Faculté des sciences

Recent progress in micromorph solar cells

Meier, Johannes ; Dubail, S. ; Cuperus, J. ; Kroll, U. ; Platz, R. ; Torres, Pedro ; Anna Selvan, J. A. ; Pernet, P. ; Beck, N. ; Pellaton Vaucher, N. ; Hof, Ch. ; Fischer, Diego ; Keppner, Herbert ; Shah, Arvind

In: Journal of Non-Crystalline Solids, 1998, vol. 227-230, p. 1250-1256

Recently, we have demonstrated that intrinsic hydrogenated microcrystalline silicon, as deposited by the very high frequency glow-discharge technique, can be used as the active layers of p–i–n solar cells. Our microcrystalline silicon represents a new form of thin film crystalline silicon that can be deposited (in contrast to any other approach found in literature) at substrate temperatures... Plus

Ajouter à la liste personnelle
    Summary
    Recently, we have demonstrated that intrinsic hydrogenated microcrystalline silicon, as deposited by the very high frequency glow-discharge technique, can be used as the active layers of p–i–n solar cells. Our microcrystalline silicon represents a new form of thin film crystalline silicon that can be deposited (in contrast to any other approach found in literature) at substrate temperatures as low as 200°C. The combination of amorphous and microcrystalline material leads to a ‘real' silicon-based tandem structure, which we label ‘micromorph' cell. Meanwhile, stabilised efficiencies of 10.7% have been confirmed. In this paper, we present an improved micromorph tandem cell with 12% stabilised efficiency measured under outdoor conditions. Dark conductivity and combined SIMS measurements performed on intrinsic microcrystalline silicon layers reveal a post-oxidation of the film surface. However, a perfect chemical stability of entire microcrystalline cells as well as micromorph cells is presented. Variations of the p/i interface treatment show that an increase of the open circuit voltages from 450 mV up to 568 mV are achievable for microcrystalline cells, but such devices have reduced fill factors.