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Abstract

This paper proposes a novel algorithm that, given a
data-flow graph and an input/output constraint, enumerates
all convex subgraphs under the given constraint in poly-
nomial time with respect to the size of the graph. These
subgraphs have been shown to represent efficient Instruc-
tion Set Extensions for customizable processors. The search
space for this problem is inherently polynomial but, to our
knowledge, this is the first paper to prove this and to present
a practical algorithm for this problem with polynomial com-
plexity. Our algorithm is based on properties of convex sub-
graphs that link them to the concept of multiple-vertex dom-
inators. We discuss several pruning techniques that, without
sacrificing the optimality of the algorithm, make it practical
for data-flow graphs of a thousands nodes or more.

1. Introduction

A common practice in designing system-on-chip pro-
cessors is to define a basic customizable processor and
to extend it with units specialized for particular applica-
tions. Since typical embedded systems already include sev-
eral Application-Specific Integrated Circuits (ASICs), it is
conceivable to develop differently customized versions of
the processor for each product. Such processor extensions
can increase performance in specific domains, without the
cost of advanced RISC processors and the complexity of
entirely customized instruction sets. Many manufacturers
are proposing customizable processors, such as Tensilica
Xtensa and ARC ARCtangent. Instead of ASICs, other

manufacturers use reconfigurable fabrics as accelerators.
On some Xilinx systems, for example, an FPGA and a hard-
wired PowerPC processor coexist on the same die and share
the same bus.

Independently of the technology adopted, it is important
to be able to automatically generate the best performing in-
struction set extensions for an application. An exact solu-
tion to this problem is not feasible if we want to generate
more than one instruction [15]. On the other hand, sev-
eral algorithms exist to find the single best performing in-
struction set extension in a graph. Exact algorithms for this
problem may be based on Integer Linear Programming [3]
or pruned exploration of the subgraphs [15, 4].

An important subproblem in optimal ISE identification
is enumeration of the valid subgraphs. While algorithms
like [15, 4] focus on an exponential search space (each node
of a basic block can be either in or out of a subgraph), we fo-
cus attention on the subgraphs input and output nodes. This
way, as it can be seen in detail later, we identify a problem
space that is no longer exponential in the size of the graph.

Based on this observation, we propose a new practical al-
gorithm to enumerate all subgraphs under a given microar-
chitectural constraint, whose complexity is polynomial in
the size of the graph. The algorithm is based on the relation-
ship between convex subgraphs and multiple-vertex domi-
nators. Even though the complexity is still rather high—
up to O (n) for commonly used input/output constraints—
several pruning techniques allow it to process basic blocks
of around a thousand nodes in about a minute.

The next section discusses related work in the domain
of instruction-set selection and overviews previous uses of



multiple-vertex dominators. Section 3 provides a theoreti-
cal framework for the problem, and section 4 discusses the
relationship between subgraph enumeration and multiple-
vertex dominators. Section 5 introduces the algorithm, to-
gether with some techniques to prune the search space. Fi-
nally, section 6 presents our experimental setup and dis-
cusses the results.

2. Related work

Past literature on custom instruction identification can be
roughly divided in two groups. Some authors aimed at op-
timal instruction identification, developing algorithms with
exponential worst-case complexity. Other works reduced
the complexity, at the expense of optimality or generality.

Atasu et al. developed a widely known optimal algo-
rithm [4], which Pozzi et al. further refined with additional
pruning techniques [15]. Both algorithms are based on sub-
graph enumeration: they exhaustively explore the search
space algorithm, pruning it through constraint propagation.
Neither poses limits on the latency or connectedness of the
instructions. The latter algorithm is reasonably efficient
even for large basic blocks, but its performance quickly de-
teriorates if the custom instructions can have multiple out-
puts. An Integer Linear Programming formulation of the
same problem was presented in [3]: in this case, the enu-
meration of subgraphs is implicit in the formulation’s con-
straints, and the worst-case complexity is still exponential.

Other authors simplify the problem formulation and then
find exact solutions for it. For example, Choi et al. [9] limit
the latency (depth) of subgraphs, and Yu and Mitra [17] only
focus on identifying connected custom instructions. Our
algorithm can be adapted to run faster under this kind of
limitation.

