , τi > T2,

a(t − 1), T1 < τi < T2.

(1)

If no event occurred at time step t , we set a(t) = a(t − 1), namely, a(t) remains unchanged. In
this definition, T1 and T2 are two thresholds satisfying T1 � T2, τi is the time interval between
the (i + 1)th and the i th events, and a0 is a parameter controlling the changing rate of occurrence
probability (0 < a0 < 1). If no event occurs, r will not change. Clearly, simultaneously enlarging
(by the same multiple) T1, T2 and the minimal perceptible time, will not change the statistics of
this system. Therefore, without loss of generality, we set T1 = 1.

3. Simulation and analysis

In the simulations, the initial value of r is set at r0 = r(t = 0) = 1.0, which is also the possibly
maximal value of r(t) in the whole simulation process. As shown in figure 1, the succession
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Figure 2. Inter-event time distributions in log–log plots. (a) Given that a0 = 0.5,
P(τ ) for different T2, where the black, red and green curves denote the cases of
T2 = 102, 103 and 104, respectively. (b) Given that T2 = 104, P(τ ) for different
a0, where the black, red and green curves denote the cases of a0 = 0.8, 0.5 and
0.2, respectively. The black dashed lines in both (a) and (b) have a slope −1.
Each distribution contains 106 events.

of events predicted by the present model exhibits very long inactive periods that separate
the bursts of rapidly occurring events, and the corresponding r(t) shows a clearly seasonal
property (quasi-periodic behavior). Actually, in a period, the maximal and minimal values of
r(t) are respectively determined by T1 and T2 as rmax ∼ T −1

1 and rmin ∼ T −1
2 . This quasi-periodic

property will be applied in the further analysis. Note that, in a specific quasi-period, rmax can
be smaller than T −1

1 and rmin can be smaller than T −1
2 . This is because τ 6 T1 could result as a

consequence of r(t) < T −1
1 and τ 6 T2, when r(t)6 T −1

2 .
Figure 2 reports the simulation results with tunable T2 and a0. Given that a0 = 0.5, if

T2 � T1, the inter-event time distribution generated by the present model displays a clear power
law with the exponent −1; while if T2 is not sufficiently large, the distribution P(τ ) exhibits a
departure from a power-law form with a cut-off in its tail. Correspondingly, given a sufficiently
large T2, the effect of a0 is very slight, thus can be ignored.

Taking into account the quasi-periodic property of r(t), we raise two approximated
assumptions before analytical derivation: (i) the statistical property of P(τ ) is the same as that
in a single period; (ii) within one period, the statistical property of P(τ ) in the r -increasing
half is the same as that in the r -decreasing half. In the reducing process, r(t) = rmai

0, where
i = 0, 1, 2, . . . , I . The integer I denotes the number of events in the reducing process (also the
number of different values of r(t)), whose value is about

I ≈ − loga0
(T2/T1), (2)

since rmax ∼ T −1
1 and rmin ∼ T −1

2 . The variable rm is the initial value (it is also the maximum
value) of r(t) in a reducing process. Note that, for different reducing processes, the values of
rm are not always the same. Though rm has the same order of magnitude as T −1

1 = 1.0, its value
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can be less than T −1
1 in a specific process. The average value of rm will be calculated later in

this paper.
If the current occurring probability is r(t) = rmai

0, the probability that the next event will
happen at the time t + τ is

Q(τ ) = (1 − rmai
0)

τ−1rmai
0. (3)

Considering every value of r(t) in the reducing process, the inter-event time distribution of the
reducing process is

P(τ ) = I −1
I∑

i=0

(1 − rmai
0)

τ−1rmai
0. (4)

According to the approximated assumptions above, the inter-event time distribution of all the
successions can also be expressed by equation (4), which can be approximately rewritten in a
continuous form, as

P(τ ) ≈ I −1

∫ I

0
(1 − rmax

0 )τ−1rmax
0 dx . (5)

Therefore, P(τ ) can be further expressed as

P(τ ) ≈ −[(1 − rma I
0)

τ
− (1 − rm)τ ](ln a0)

−1 I −1τ−1. (6)

From equation (6), for a fixed rm, when I is large enough (equivalent to the condition
T2 � T1), P(τ ) has a power-law tail with exponent −1. In addition, this analytical result
also provides an explanation about the departure from a power law when T2 is not
sufficiently large.

