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Measurement of the elastic and v = 0 — 1 differential
electron—IN; cross sections over a wide angular range

Michael Allan

Abstract

Absolute differential elastic and vibrational excitation cross sections have been
measured for N, in the scattering angle ranges starting between 0° and 20°
and extending to 180°, at energies between 0.8 and 5 eV. The results agree
with many previous measurements, in particular for angles around 90°, but
discrepancies were found in some cases for angles close to 0° and 180°. Integral
and momentum-transfer cross sections have been derived and compared with
previous beam and swarm measurements. The procedures for determining the
instrumental response function and for assuring optimal beam overlap over
wide ranges of angles and energies are discussed.

1. Introduction

Electron collisions with N are of substantial interest for the ionosphere and plasma processing.
N, is one of the most studied molecules as far as electron collisions are concerned, both
experimentally and theoretically. The work has been reviewed by Schulz [1], Itikawa [2],
Zecca et al [3] and Brunger and Buckman [4], and a comprehensive crossed-beam and
theoretical study has been reported by Sun et al [5]. The beam and swarm results have been
critically compared by Buckman and Brunger [6] and Robertson et a/ [7]. The elastic and
v = 0 — 1 differential measurements have been extended to 180° using the ‘magnetic angle
changer’ (MAC) by Zubek et al [8] and Trantham et al [9].

Despite this extended work, open questions remain, in particular, at large scattering
angles and for the very small vibrational cross sections below the resonance region. This
work completes the existing data at low energies and large scattering angles, regions where the
required technologies, in particular the MAC [10, 11], have become available only recently.

Despite the availability of the MAC, measuring differential cross sections at very small and
very large angles remains far from trivial. Elaborate strategies are required to assure optimum
overlap of the incident beam and the analyser acceptance cone as the electron energies and the
scattering angle are changed, and to determine the response function of the instrument for all
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the energies and angles required. A few research groups have developed methods to achieve
this goal [8, 12], but there are still many inherent uncertainties which are usually apparatus
specific. Knowledge of these procedures is essential for the judgement of the reliability of
the data and this work therefore serves a secondary purpose; it elaborates on the procedures
required to measure differential cross sections at very small and very large angles.

2. Experiment

2.1. The spectrometer

The instrument is a conventional electron spectrometer with two hemispherical electron
monochromators and two hemispherical electron analysers [13—15]. The energy resolution
was about 14 meV in the energy-loss mode, at a beam current of around 250 pA. The energy
of the incident beam was calibrated on the >S resonance in helium (the more recent energy
of 19.365 eV [16] has been used, although it is only insignificantly different from the earlier
value of 19.366 eV [17]) and is accurate within =10 meV. The sample gas was introduced
through a 0.25 mm diameter effusive nozzle kept at ~30 °C.

The instrument incorporates the magnetic angle changer invented by Read and co-workers
[10, 11], which permits measurements of scattering into the backward hemisphere. The
particular form of the MAC realized in Fribourg [18, 19] is made of a few windings of a thin
(0.63 mm diameter) copper tubing, cooled by water. This design minimizes the obstruction
of the gas flow; the local pumping speed in the collision region is nearly unaffected by the
presence of the MAC. This reduces beam attenuation by background gas, is important for
absolute measurements which rely on a definite gas flow and improves resolution by reducing
the thermal Doppler broadening encountered in scattering by the background gas. The design
further simplifies the power supplies since it has only one current loop for both the inner and the
outer solenoid. The same computer controls the digital-to-analogue converters determining
the incident and scattered electron energies (E; and E;) and the MAC current, which is
automatically adjusted to provide the desired deflection angle every time E; and/or E, are
changed. The scattering angle was calibrated by guiding the incident beam into a rotatable
Faraday cup and is accurate within £3°.