Other approaches include greedy techniques such as
those in Baleani et al. [5], Clark et al. [11] and Biswas et
al. [6]. While fast, these algorithms have limited effective-
ness [10]. More recent work seems to focus on optimal al-
gorithms, possibly using subgraph enumeration as a build-
ing block.

The algorithm we present is based on multiple-vertex
dominators.  Also known as generalized dominators,
they were introduced by Gupta in [13]. Single-vertex
dominators are a widely studied problem [1], but they are
rare in circuit graphs or data-flow graphs: multiple-vertex
dominators are more common and can be useful to explore
or simplify such graphs. Gupta presents an algorithm
to enumerate all multiple-vertex dominators, but only
with exponential worst-case complexity. A smaller bound
for this problem was never published, and it is an open
problem to find an efficient way of representing the set of
all possible dominators.

Dubrova et al. [12], however, do present an algorithm
to enumerate k-vertex dominators in polynomial time

O (n*). As we show in section 5, we can employ this
algorithm successfully to find optimal custom instructions.
The authors report that the algorithm is very slow for
k > 2; however, we developed pruning techniques for
subgraph enumeration, that make this algorithm practical
also for somewhat higher values of k, and for graphs with
a thousand nodes or more.

The algorithm in [12] looks for single-vertex dominators
in many different reduced graphs. For this, efficient algo-
rithms exit. Aho and Ullman’s work [1] was successively
improved Purdom and Moore [16], and by Lengauer and
Tarjan. [14] presents two very effective algorithms with
complexity O (eloge) and O (e a(e,n)), where e is the
number of edges, n is the number of nodes, and « is the
slowly-growing functional inverse of the Ackermann func-
tion. The asymptotic complexity was further reduced to lin-
ear by Alstrup et al. [2]; these improvements however do not
imply reduced run-times, because the algorithms are com-
plex and « can be considered constant in practice.

3. Problem statement

The data flow of each basic block is represented by a
graph G(V, E). The graph G may have an arbitrary num-
ber of root vertices I, that is vertices that have no pre-
decessors. These vertices represent input variables of the
basic block. The graph may also have a set of vertices O¢¢
that is a superset of those vertices that have no successors.
Figure 1(a) shows an example data-flow graph with 3 roots
(vertices A, B, C) and 2 O,,; vertices (X and Y).

A cut is defined on a rooted, direct, acyclic graph. G is
transformed into a rooted graph, by augmenting it with a
single vertex that is a predecessor of every vertex in I ..
We also create an additional vertex (the sink) and connect
Oezt to the sink. This way, the reverse graph of G also a
rooted graph, which is useful when computing postdomina-
tors.

The definition of cut, and in particular of convex cut, are
as follows.

Definition 1 (Cut): A cut S is a subgraph of a graph G. We
call inputs of S the set1(S) of predecessor vertices of those
edges which enter the cut .S from the rest of the graph G,
thatis I(S) = J, g pred(v)\S. Similarly, we call outputs
of S the set O (S) of vertices which are part of S, but have
at least one successor v ¢ S.

Definition 2 (Convex cut): A cut S is convex if there is no
path from a vertex u € S to another vertex v € .S which
contains a vertex w ¢ S.

The shaded areas in figure 1(b)(c)(d) are all examples of
a convex cut. Nodes with a double border are outputs' and
grey nodes are inputs.

I'The terms vertex and node will be used interchangeably.



Figure 1. a) A data-flow graph (all edges are towards the bottom of the figure); b) a valid 1-output
convex cut. The three green nodes N, B, C are inputs to the output node Y. They are also a multiple-
vertex dominator of the output. c¢) an invalid 1-output convex cut. The two input nodes are a multiple-
vertex dominator of the output node X, but there is an additional output (the red node). d) a valid
2-output convex cut. The three input nodes A, B, C dominate Y. The other output X is only dominated
by A and B.