As discussed before, for different reducing processes of r(t), the possible values of rm

are not always the same (see also the lower panel of figure 1 for different quasi-periods, the
maximum values of r(t) are different). Since the order of magnitude of rm is comparable with
T −1

1 = 1.0 (it is equal to r0), the minimum value of r(t), rma I
0 , has the same order of magnitude

as r0a I
0 . Making the approximated assumption that the minimum value of r(t) is given by r0a I

0
in an r -increasing process, and the maximum value of r(t) in the next r -decreasing process is
r0ak

0 (r0ak
0 is also the start point in the next decreasing process), then the probability density of

k reads

�(k) = r0ak
0

I−k−1∏
i=0

(1 − r0a I−i
0 ). (7)

Therefore, the average value of rm is

〈rm〉 =

I−1∑
k=0

r0ak
0�(k) =

I−1∑
k=0

(r0ak
0)

2
I−k−1∏

i=0

(1 − r0a I−i
0 ). (8)

This average value of rm calculated by equation (8), as well as the integer part of − loga0
(T2/T1)

(as the approximation of I ), can be directly used in the approximate calculations of equation (6).
Given that r0 = 1.0, a0 = 0.5, T2 = 104 and T1 = 1, one obtains I ≈ − loga0

(T2/T1) = 13, and
〈rm〉 ≈ 0.50 from equation (8). Accordingly, figure 3 reports the comparison of analytical and
simulation results, which are well in accordance with each other.
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Figure 3. Comparison of the analytical (black solid line) and numerical (gray
circles) results of inter-event time distribution. The numerical data are obtained
with parameters r0 = 1.0, a0 = 0.5 and T2 = 104. The analytical results are
calculated by equation (6) with a0 = 0.5, I = 13 and rm = 0.50. The black
dashed line has slope −1. The numerical results contain 106 events.

4. Conclusion and discussion

A novel model of human dynamics is proposed in this paper. Different from the mainstream
queuing models, the current model is driven by personal interests. In this model, the frequency
of events are determined by the interest, while the interest is simultaneously affected by the
occurrence of events. This interplay working mechanism, similar to the active walk [15, 16],
is a genetic origin of complexity of many real-life systems. The rules in the current model are
extracted from our daily life, and both the analytical and simulation results agree well with
empirical observations, such as the activity pattern of web browsing [9]. Our work indicates a
simple and universal mechanism in human dynamics, that is, people could adaptively adjust their
interest in a specific behavior (e.g. watching TV, browsing the web, playing on-line games, etc),
which leads to a quasi-periodic change of interest, and this quasi-periodic property eventually
gives rise to the departure from Poisson statistics.

Besides the HPF protocol and the current model, there are also some other mechanisms
that can lead to a power-law inter-event time distribution. For example, Hidalgo [17] pointed out
that a Poissonian individual with characteristic time varying randomly in time could generate
a power-law inter-event time distribution with exponent −2. In addition, Vázquez [18] showed
that if the current executing rate is linearly correlated with the average executing rate in an
immediate predecessor period, the inter-event time distribution will follow a power-law form.

Note that, although in the recent empirical works the power-law form is widely used to fit
the inter-event time distribution of human behaviors, there exists a debate about the choice of
fitting functions for this distribution in e-mail communication [19, 20]. Actually, a candidate,
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namely a log-normal distribution, has also been suggested [19] for describing the non-
Poisson temporal statistics of human activities. The stretched exponential distribution [21, 22],
interpolating between a power law and an exponential form, serves as another candidate (see,
for example, the distribution of inter-event time between two consecutive transactions initiated
by a stock broker [13]). A clear understanding of the tails in the inter-event time distribution
requires in-depth exploration of empirical data in the future.

The concept and methodologies related to the statistics of the inter-event time can also find
applications in some other systems. For example, similar statistical analysis can be carried out
on the spacing between the consecutive occurrences of the same letter in written text [5], and the
time difference between successive events above a certain threshold (i.e. extreme events) [23].

Finally, we point out some limitations in the current model. Firstly, it can only generate
the power-law inter-event time distribution with exponent −1, which does not agree with some
real human-initiated systems with different power-law exponents. Secondly, we assume that the
changing rate of the occurring probability, a0, is fixed as a constant in every rising or decaying
process. This assumption is very ideal, and we could not find any support from the empirical
data. Thirdly, as stated by Kentsis [24], there are countless ingredients affecting the human
dynamics, and for most of them, we do not know their impacts. Those ingredients, such as the
social content, the semantic content and the periodicity due to circadian and weekly cycles, have
not been considered in the present model, neither has the HPF protocol. However, although
this model is rough and may contain some artificial assumptions, it provides a starting point
for modeling interest-based human dynamics. Human-initiated systems are the most complex
systems, and there must be many underlying mechanisms that have not yet been discovered. We
believe our model could enlighten readers in this rapidly developing field.
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