It may appear that incorporating the MAC device solves all the problems and the
measurement of cross sections over the entire angular range becomes straightforward. A
naive use of the device can easily result in errors exceeding a factor of ten, however. The
central issues are the following.

e Ascertaining an optimal overlap of the incident beam, the analyser acceptance cone
(the ‘scattered beam’) and the gas beam, when the electron energies E; and E; and the
scattering angle 6 are changed.

e Determining the ‘response function’ of the instrument as a function of both the electron
energies and the scattering angle, and properly correcting the raw data.

These issues will be discussed in more detail here.

2.2. The variation of the instrumental response function with electron energy

The response function for elastic signal is relatively easy to determine, by measuring the He
elastic signal as a function of energy and dividing it point by point by the theoretical cross
section [20]. In practice, a problem arises because the thermal Doppler broadening and the shift
of the elastic peak due to momentum transfer are not negligible in He [21]. The translational
excitation is about 9 meV at 20 eV and 135°. The thermal Doppler broadening increases
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inherently with scattering angle and electron energy, but depends on scattering angle also
for apparative reasons. It is smallest at 90° where the incident and scattered electron beams
intersect in a very small volume, about (0.25 mm)? in the present instrument, in the front of
the nozzle, and the molecules in this effective collision volume move all essentially in one
direction. The apparative aspect is worst near 0° and 180° where the incident and scattered
electron beams are nearly collinear, probe a large width of the effusive gas beam, with a
substantial range of directions of the thermal velocities of the target gas. As a consequence,
the elastic peak becomes broader and shifts to higher energy loss A E with increasing scattering
angle and increasing incident electron energy E;j. The observed width of the He elastic peak in
the present experiment was 14 meV at 0.4 eV and 22.5 meV at 20 eV (at 8 = 135°), indicating
a Doppler broadening of 17.6 meV. This is substantially less than the 45 meV calculated for
a stationary sample gas using the expression given by Read [21]. The Doppler broadening is
particularly pronounced around 180° where the apparative and inherent effects combine and
the width of the elastic peak in helium may reach 50 meV, that is, the Doppler broadening
approaches the value of 47.6 meV, calculated for a stationary gas. The consequence is that
the area under the elastic or inelastic energy-loss peak must be taken in all measurements,
not the peak height. In practice, this can be achieved either by recording the peak signal and
correcting it by a smooth function expressing the area/height ratio measured at a few discrete
energies, or by measuring many excitation functions at energy losses spanning the range of
about (—50 meV; +50 meV), that is, covering the entire elastic peak, and then taking the sum.
The former method was used in some earlier work from this laboratory and the latter method
is used here.

In theory, the ideal response function should behave as 1/E, because the ideal incident
beam is constant and the analyser acceptance angle should increase with decreasing E;. The
hemispheres operate at a constant pass energy (3 eV in this work), that is, the pencil angle,
defined by the size of the pupil apertures, is constant between the hemispheres. The analyser
entrance pencil angle then increases as 1/4/E; and the solid entrance angle as 1/E,, with
decreasing E,. This is true provided that the magnification of the analyser entrance lens does
not vary significantly with energy. Trajectory calculations [22] indicate that this assumption
is approximately true. At low energies, the pencil angle given by this relation exceeds the
useful physical dimension of the entrance lens (i.e., the filling factor exceeds about 50% ), and
this factor becomes limiting. The response then increases slower than 1/E; with decreasing
energy and becomes constant at very low energies. At extremely low energies, the electrons
are lost because of stray fields. Similarly, the incident electron beam is ideally constant, but
the pencil angle increases with decreasing energy until it reaches the useful diameter of the
monochromator exit lens. Below this energy, the beam starts to decrease. At low energies, the
incident beam may also lose efficiency because it becomes diffuse or distorted by stray fields.

The response function of the instrument, shown multiplied by E; to facilitate visual
judgement, should thus be approximately constant above a certain energy, above which
the spectrometer behaves ideally. Below this energy, the response function still rises with
decreasing energy, but slower than 1/E;. At even lower energies, the response function of
the analyser alone should be constant and finally drop. The efficiency of the monochromator
decreases, making the response function of the entire instrument fall.