The microarchitecture may pose several additional con-
straints on the cuts that can be considered valid. First of all,
the values N;, and N, indicate the maximum number of
read and write ports in the register file, respectively, which a
custom instruction can use. Secondly, some nodes of G may
be forbidden, that is, they may not be included in a cut?.

Some forbidden nodes will be marked as such by the
user, and represent operations that are not allowed in a spe-
cial instruction—for example, loads and stores if the custom
functional unit cannot have any memory port. In addition
to these nodes, the algorithm will consider other nodes to
be forbidden. I.,; nodes are implicitly forbidden, because
their values are calculated outside the basic block. Like-
wise, the newly introduced source and sink will be consid-
ered forbidden because they do not map to an actual com-
putation in the program. We will denote forbidden nodes
with F.

User-specified forbidden nodes may have no predeces-
sor: without losing generality, all the nodes v € F' can be
connected to the same “artificial” source as the external in-
puts Lozt

Thus, given a graph G, the posed problem is to find all
convex cuts S C G under the constraints that [I (S)| < Niy,
|0 (S)| < Nout,and SN F = .

In the remainder of this paper, we add another condition
for the validity of the convex cut. For each input w € I(.5),
there is a vertex v € S, such that at least one path from the
root of G to vertex v contains w but not any other input of S.

This condition excludes from consideration a few valid
cuts, namely those where an input w only has other inputs
as predecessors (in this case, the inputs to w must be pre-
decessors of w for the cut to be convex). These cuts violate
the condition we just added because all the paths from the
root of G to w contain other inputs. Given the cut in fig-
ure 1(d), we would have such a cut if the node marked as N
was a fourth input. All paths from the root to N would pass

ZNote that forbidden nodes may still be chosen as inputs to a cut.

through the inputs A and B.

Note that all the predecessors of w need to be inputs,
or there would be a path from the root of G to v that only
contains the input w. Then, all the inputs but w will be
inputs to the valid cut S U {w}. This cut—like the one
in figure 1(d)—will be found by our algorithm, and can be
used to find the cuts that were lost by the addition of the
technical condition.

4. Properties of convex cuts

We can define more characteristics and prove some prop-
erties of convex cuts.

Definition 3 (Inputs to a vertex): In a convex cut S, the
inputs to a vertex v are defined to be the set of vertices
I,(S) CI(S) such that:

1. every path from the root of GG to v contains at least one
vertex ¢ € I,,(S);

2. and, for every vertex i € I,,(S), at least one path from
the root to v contains 4.

The following related definition will also be useful:

Definition 4 (Connected convex cut): A convex cut S is
connected if it has a single output, or if for any two out-
puts o7 and oo there exists a vertex ¢ € I(.S) which is an
input to both o7 and 0.

For example, A and B are the inputs to X in figure 1(d).

There is an important link between the generalized dom-
inators of an output o, and the inputs to o. Generalized
dominators are defined as follows on a rooted graph G.

Definition 5 (Generalized dominator): A set of vertices
V in a rooted graph G dominates a vertex v iff it meets
the following two conditions:



1. all paths from the root of G to vertex v contain at least
one vertex w € V;

2. for each vertex w € V, there is at least one path from
the root of G to vertex v, which contains w but not any
other vertex in V.

We can then prove the following theorem and provide
the link between inputs and generalized dominators:

Theorem 1: 1f S C G identifies a convex cut, then for every
output o of S the set of vertices I,(S) that are inputs to o is
a generalized dominator of 0 in G.

Proof.  From definition 3, every path from the root to o
contains at least one of the vertices in I,,(.5). Condition 1 is
then verified in the definition of generalized dominators.

With the more restrictive definition of convex cut that we
presented above, they also satisfy condition 2. Because of
that restriction, for each input i € I,(5), there is a vertex
v € S, such that at least one path from the root of G to
vertex v contains ¢ but not any other input of .S.

