
An Empirical Evaluation of Data Flow Testing of
Java Classes

Technical Report No. 2007/03, January 2007

Giovanni Denaro1 and Alessandra Gorla2 and Mauro Pezzè1,2 ?

1 University of Milano-Bicocca, Dipartimento di Informatica, Sistemistica e
Comunicazione, Via Bicocca degli Arcimboldi 8, 20126, Milano, Italy

denaro@disco.unimib.it
2 University of Lugano, Faculty of Informatics,

via Buffi 13, 6900, Lugano, Switzerland
mauro.pezze@unisi.ch,alessandra.gorla@lu.unisi.ch

Abstract. This paper tackles the problem of structural integration test-
ing of stateful classes. Previous work on structural testing of object-
oriented software exploits data flow analysis to derive test requirements
for class testing and defines contextual def-use associations to charac-
terize inter-method relations. Non-contextual data flow testing of classes
works well for unit testing, but not for integration testing, since it misses
definitions and uses when properly encapsulated. Contextual data flow
analysis approaches investigated so far either do not focus on state de-
pendent behavior, or have limited applicability due to high complexity.

This paper proposes an efficient structural technique based on contex-
tual data flow analysis to test state-dependent behavior of classes that
aggregate other classes as part of their state.

1 Introduction

Object-oriented programs are characterized by classes and objects, which en-
force encapsulation, behave according to their internal state, inherit features
from ancestors, separate normal from exceptional cases, and dynamically bind
polymorphic types [1]. Object-oriented features discipline programming prac-
tice, and reduce the impact of some critical classes of faults, e.g., those that
derive from excessive use of non-local information or from unexpected access to
hidden details. However, they introduce new behaviors that cannot be checked
satisfactorily with classic testing techniques, which assume procedural models of
software [2]. In this paper, we focus on structural testing of state-based behavior,
which impacts on both unit and integration testing of classes

? This technical report provides additional data about the experiments reported in
the paper submitted to FASE ’08.

State-based behavior is addressed by both functional and structural test-
ing techniques. Many functional testing techniques derive test cases from fi-
nite state machines ([3–7]) or Statecharts ([8–11]). These methods generate test
cases from specifications of single classes, and are well suited for unit testing.
Other approaches consider communicating Statecharts ([12]), sequence diagrams
([13]) and collaboration diagrams ([14]), sometimes combined with class dia-
grams ([15]). These methods address the aspects of integration testing defined
in the design specifications, but miss detailed design decisions that do not show
up in specifications. Algebraic approaches propose an interesting solution to the
oracle problem [16–18].

The most promising structural approaches to testing object oriented software
exploit data flow analysis to implicitly capture state-based interactions. Harrold
and Rothermel proposed data flow analysis for structural testing of classes in
1994 [19]. In their early work, Harrold and Rothermel define a class control flow
graph to model data flow interactions among classes, and apply data flow analysis
to identify flow relations of class state variables. The analysis supports well unit
testing, but does not apply satisfactorily to integration testing of classes. In fact,
when accesses to variables are properly encapsulated, standard data flow analysis
does not identify chains of interactions that flow through different classes. At the
same time, Harrold and Soffa proposed an efficient algorithm for inter-procedural
data flow analysis that captures the propagation of definitions and uses through
chains of invocations [20]. In 2003, Souter and Pollock proposed a contextual data
flow analysis algorithm for object oriented software [21]. Souter and Pollock’s
algorithm distinguishes accesses to the same variables through different chains
of method invocations, and thus captures inter-method interactions even when
variables are encapsulated in classes. Differently from our work, the work of
Souter and Pollock does not focus on state dependent behavior. Moreover, Souter
and Pollock’s algorithm is very accurate, but quite expensive (O(N4) in the size
of the program). The complexity of the algorithm limits the scalability of the
approach and the development of efficient tools.

This paper proposes an approach to state based integration testing of classes
that properly extends the early approach by Harrold and Rothermel: We use
contextual information about method invocations to analyze state-dependent
behavior of classes that can aggregate other classes as part of their state. We
share the main concept of contextual def-use associations with Souter and Pol-
lock, but with different goals: Souter and Pollock pursue exhaustive analysis of
single methods, while we focus on state based interactions between methods that
can be independently invoked from outside the classes. We extend the algorithm
by Harrold and Soffa to include contextual information, thus obtaining an algo-
rithm for contextual data flow analysis more efficient, albeit less accurate than
the algorithm of Souter and Pollock. Our algorithm is quadratic in the size of
the program in the worst case, and more efficient in many practical cases. Thus,
it provides the background to define practical structural coverage criteria for
integration testing of classes. The efficiency is obtained by ignoring details that
are useful for analysis, but not relevant for defining testing criteria.