Figure 1 illustrates how the response function is derived. The signal generally drops
rapidly with increasing energy and some of the curves are shown multiplied by E; to facilitate
visual judgement of the deviation from the ideal 1/E; behaviour. The signal recorded at
AE = 10 meV drops less rapidly with E; than the signal recorded at AE = 0 meV, a
consequence of the translational excitation and the Doppler broadening. The signal integrated
over all AE in the range (—50 meV; +50 meV) is shown both as recorded and as multiplied
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Figure 1. Illustration of how the variation of response function with electron energy is derived.
Some of the curves are shown multiplied by the electron energy E to improve the visibility of
the deviation from the ‘ideal’ 1/E behaviour. The scattering angle is & = 135°. The vertical
scale is linear and shows the signal intensity, response function and differential He cross section
in arbitrary units.

by E;. The integrated signal divided by the theoretical DCS yields the response function. The
curve representing the response function, multiplied by E;, reveals that the sensitivity of
the instrument behaves approximately ideally (as 1/E,) at energies E, > 1 eV. At E, < 1 eV,
the sensitivity still rises with decreasing E;, but less rapidly than 1/E,, following the
expectation outlined above. Finally, at E, < 100 meV, the sensitivity drops rapidly,
both because the pencil angle of the incident beam exceeds the useful diameter of the
monochromator exit lens and because of stray fields. At an energy range of about 50—
100 meV, this drop may still be taken into account for correcting elastic cross sections by
making a response function which follows this drop (the dashed line in figure 1). Below
50 meV, such a correction becomes unreliable. The response function for inelastic signal (the
full curve in figure 1) is harder to determine. In the past, this response function has been
expressed by a product of monochromator and analyser responses [14], the analyser response
being determined on the near-threshold ionization continuum of helium. This procedure
turns out to be impractical when working at low energies and over large angular ranges and
a simplified assumption is made here that the analyser response function is constant below
100 meV. This assumption is justified by the argument about a constant acceptance solid
angle outlined above. At 90°, this assumption has been tested independently by using the He
ionization continuum to determine the analysis response function.

The He ionization continuum has been used to derive the response function by a number
of groups [14, 23, 24]. This method is, however, not suitable for routine response function
determination. The underlying assumption of a flat electron distribution is valid only around
90° [23, 25] and the method is consequently not applicable at small and large scattering angles.
Furthermore, the He ionization continuum is weak and long accumulation is required. The
incident energy is well above the ionization energy during this acquisition, and this appears
to change the charging of the surfaces around the collision region and changes the behaviour
of the instrument at low energies. This method of determining the response function thus
detrimentally affects the performance at low energies, the property which it tries to determine.
To provide an independent check of the response function, He inelastic cross sections were
recorded from time to time during the present work and compared with earlier data [14, 18].
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Another useful test of consistency is recording briefly the vibrationally inelastic cross sections
in CO, and comparing to earlier results [13, 26].

An important aspect of the measurement is ‘tuning’ of the instrument, that is determining
a set of focusing and x, y-deflection voltages of the monochromator exit and analyser entrance
lens insuring optimal focusing and beam overlap over arange of electron energies and scattering
angles. This is done by optimizing elastic and inelastic signals in helium, sometimes also
in CO; and N, for a number of discrete electron energies and scattering angles (the ‘pivotal
points’). The computer then automatically interpolates these parameters between the pivotal
points during acquisition. The tuning is the most critical and time-consuming step of the
measurements and there are several aspects to which attention has to be paid. One is that it is
relatively easy to optimize beam overlap at several energies by optimizing the elastic signal, but
much harder to assure that the beam—nozzle distance remains constant for all these energies.
This is an imperative condition because without it the beam overlap will be non-optimal for
inelastic scattering and the inelastic signal intensity will be seriously wrong (too low) despite
the fact that the elastic response function has been optimized and looks correct. The procedure
used here is to optimize the inelastic signal in helium (one of the four n = 2 states, whichever
gives the strongest signal at the energy and the scattering angle in question) for a range of
residual energies from threshold to about 5 eV above. While doing so, the incident energy is in
the range of ~20-25 eV, it changes by only a small percentage and the incident beam—nozzle
distance may be assumed to remain constant. The analyser acceptance cone is thus tuned for
a constant distance to the nozzle. Constant incident beam—nozzle distance at low energies is
then achieved by tuning the monochromator exit lens for optimum match with the analyser on
elastic scattering in the 0-5 eV range. Parameters giving maximum signal are always sought
during the tuning—signal is never reduced intentionally to obtain the desired shape of the
response function! Elastic signal cannot be measured below 6 = 10° and inelastic signal (for
example, v = 0 — 1 in N, or electronic excitation in He) must be used for tuning at 0°.