In particular, we can find one such path for any v that is
a successor of ¢ and not an input. If we pick a vertex that is
also contained in a path between 7 and o (there will always
be such a path, because ¢ is an input to o), then the path
can be extended to stop at o instead of v. This proves that
condition 2 is also verified. O

For example, given the convex cut in figure 1(b), this
theorem proves that the set of inputs to the cut is a general-
ized dominator of the output. The theorem provides a useful
starting point to derive the nodes in a convex cut from its in-
put and output vertices, and to prove that inputs and outputs
uniquely identify the convex cut. However, this proof needs
another definition:

Definition 6 (Vertices between V and w): B(V,w), the
set of vertices between a set V and a vertex w, is the set
of vertices contained by at least one path between a vertex
v € V and w (if there is such a path). The starting vertex of
the path is nor includedin B(V, w), while the final vertex w
is.

For example, in figure 1(b), the shaded area represents
the vertices between its inputs (nodes B, C and N), and the
output node Y. Note that B(V, w) can be computed easily;
the complexity is linear in the size of the set B itself, and
hence O (n).

Theorem 2: Any convex cut is uniquely identified by its sets
of input and output vertices, respectively I(.S) and O (S5).
In other words, two convex cuts of the same graph are equal
iff they have the same inputs and outputs.

Proof.  If two convex cuts S and T are equal, they have
the same sets of inputs and outputs. This is true because
the inputs and outputs of a convex cut are functions of the
vertices in the cut.

If two convex cuts have the same sets of inputs and out-
puts, they are equal. To prove this part, we consider the cut
5" =Uyeo(s) BL(S),v)\L(S5), and prove that S = .

If a vertex v was in S’ but not in .S, then there would
be a path from an input to an output going through v ¢
S, violating the definition of convexity. This because S’ is
defined to include all the vertices, along every possible path
from an input to an output.

If a vertex v was in S but not in S’, this means that no
path from the inputs to the outputs contains v. However,
every path from the root to v must contain at least one input
in I,(S). Then, there is always a path from this input to
v—thatis, v € B(I(S),v). If v was an output, B(I(S) ,v)
would be included in S’, hence v € S’ and we have a con-
tradiction. If v was not an output, there must be a path
from v to an output o, otherwise at least one successor of
v would not belong in S and v would be an output. There-
fore v € B(I(S),0) and we also have a contradiction. O

We proved that a convex cut is uniquely identified by the
sets of inputs and outputs. However, the reverse is not true:
given two sets of vertices I and O, they identify a convex cut
only under rather strict conditions. The following weaker
theorem, nevertheless, forms the basis, and at the same time
the correctness proof, for our algorithm.

Theorem 3: Given two sets of vertices I and O, if for every
vertex o; € O, there is a set of vertices I; C I such that [
dominates o, then S = | B(I;,04)\I, is a convex cut
with I(S) C I.

0;€0

Proof. The convexity of S derives directly from the defini-
tion of B(I;, 0;): all the vertices on a path between an input
and an output are included in S, therefore no such path can
cross a vertex that is not part of S.

If an ¢ € I(S) was not in any I;, we would have a path
from the root to every o; that passed through a vertex not in
1;. This contradicts the hypothesis that I; dominates o;. O

This theorem provides a way to compute the vertices in
a cut in O (n) time (since B([;,0;) can also be computed
in linear time). It also guarantees that the cut will not have
any more inputs. On the other hand, it does not guaran-
tee that the cut will have precisely the requested inputs and
outputs—see figure 1(c) for an example where an additional
output appears between B and X. As we will see later, how-
ever, this can actually be exploited to speed up our algo-
rithm.



5. Algorithm

Since the convex cuts in G are uniquely identified by its
input and output vertices, it is possible to enumerate them
by coupling every possible set of outputs with all the pos-
sible sets of inputs. If, as in the posed problem, we put a
constraint on the number of inputs and outputs, the number
of valid convex cuts is clearly polynomial; more precisely,
itis O (nNn+Nour)

Section 5.1 describes a basic solution to the problem,
which would be feasible only for small basic blocks. By
switching to an incremental mode of operation, the choice
of inputs and outputs can be pruned at each step: section 5.2
details the refinements in the algorithm, and section 5.3
presents the corresponding pruning techniques. Our choice
of data structures is explained in section 5.4.