1 public class AClass {
2 public void aMethod (){...
3 ...
4 }
5 public class AGlobalObj {
6 static public AGlobalObj getInst ()

{...
7 public void aGOMethod (){...
8 ...
9 }

10 public class AnotherClass {
11 public void anotherMethod (){
12 AGlobalObj.getInst ().aGOMethod ();
13 ...
14 }
15 ...
16 }

17 public class YetAClass {
18 AClass aStateVar = new AClass ();
19 public void yetAMethod1(AClass aPar){
20 AClass aLocalVar = new AClass ();
21 ...
22 aLocalVar.aMethod ();
23 aPar.aMethod ();
24 aStateVar.aMethod ();
25 AGlobalObj.getInst ().aGOMethod ();
26 ...
27 }
28 public void yetAMethod2 (){
29 aStateVar.aMethod ();
30 ...
31 }
32 ...
33 }

Fig. 1. Object interactions in Java

This paper classifies the different ways in which Java classes inter-operate
(Section 2), describes an efficient contextual data flow analysis approach for
object oriented software, discusses the complexity, and proposes structural cov-
erage criteria for class integration testing (Section 3). It introduces a prototype
implementation that we used for evaluating the suitability of the proposed ap-
proach (Section 4). It presents empirical data that support the applicability of
the proposed coverage, and discusses the limits of the approach (Section 5). It
surveys the main related work, acknowledges the contribution of previous re-
search (Section 6). It concludes by summarizing the contribution of the paper,
and by describing ongoing research work (Section 7).

2 Integration Testing of Classes for Java Programs

Java programs are collections of objects, which consume inputs, modify their
states, and produce outputs through their mutual interactions. Integration test-
ing aims to check the interactions of subsets of objects. Integration test cases
are sequences of invocations of methods that belong to the considered subsets.

For Java objects to interact, at least one object must be able to access a
reference to other objects. Java objects can interact through references stored
in local variables of methods, parameters of methods, state variables of classes,
and global objects. Here we briefly describe these different kinds of interaction,
referring to the sample code shown in Figure 1:

Local variables: an object obj1 can establish a link to another object obj2
by instantiating obj2 as local variable (for instance line 20 instantiates the
object used at line 22 in Figure 1). This includes the case of objects referenced
by temporary variable that are used in invocations without being stored in
explicitly declared variables.

Parameters: an object obj1 can establish a link to another object obj2 by
receiving a reference to obj2 as input parameter of a method invocation (for
instance line 19 receives a parameter that is used at line 23 in Figure 1).

State variables: an object obj1 can establish a link to another object obj2 by
storing a reference to obj2 as state variable (for instance in Figure 1line 18
defines a state variable that is used at lines 24 and 29).

Global objects: an object obj1 can access a reference to another object obj2
though a global registry, as prescribed for example by the singleton pattern
[22] (see for instance lines 5-9, 12 and 25 in Figure 1).

Aliases can introduce additional interactions, objects can for example cache
references to global information using their local variables. Classic alias analysis
of procedural programs is being successfully extended to object-oriented pro-
grams [23, 24]. In this paper, we assume that most aliases have been statically
solved before data flow analysis.

Completing the definitions proposed by Harrold and Rothermel, we con-
sider four testing levels for object-oriented programs: intra-method, inter-method,
intra-class and inter-class [19]. Intra-method testing considers methods in iso-
lation, and does not deal with object interactions, thus it is not interesting from
the integration testing viewpoint.

Inter-method testing considers interactions that derive from methods as they
access other methods through given object references. For example when testing
method yetAMethod1 of the Java program in Figure 1, we test the interactions
of class YetAClass with instances of class AClass at line 22 (instantiated as the
local variable aLocalVar) and line 23 (accessed through parameter aPar).

Fig. 2. Effectiveness of integration testing levels for different types of interactions

Intra-class testing considers interactions that derive from invoking many
methods of the same class instance. For example, when executing an intra-

class test case that invokes methods yetAMethod1 and yetAMethod2 of class
yetAClass (lines 24 and 29) in Figure 1, we test interactions between classes
AClass and yetAClass through the state variable aStateVar (line 18).

Inter-class testing considers interactions that derive from invoking many
methods of a set of class instances. For example, when executing an inter-
class test case that invokes methods anotherMethod and yetAMethod1, we test
the interaction between the classes AnotherClass, YetAClass and the singleton
AGlobalObj, which is shared between the two methods (lines 12 and 25).

Testing levels focus on different types of interactions. Figure 2 summarizes
(qualitatively) the effectiveness of the different testing levels. Intra- and inter-
method testing focus on interactions within the scope of single methods, that
is mainly through local variables and parameters. Intra-class testing focuses on
interactions between methods of the same class, mostly through state variables.
Inter-class testing focuses on interactions between classes, mostly through shared
or global objects.