The data in figure 1 have small residual dips at certain energies, caused by remaining
imperfections in the match of the incident and scattered beams. Such imperfections can
generally be further reduced by a prolonged ‘tuning’.

2.3. The response function’s dependence on scattering angle

As outlined above, the major challenge is keeping optimal beam overlap both for varying
angles and for varying energies. The deflector and focusing voltages are optimized for a
number of pivotal angles and voltages, and the instrument interpolates between these voltages
as energies and angles are scanned. Experience shows that the present instrument cannot
be optimized over the entire angular range with a single set of tuning voltages because of
what could be called a ‘memory effect’. When the instrument is tuned at, as an example,
6 = 45°, then moved to say 8 = 135°, optimized there, and then returned back to 6 = 45°,
it ‘remembers’ that it was ‘parked’ at @ = 135° and the optimization at & = 45° is no longer
valid. It appears that the elastically scattered electrons ‘splash’ around the collision region
and create surface potentials which depend on the position of the analyser. The effect of
these potentials can be compensated by suitable deflector voltages, but when the instrument
is parked at a different angle for some time, the surface potentials change, and the previously
determined deflector voltages are no longer applicable.

This problem is circumvented here by repetitively scanning the scattering angles over
only a part of the angular range and merging the partial angular measurements together at the
end. The entire angular range has been divided into three overlapping angular fragments. The
analyser was placed at the angles of & = 45°,90° and 135°, and the angle was repetitively
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Figure 2. Illustration of how the angular response function is generated.
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Figure 3. The angular response functions for the energies given, normalized arbitrarily to 1 at
90°. Only the functions centred around 45° and 135° are shown, those centred around 90° were
omitted to avoid congestion of lines.

magnetically scanned in a range £45° around the mechanical analyser position. The steps
involved in determining the response function’s dependence on scattering angle are illustrated
in figure 2. A series of short energy-loss spectra around the elastic peak, one at each angle,
is recorded. The series is labelled ‘composite spectrum’ in figure 2. The areas under the
elastic peaks are then taken and divided by the theoretical DCS to yield the response function.
The instrument cannot distinguish between nearly forward scattered and unscattered electrons,
resulting in a large background for elastic spectra at a small angle. The lowest attainable angle
is about 15° at 1 eV and slightly below 10° at higher energies.

The resulting response functions for several electron energies are shown in figure 3.
Qualitatively, they behave in the expected way, they increase below and above 90° as the
spatial overlap of the incident and scattered beams increases. The function levels off near
180° because the overlap with the target gas beam becomes limiting. The response function
is not entirely symmetric around 90° and the reason for this is not quite clear. It could be the
consequence of the collision volume moving slightly closer to the nozzle at small scattering
angles because of slightly changing stray fields as the scattering angle is decreased. The shape
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Figure 4. Electron energy-loss spectra used to determine the absolute inelastic cross sections. The
elastic peak recorded with neon, representative of the apparatus profile, is also shown.

of the response functions shown in figure 3 is reasonably independent of electron energy,
indicating that the beams remain well focussed in this energy range and the response functions
determined on elastic scattering may also be used to correct inelastic signal, provided that
the instrument has been properly tuned as described above (particular attention being paid to
constant beam-nozzle distance with varying energies).