5.1. Basic solution

An implementation of the algorithm is presented in fig-
ure 2. To find all sets of vertices that can be inputs to an
output vertex o, we try all the (possibly multiple-vertex)
dominators of the output. We start by picking an output
node, and explore all its dominators. After finding one, we
may add another output node and recursively explore the
new output’s dominators.

In principle, any n-uple of vertices could be taken as an
output. In practice, not all of them are useful: an output
vertex o is not admissible if another output vertex o; post-
dominates it. Note that a vertex v € O, Will not be post-
dominated by any vertex but the artificial sink, because it is
connected by an edge to the sink.

Note how, in agreement with theorem 3, we need an ad-
ditional check that the cut really has no outputs besides O.
If a cut fails this test, as in figure 1(c), it may still be ex-
tended with a new output and become valid: for example,
node N itself may be added, or node Y may be added yield-
ing the cut in figure 1(d).

To analyze the complexity of the algorithm we take
into account each step. Setting up the algorithm includes
the computation of single- and multiple-vertex domina-
tors (with maximum cardinality V;,) of every node. Let
O (t(n)) be the complexity of computing single-vertex
dominators on a graph with n vertices. In theory, this can be
as low as O (n) but, as mentioned in section 2, practically
used algorithms have a slightly higher complexity. Comput-
ing single-vertex dominators (and postdominators) requires
atime O (7(n)), while computing the multiple-vertex dom-
inators requires a time O (n™=~17(n)).

Given the inputs and outputs of a cut, the nodes that
are part of the cut can be enumerated in O (n) time.
Checking that the cut has no extraneous outputs has the
same cost. Function POLY-ENUM has a complexity of
O (nMNin+Nowt1) = As this dominates all the setup phases,

DoO-ENUM(I, O, S, Nout)
for each admissible output o do
O'=0U{o}
for each dominator D of o with |D U I| < Ny, do
S'=SUB(D,o)
I'=1UD
ifO(S")=0'"AS"NF =10 then
S’ is a valid cut
if Nout > 1 then
Do-ENuM(I’, 0, S’, Nout — 1)

POLY-ENUM()
Do-ENUM(D, 0, D, Nout)

Figure 2. A polynomial-time algorithm for
subgraph enumeration

it is also the complexity of subgraph enumeration for the
algorithm in figure 2.

5.2. Incremental operation

The pseudo-code in figure 2 is agnostic of the algo-
rithm used to compute multiple-vertex dominators. Since
we know of only one such algorithm with polynomial com-
plexity, we can tailor our implementation to it in order to
improve its speed.

The multiple-vertex dominator algorithm from [12]
picks every possible seed set {v1,...,v,—_1}. Then, it re-
moves the vertices in the seed set from the graph, together
with any other node they dominate. Then, if a node © dom-
inates a node w in this reduced graph, {v,...,v,_1,u} is
a multiple-vertex dominator of w in the original graph.

The exploration of the seed sets (which covers the inner
for each loop of figure 2) can be done recursively, just like
for the output nodes. Every recursive call pushes a vertex
on the seed set, calls the Lengauer—Tarjan algorithm [14]
on the reduced graph, and then pops the vertex. There will
be up to IV, — 1 recursive calls, giving the algorithm in
figure 3.

Note how S = J,co B(D,0) is built incrementally.
Pushing an input or an output adds nodes to .S, such that
on every recursive call S can only grow. In particular, the
newly added nodes for an input v are Sy, = B({v},0)\S.
For an output o, they are Sy, = B(I,0)\S. As a further
optimization, our implementation maintains a single copy
of S. We keep track of when each node was added to S, and
remove them before leaving the invocation that added them.

