Faculté des sciences

Ultra-Light Amorphous Silicon Cell for Space Applications

Wyrsch, Nicolas ; Dominé, Didier ; Freitas, F. ; Feitknecht, Luc ; Bailat, Julien ; Ballif, Christophe ; Poe, G. ; Bates, K. ; Reed, K.

In: Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, 2006, vol. 2, p. 1785-1788

For space applications, solar cells should be optimized for highest power density rather than for highest efficiency. In this context, relatively low efficiency thin-film solar cell may well surpass multi-junction III-V based solar cells if they can be made thin enough. In thin-film solar cells the power density is mostly limited by the substrate. The introduction of ultra-thin polymeric... Plus

Ajouter à la liste personnelle
    Summary
    For space applications, solar cells should be optimized for highest power density rather than for highest efficiency. In this context, relatively low efficiency thin-film solar cell may well surpass multi-junction III-V based solar cells if they can be made thin enough. In thin-film solar cells the power density is mostly limited by the substrate. The introduction of ultra-thin polymeric substrates is the key for decreasing the cell mass. In this work, a very thin polyimide film LaRCtrade-CP1 was used as substrate or superstrate for amorphous silicon solar cell fabrication. CP1 films were either fixed on a glass carrier or spin coated onto a glass carrier coated with a release agent. By depositing amorphous silicon cells on 6 mum thick CP1 films, a power density of 2.9 W/g under AM1.5g and of 3.9 W/g (estimated) under AM0 illumination spectra was achieved, in substrate (n-i-p) configuration (for a cell area of ca. 0.25 cm2). A similar cell deposited in superstate (p-i-n) configuration exhibits a record power density of 3.2 W/g under AM1.5g and an estimated value of 4.3 W/g under AM0 illumination spectra. Release of the finished solar cells from the glass carrier was also tested.