The response function cannot be measured in this way below 10° (below 20° at 0.8 eV),
but it is justified to extend it assuming that it has the same (mirror) shape near 0° and 180°. It
will be shown below that this assumption leads toa v = 0 — 1 cross section with the expected
d; shape [27], so that it appears safe to determine the response function below 10° on N in
the future (the N, standard being applicable only in the 2-3 eV range, however).

2.4. Normalization to absolute values

Absolute values of the elastic cross sections were determined at 45°, 90° and 135° and the
incident energies of 0.8, 1.989, 2.47 and 5.0 eV by comparison with the theoretical helium
elastic cross section [20], using the relative flow method, described in detail by Nickel et a/
[28]. They are accurate within about £15%. Energy-loss spectra were then recorded at
these four incident energies, corrected for the instrumental response function determined as
described in section 2.2. Examples of the energy-loss spectra are shown in figure 4. Absolute
inelastic cross sections were determined from the absolute elastic values and the integrals
under the elastic and inelastic energy-loss bands. Both the elastic and the v = 0 — 1
inelastic peaks are barely broader than the elastic peak of Ne at E; = 0.8 eV, but substantially
rotationally broadened with E; = 1.988 and 2.47 eV. This confirms the well-known fact that
rotational excitation is weak below the *IT, resonance and strong in the resonance region. The
present cross sections were derived from the areas under the peaks and are thus summed over
all rotational transitions. The inelastic cross sections are accurate within about £20%. The
absolute values are cited in table 1.

The three overlapping sections of the angular distribution are then joined together as shown
in figure 5. Each of the three sections is normalized to an absolute value separately, providing
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Table 1. Summary of the present absolute cross sections. The differential cross sections (3o /9€2)
are in A2 sr! and the integral (o7) and momentum-transfer (op,) cross sections are in A2,

00/0Q2

E (eV) 45° 90° 135° o Om
v=0—>0

0.8 0.411 0.849 0.835 8.9 10.2

1.988 1.174 1.284 1.075

2.47 2.210 1.164 1.676 229 21.9

5.0 1.424 0.640 0.652 11.0 9.19
v=0—>1

0.8 0.00049  0.00026  0.000 23 0.0045 0.0036

1.988 0.279 0.400 0.264 4.64 4.65

2.47 0.097 0.147 0.098

5.0 0.0052 0.0055 0.004 8 0.075 0.073
v=0—2

1.988 0.149 0.205 0.140

2.47 0.174 0.241 0.171

5.0 0.00046  0.00082  0.000 53

a desirable degree of redundancy and cross-check. Small adjustments of the absolute values
are sometimes necessary before joining the sections together. A smooth transition between the
sections is achieved by gradually decreasing the contribution of one section and simultaneously
increasing the contribution of the next section, using the ‘weighting factors’ shown in figure 5.
The weighting factors behave as cos? and sin? in the transition angular range, so that their sum

is always equal to 1.

3. Results and discussion

Figures 6-10 show the rotationally summed elastic cross sections at five representative
scattering angles, obtained by summing excitation functions recorded at energy losses between
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Figure 7. The rotationally summed elastic cross section at 45°.
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Figure 9. The rotationally summed elastic cross section at 135°.
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Figure 10. The rotationally summed elastic cross section at 180°.

—50 meV and +50 meV (at 2 meV intervals), correcting the result for the response function
determined as described in section 2.2 and normalizing them to agree well with the absolute
values determined at the discrete energies of 0.8, 1.988, 2.47 and 5.0 eV. A certain compromise
must be made while normalizing because the excitation functions do not agree with the discrete
measurements perfectly at all four points.