Unlike the naive algorithm, this algorithm does every-
thing in a single pass without any setup phase. The com-
plexity is the same as for the previously presented one, that
is O (nNinFNow 1) n the for each loops, the cost of in-
voking PICK-INPUTS dominates the linear-time work to up-
date S; when CHECK-CUT is called, instead, updating S is



CHECK-CUT(I, O, S, Nin, Nout)
ifO(S)=0ASNF =0 then
S'is a valid cut
if Nout > 0 then
PIcK-OUTPUT(I, O, S, Nin, Nout)

PICK-INPUTS(Z, 0, O, S, Nin, Nout)
> the next line invokes Dubrova et al.’s algorithm
for each node w such that J U {w} dominates O do

I'=Tu{w}

S’ =SUB{w},o0)

CHECK-CUT(I', 0,5, Niy — 1, Nout)

if Ni, > 1 then

> add a node to the seed set

for each ancestor ¢ of 0o do
I' =Tu{i}
S'=SuUB({i},o)
Pick-INpUTS (I, 0,0, S’, Niy, —

PIcK-OUTPUT(I, O, S, Nin, Nout)
for each admissible output o do
O'=0U{o}
S'=SUB(I,o)
if 7 dominates o then
CHECK-CUT(I, 0", 5", Nin, Nous — 1)
elseif NV;, > 0 then
PICK-INPUTS(Z, 0,0, S’ Nin, Nout — 1)

la Nout)

POLY-ENUM-INCR()
PICK-OUTPUT(D, 0, 0, Nin, Nout)

Figure 3. Building S incrementally
covered by the additional +1 in the exponent.

5.3. Pruning techniques

The improvements described in the previous section
only affect a constant factor in the algorithm’s complex-
ity. Therefore, starting from the refined version of the al-
gorithm, we implemented several techniques to improve the
algorithm’s performance. These do not reduce the asymp-
totic complexity either. However, they do reduce the n in
the complexity. The decrease can be quite dramatic, so
that the algorithm is practical even for graphs with 1,000
or more nodes.

Output-output pruning. To prune the set of outputs, we
can rely on a “weak” point of theorem 3. The theorem
does not guarantee that no internal nodes are outputs; we
can only prove that all the chosen outputs are part of the
cut. Still, this can be exploited to greatly reduce the search
space.

We call an output internal if it is not chosen explicitly,
but just “happens to be” part of the cut. First, we save a
candidate whenever |O (S)| < Noyus, even if it has internal

outputs. Then, given a chosen output node o, and as long as
the total number of outputs is less than Ny, the algorithm
will accept any node from o’s ancestors as a valid output:
for example, the cut in figure 1(c) will now be accepted as
a 2-output subgraph. Then, a node o will not need to be ex-
amined in POLY-ENUM-INCR if it is the ancestor of another
selected output.

Optimization of internal outputs will be subject to refine-
ments in the rest of this section.

Connectedness. The algorithm can be set up to only
search for connected cuts. To do so, any output after the
first must be reachable from at least one input.

When allowing internal outputs, these may be removed
by adding another chosen output. The search must then pro-
ceed even if a cut has more than the maximum number of al-
lowed outputs, the search must proceed even though the cut
is not yet valid. However, in this case we will accept only
a connected output—one that is reachable from at least one
already selected input. Otherwise, there would be no path
from any input to the new output, and hence no path from
the excess internal outputs to the new output. No successor
of the internal outputs could be included, and all the internal
outputs would remain, leaving the cut invalid.

For example, figure 1(c) depicts a cut with an internal
output (the dark node). Adding an unconnected node, such
as node M in the same figure, will not allow the algorithm
to remove the internal output. On the other hand, adding a
connected node will remove the output, as is the case with
node N. Adding node N results in the two-output cut in fig-
ure 1(d).

Pruning while building S. Some cuts can be determined
to be invalid just by looking at .S. This is the primary added
value of the incremental algorithm described in section 5.2.
Note that with this optimization, the algorithm will not find
all the dominators anymore. This however does not af-
fect its correctness, because none of the skipped dominators
would have been a valid cut.

Examples of invalid cuts are cuts that include a forbidden
node, and cuts where more than N, nodes have edges to
forbidden nodes. Internal outputs can be discovered as we
update S; if N, has reached zero, cuts that have internal
outputs are rejected.

QOutput-input pruning. Given an output o, the algorithm
in figure 3 restricts the seed set to include only ancestors
of 0. We can actually do better by anticipating some valid-
ity checks for S, and discarding inputs that would fail such
checks.