The figures illustrate the well-known fact that the shape of the elastic cross section
depends substantially on scattering angle, because of the coherent superposition of the direct
and resonant contributions. As pointed out by Shi ez al [29] and Sun et al [5], this leads to
variations of the positions of the resonant peaks with scattering angle and complicates the
comparison of angular distributions obtained by various experiments and by theory. Shi et al
measured their angular dependence around 2.2 eV, with the exact energy adjusted to stay
on the peak, but most other authors and the present work measure the angular distributions
at fixed electron energies. The peak positions measured in the present work are given in
table 2.

The peak positions found here agree well with those of Sun et al [5], who reported the third
peak in the elastic cross section at 2.46 eV and the first peak in the v = 0 — 1 cross section
at 1.98 eV (at 60°). The peaks are wide and have a relatively flat top, making determination

10
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Figure 11. The rotationally summed v = 0 — 1 cross section at 45°. The three energies at which
the angular distributions have been measured are indicated.

Table 2. Measured positions of the third peak in the elastic cross sections and the first peak in the
v = 0 — 1 cross sections (in eV, within +0.015 eV).

Scattering angle
20° 45° 90° 135° 180°
Elastic 2455 2465 2430 2467 2458
v=0—1 1980 1985 1988 1.988 1.990

of the peak position better than about 15 meV, difficult even with precise energy scale
calibration. The peak position in the v = 0 — 1 cross section is constant within the accuracy
of the experiment. The position of the peak in the elastic cross section varies, but a significant
deviation is found only around 90°, where the third peak is 40 meV below the value of 2.47 eV
at which the present angular distributions have been measured. The substantial width of the
boomerang structures has the consequence that the cross section values do not appreciably
change with electron energy for deviations of up to about +20 meV from the peak, the only
substantial difference in the present work being around 2.47 eV and 90°. Reference to the
data in figure 8 reveals that the elastic cross section at 2.47 eV would be about 13% larger
around 90° if it were measured on peak instead at the constant energy of 2.47 eV used in
figure 15.

Figures 11-13 show the rotationally summed v = 0 — 1 cross sections. The curves
have, within experimental error, the same shapes in the resonance region (about 1.7—4 eV).
The two curves measured at 45° and 135° also have the same magnitude and are consequently
compatible with an angular distribution symmetrical around 90°. The curves are distinctly
different below the resonance, in the 0.5—1.5 eV range. The difference appears to be real and
is reflected also in the angularly resolved data at 0.5 and 1 eV of Sohn et al [30], who found
the ratio of the 1 eV /0.5 eV data to be 3.6 at 45° and 2.3 at 135°.

Figures 14—19 show the rotationally summed angular distributions obtained at the energies
marked in figures 6-13. The data are compared with selected earlier experimental work
and with the theoretical results of Morrison and co-workers [5, 31, 32]. They use the
body-frame vibrational close-coupling theory described by Sun ef al [5]. Correlation-
polarization effects were included using either the ‘better-than-adiabatic-dipole’ (BTAD)

11
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Figure 12. The rotationally summed v = 0 — 1 cross section at 135°.
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Figure 13. The rotationally summed v = 0 — 1 cross section at 180°.
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Figure 16. The rotationally summed elastic cross section at E = 5 eV. The results of Srivastava
et al [35], Shyn and Carignan [34], Brennan et al [36], Sun et al [5], Zubek et al [8] and the
theoretical results of Feng et al [31, 32] (DSC model) are shown for comparison.

potential [33] or the ‘distributed spherical Gaussian’ (DSG) model [31]. Both models have
been extensively compared with experiment and with each other [5, 31]. No published
theoretical data were available at 0.8 eV but were kindly provided by Feng et al [32] as a private
communication.

The data in figure 14 are compared to earlier experimental data at 0.55 and 1.0 eV because
no data at 0.8 eV were available in the literature. The cross section increases monotonically
in this energy range and the present values should be between those at 0.55 and 1.0 eV. They
are slightly higher than those of Sohn et a/ [30] and agree well with those of Shi et al [29] and
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Figure 17. The rotationally summed v = 0 — 1 cross section at E = 0.8 eV. The experimental
data at nearby energies of Sohn et al [30] and the theoretical results of Feng et al [31, 32] (DSG
model) are shown for comparison.
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Figure 18. The rotationally summed v = 0 — 1 cross section at E = 1.988 eV. The results of
Sun et al [5], Sweeney and Shyn [37] and the d; wave distribution, normalized to the experiment
at 90°, are shown for comparison.