A possible source of optimization comes from forbidden
nodes, which are effectively partitioning the search space.
When a node v is picked as an output, some of its ancestors



are not possible inputs. Given a pair of nodes, one input
and one output, if a path between the two includes a “for-
bidden” node, that pair will never appear in a valid cut’s
set of inputs and outputs. Then, if a forbidden node w is an
ancestor of v, w’s ancestors will not be valid inputs to v.

These optimizations do not improve the speed when F' is
empty or very small, but this case is quite rare. In particu-
lar, large basic blocks usually include many memory loads
and/or stores.

Also, given an input v and an output w, forbidden nodes
provide a way to compute a lower bound to the inputs
needed by a cut that includes them. The previous paragraph
excluded forbidden nodes from any path between v and w.
However, if a node on the path has a forbidden predecessor,
that predecessor will will become an input. In a precalcu-
lation step, we can find all pairs (v, w) of nodes, and count
the number of forbidden predecessors on paths between v
and w. If these nodes are N;,, or more, v will not be a valid
input for w.

The set of valid inputs can be limited further, depend-
ing on the targeted acceleration device. Configurable Com-
pute Accelerators [10], for example, may pose a limit on the
depth of the accelerated expression. In this case, it would be
possible to exclude nodes that are “too far” from the chosen
output.

Input-input pruning. To find multiple-vertex domina-
tors of size n, we start from seed sets of n — 1 nodes,
{v1,...,Up—1,w}. Definition 5 implies that at least one
path from an input to an output should not pass through
any other input. This condition can be used to quickly dis-
miss invalid seed sets {v1,. .., v,_1} prior to the execution
of the Lengauer-Tarjan algorithm. We also test a sufficient
condition, pruning the sets for which an input w postdom-
inates another input v. In this case, all paths from v to an
output would pass through the other input w before reaching
the output.

Dominator-input pruning. Finally, once we find a dom-
inator, we can use it to prune the rest of the search. To do
so, we take inspiration from Gupta’s original algorithm for
multiple-vertex dominators. An immediate multiple-vertex
dominator is a subset of each node’s predecessors. Then,
the algorithm recursively replaces a node with its immedi-
ate multiple-vertex dominator to derive all the dominators.
Then, once we find a valid multiple-vertex dominator
{v1,...,Up—1,w}, the nodes v; can be replaced only by
their ancestors—or if they are forbidden nodes, they cannot
be removed at all. This test is hard to implement correctly
without sacrificing speed, so we implement a simplified ver-
sion of this test that only affects the last node in the seed,
vy —1. If this node is forbidden, we do not process it further

and proceed with the next possible v,,_o. If it is not, we
choose its replacement among its ancestors.

5.4. Data structures

The data-flow graph is represented with both an adja-
cency matrix, and adjacency lists for predecessors and suc-
cessors. In addition, we precompute the presence of paths
between two nodes, and whether any of these paths touches
a forbidden node (see section 5.3). This information is also
kept both as a matrix, and as a list. Other precomputed in-
formation include the dominator and postdominator trees.
Ancestor queries (either on dominators or on postdomina-
tors) can be performed in constant time.

S is maintained as a singly linked list of nodes; nodes
are added at the tail. B(I,0) can be added to S in O (n)
time using a work-list. The old tail is saved whenever S
is updated, so that a previous value of S can be restored in
constant time.

To compute dominators, we implemented the
O (nlogn) variant of the Lengauer-Tarjan algorithm,
which employs path compression but no tree balancing.
The speed of the algorithm is crucial, because at least
70% of the time is spent in it. Careful engineering of the
algorithm sped it up by a factor of 3. Even ensuring that
the algorithm’s data for a node is exactly as big as a cache
line—quite a low-level optimization!—had an impact of
10% or more in the execution time.

We initially used a recursive implementation for the al-
gorithm’s eval function, since GCC’s profile-directed inlin-
ing eliminated the recursive calls almost completely. How-
ever, path compression connects all the nodes to the same
ancestor, and compiler optimization could not deduce this.
Switching to an iterative implementation cut the number of
memory accesses by a third.