Sun et al [5]. The present data are in a very good agreement with the DSG theoretical results
of Feng et al [32],

The elastic data at 2.47 eV in figure 15 are in an excellent agreement with those of Sun
et al [5], except for a small difference below 30°. The elastic data at 5 eV in figure 16 are in
an excellent agreement with all other results in the intermediate angle range, about 50—120°.
Larger differences are found at the more extreme angles. The data of Brennan et a/ are slightly
larger below 40°. The theory of Feng et al [31, 32] is larger than all experiments at small
angles, but agrees very well with the present experiment at the intermediate and backward
angles. The data of Shyn and Carignan [34] are larger and those of Zubek ef a/ [8] are smaller
than the present data at large angles.
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Figure 19. The rotationally summed v = 0 — 1 cross section at E = 5 eV. The results of Tanaka
et al [38], Brennan et al [36] and Zubek et al [8] are shown for comparison.

The v = 0 — 1 data in figure 17 are in a good agreement with those of Sohn ez al [30]
when it is taken into account that the cross section is relatively flat in the 0.5-0.8 eV range
and rises steeper above 0.8 eV, as indicated by theory and swarm data (figure 8 of Robertson
et al [7]). The v = 0 — 1 cross section in the resonance region (figure 18) is in an excellent
agreement with both the theory and the experiment of Sun et al [5]. It also agrees very well
with a pure d,; distribution, given by the expression 1 — 3 cos’ @ + 174 cos* @ [27], although
this comparison must be done with caution, since AJ > 0 transitions have different angular
distributions [39].

The v = 0 — 1 cross section at 5 eV (figure 19) is in a very good agreement with the
earlier data shown, except that the data of Zubek et al [8] are lower above 160°. The present
data are largely symmetric around 90° and indicate that the excitation is dominated by the TT e
resonance even at 5 eV.

The integral and momentum-transfer cross sections derived from the present angular
distributions are compared to earlier data in table 3. The v = 0 — 1 cross section in the
resonance region did not require any extrapolation, the remaining data required an extrapolation
over a narrow angular range around 0°. It was done ‘visually’ using the shape of the theoretical
data as a guide. The shape of the extrapolated data is not critical, the angular range where it
is necessary is narrow and the weight in the integration is low.

Buckman and Brunger [6] discussed in great detail the relation of swarm and beam data.
In their figure 8, they show an overview of the momentum-transfer cross sections in N, below
1.5 eV and some of the data are included in table 3 for comparison. A very similar data
compilation was given by Robertson et al [7] in their figure 6. Some of the data had to be
interpolated between neighbouring energies, which can be done reliably because the cross
section is nearly constant in the range in question.

Momentum-transfer cross sections have been investigated by Robertson et al [7]. The
theoretical cross section of Robertson et al [7] given in table 1 are, in the resonance region, not
at exactly the energies of the measurements, but at the closest peak (examples: the theoretical
integral elastic cross section at 2.484 eV is compared to the measurement at 2.47 eV, the
theoretical integral v = 0 — 1 cross section at 1.95 eV is compared to the measurement at
1.988 eV).
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Table 3. Integral and momentum-transfer cross sections (in A?). The theoretical values in the
resonance region are taken not exactly at the given experimental energy but at the nearest peak in
the cross section as a function of energy.