The algorithm maintains several arrays of nodes. Care-
fully choosing whether to store the node themselves, or
rather their dfium?, can improve the speed widely.

Finally, for some nodes the algorithm does not deter-
mine an immediate dominator, but only a node with lower
dfnum and with the same dominator. In the original algo-
rithm, a final pass on the graph (running from the highest
to the lowest dfnum) computes the immediate dominators
for all nodes. Instead, we resolve immediate dominators
lazily using union-find. This does not change the asymp-
totic complexity of the algorithm, which is still O (nlogn).
However, if k is the number of dominator queries per-
formed, it changes their overall complexity from O (n + k)
to O (klogn). This is effective because we only perform a
limited number of dominator queries.

3The dfnum is a number given to each node in a pre-order, depth-first
visit of the graph.



6. Results

In order to evaluate our algorithm’s performance, we
collected the data-flow graphs of 250 basic blocks from
MiBench. The sizes of the blocks range from 10 to 1196
nodes. We also used four synthetic data-flow graphs, tree-
shaped as in figure 4. Their depth varies from 4 to 7 levels.
We found them empirically to exhibit worst-case perfor-
mance for algorithms like [4] and [15]; in particular, for [4]
the complexity can be proved to be exponential, O (1.6"™),
on this kind of graph.

The graph in figure 5 compares, for each basic block, the
speed of our algorithm versus the implementation in [15].
Subgraphs are enumerated with a constraint of four inputs
and two outputs. For each basic block processed, a point
is plotted at the intersection between our algorithm’s execu-
tion time (on the X axis) and that of [15] (on the Y axis).
Therefore, data points above the diagonal line represent ex-
ecutions where our algorithm is faster, and data points be-
low the straight line represent those cases where our algo-
rithm is slower. Different symbols group the data points
in four clusters; three of these correspond to different sizes
and the fourth is reserved to the synthetic DFGs, shaped as
in figure 4.

The algorithm’s performance is in general better than
that of [15]. Some exceptions are expected, because both
algorithms employ pruning techniques whose effectiveness
can vary widely for different data-flow graph topologies.
[15] also seems to achieve a similar polynomial time bound;
however, while already stated in [15], this has not been
proved formally so far.

In fact, the main contribution of this paper is the proof
that the enumeration problem actually has polynomial com-
plexity in n. State-of-the-art algorithms explored a binary
search space, where each node could either be part of the
subgraph or not. We look at the search space from a differ-
ent perspective: each convex subgraph can have at most Ny,
inputs and Ny, outputs nodes, and these nodes univocally
identify the subgraph that lays between them.

Finally, we show here only the performance of the enu-
meration algorithm presented, and we are not concerned
with the speedup enabled by Instruction Set Extensions de-
signed using this technique: the effectiveness of using this
technique for identification of custom instruction has been
widely validated by past papers, including [7, 4, 10].

7. Conclusion

We presented a novel algorithm for full enumeration of
the subgraphs of a given data-flow graph. The algorithm
supports arbitrary input/output constraints, is not restricted
to connected subgraphs and, to our knowledge, is the first
one to be presented with polynomial time complexity.

Our approach focuses on choosing the input and out-

Figure 4. A tree-shaped data-flow graph, the
worst case for algorithms such as [15].
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Figure 5. Run time comparison with [15]. The
X axis represents times for our algorithm, the
Y axis represents pruned exhaustive search.
Data points above the line represent execu-
tions where our algorithm is faster.

put nodes for each cut, instead of exploring an exponen-
tial search space where each node may be part of a cut or
not. This high-level view allowed us to develop several very
effective pruning techniques based on the graph topology—
for example, on the dominator and postdominator relation-
ships.

This algorithm was successfully used in in our com-
piler toolchain [8]; full subgraph enumeration allows detec-
tion of high-performance custom instruction sets, yielding
speedups up to 6x. In addition to having a known polyno-
mial bound to the complexity, the performance of the algo-
rithm is in parallel, and usually better, than the algorithm
in [15]. This represents a further contribution to the field
of automatic identification of Instruction Set Extensions for
embedded processors.
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