Integral Momentum transfer

E (eV) Present Other experiments ~ Theory® Present Other experiments ~ Theory?®
v=0—0

0.8 8.9 9.5)° 9.54,9.12¢ 10.2 11.09,9.9¢,10.6°,  10.34,10.29°

10.0f, 10.02

247 229 24.5"30.6! 26.7,26.62° 21.9 23.2h 24.95

5.0 11.0 10.9°, 11.3) 13.1, 12.2¢ 9.19 8.64° 9.52,9.67¢
v=0—>1

0.8 0.0045  0.00529, 0.0058% 0.0017, 0.0035¢ 0.0036 0.0021, 0.0034¢

1.988 4.64 4.56°® 2 33! 4.53,4.55¢ 4.65 4.53

5.0 0.075 0.061™,0.080/, 0.146, 0.129¢ 0.073 0.053™ 0.147,0.139¢

0.077"

2 Robertson et al [7] and Feng et al [31, 32] (swarm data and theory, BTAD model).

b Sun et al [5] (beam data). The value in parenthesis has been interpolated between the values at 0.55 eV (9.12 A?)
and 1.0 eV (9.84 A?). The value with an asterisk has been given in [7].

¢ Feng et al [31, 32] (theory, DSG model).

d Haddad [40] (swarm data).

¢ Phelps and Pitchford [41] (swarm data), as cited in [6].

f Sun et al [5] (time-of-flight data), see also Buckman and Brunger [6].

& Ramanan and Freeman [42] (swarm data).

M Trantham ez al [9] (beam data, with magnetic angle changer).

i Jung et al [39] (beam data).

1 Brennan et al [36] (beam data).

k Sohn et al [30] (beam data), interpolated between 0.5 eV (0.0048) and 1.0 eV (0.0093), using the theoretical shape
of Robertson et al [7].

! Sweeney and Shyn [37] (beam data).

™ Tanaka et al [38] (beam data).

" Zubek et al [8] (beam data, with magnetic angle changer).

Sohn et al [30] derived integral v = 0 — 1 cross sections at 0.5, 1.0 and 1.5 eV from their
beam data. They obtained the values 0.0048 and 0.0093 A? at 0.5 and 1.0 eV, respectively.
Taking into account that the cross section is relatively flat between 0.5 and 0.8 V and starts to
rise steeply after that, their data agree quite well with the present results.

4. Conclusions

This work is concerned with extending the angular range of measured differential cross sections
and application of this technique to elastic and v = 0 — 1 cross sections in N, up to 5 eV. The
invention of the magnetic angle changer was a decisive step in this respect. But in addition to
constructing the MAC device, it is necessary to develop elaborate strategies to assure optimum
overlap of the incident beam and the analyser acceptance cone as the electron energies and the
scattering angle are changed, and to determine the response function of the instrument for all
the energies and angles required.

This work describes in more detail a set of such procedures. These efforts are hampered
by the notorious drifts of the electron spectrometers, felt particularly at low energies and at
small scattering angles, and caused by the changes of the surface conditions of the electron
optics in the presence of the sample gas and upon bombardment by electrons and possibly
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ions. A further complication is the ‘memory effects’ whereby the surface potentials vary in
function of at what scattering angle and electron energy the instrument was ‘parked’ prior to
a given measurement. Finally, the thermal Doppler broadening, the rotational broadening and
(for the He standard) the translational excitation have to be taken into account properly.

The set of strategies described here is not perfect in the sense that the response function
can only be determined directly for elastic scattering and simplifying assumptions are required
when applying it to inelastic scattering, increasing the experimental uncertainty, particularly
very near the threshold. The procedure is not applicable below 10°, where elastic scattering
cannot be measured, but reasonable assumptions are possible there. It appears safe to use the
resonant vibrational excitation in N, as a secondary standard in the future, particularly in the
forward direction.

The cross sections measured here agree well with many previous results, particularly the
more recent measurements of Sun ef a/ [5]. The agreement with existing data is generally
better at intermediate angles, about 40—-120°, and less satisfactory at smaller and larger angles.
In particular, the present data at large angles are somewhat lower than those of Shyn and
Carignan [34] and larger than those of Zubek ef a/ 2000 [8]. A good agreement is also found
with the majority of swarm and beam determinations of the integral and momentum-transfer
Cross sections.
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