The technique proposed in this paper focuses on interactions among classes
that derive from the aggregation relation. Thus, we consider the relations among
state variables that are most relevant in the context of integration testing (the
critical aspects of the area identified by ”state variables” in Figure 2.)

3 Contextual Data Flow Testing of Classes

A class is a (possibly) stateful module that encapsulates data and exports op-
erations (aka methods). At runtime, a method takes a class instance (aka an
object) as part of its input, and reads and manipulates the object state as part
of its action. Thus in general, the behavior of the methods depends on the state
of the objects, and the set of reachable states of the objects depends on the
methods. The states of the classes are often composed of instances of other
classes. To thoroughly test classes, we need to identify test cases, i.e., sequences
of method calls, that exercise the relevant state dependencies of the methods in
the reachable (composed) states.

Data flow analysis can assist testing of classes by both identifying the rele-
vant dependencies between methods and capturing definitions and uses of state
variables [19]. Section 3.1 briefly recaps the minimal background on data flow
testing. Section 3.2 discusses the limits of classic data flow analysis in identifying
chains of interactions that flow through different classes. As a consequence, clas-
sic data flow analysis misses interactions through structured variables properly
encapsulated in classes, which are extremely relevant during integration testing.
Section 3.3 introduces our approach that leverages previous work on data flow
testing of classes, making it amenable for the purpose of class integration testing.

1 public class Msg {
2 private byte info;
3 public Msg(){info = 0;}
4 public void setInfo(byte b){info=b;}
5 public byte getInfo (){return info;}
6 }
7 public class Storage {
8 private Msg msg;
9 private byte stored;

10 public Storage (){
11 msg = new Msg();
12 stored = 0;
13 }

14 public void setStored(byte b){
15 stored = b;
16 }
17 public byte getStored (){
18 return stored;
19 }
20 public void recvMsg(Msg m){
21 byte recv = m.getInfo ();
22 msg.setInfo(recv);
23 }
24 public void storeMsg (){
25 byte b = msg.getInfo ();
26 setStored(b);
27 }
28 }

Fig. 3. A sample Java program

3.1 Def-use associations

Given a program variable v, a standard (context-free) def-use association (d, u)
is a pair of program locations, definition (d) and use (u) locations for v, where
v is assigned a new value at d, and has its value read and used at u. Testing
a def-use association (d, u) executes a program path that traverses first d and
then u, without traversing statements that define v between d and u (the sub-
path between d and u is def-free). Def-use associations lead to many testing
criteria [25].

Methods of a class interact through local variables, parameters, state vari-
ables and global objects. Def-use associations capture such interactions by iden-
tifying methods that use values set by other methods. For example the def-use
association for variable stored at lines (15, 18) of Figure 3 captures the depen-
dency between methods getStored() and setStored().

Def-use associations that involve local variables and parameters characterize
method interactions through these elements, and are exploited by many tools,
e.g., Coverlipse [26], and are not further considered in this paper.

3.2 Contextual def-use associations

Contextual def-use associations extend def-use associations with the context of
the method invocations. A context is the chain of (nested) method invocations
that leads to the definition or the use [21]3. A contextual def-use association for
a variable v is a tuple (d, u, cd, cu), where (d, u) is a def-use association for v, and
cd and cu are the contexts of d and u, respectively. This concept is illustrated in
Figure 1: The context-free def-use association for variable stored at lines (15,18)
corresponds to two contextual def-use associations (→ indicates method calls):

3 In presence of multiple invocations from the same method, context may or may not
distinguish the different invocation points. For the goals of this paper we do not need
to distinguish different invocation points in the same method.

(15, 18, Storage::setStored(), Storage::getStored()) and

(15, 18, Storage::storeMsg → Storage::setStored(),Storage::getStored())

In general, in absence of context information, def-use associations are satisfied
by test cases that focus on trivial rather than complex interactions, while context
information identifies a more thorough set of test cases. For example, the context-
free def-use associations at lines (15, 18) can be satisfied with a simple test
case that invokes methods setStored() at line 14 and getStored() at line 17,
while the corresponding contextual def-use associations illustrated above requires
also the (more interesting) invocations of methods storeMsg() at line 24 and
getStored() (line 17).

We clarify the concept through some common design practice: accessor meth-
ods and object aggregation.

Accessor methods are used to guarantee controlled access to state variables.
A common design style is to define get methods (e.g., getStored()) to access
state variables, and set methods (e.g., setStored()) to define state variables.
Context-free definitions and uses of variables with accessors are always located
within the accessor methods themselves, by construction. Thus, all state inter-
actions that involve these variables are characterized by the few (context-free)
def-use associations that derive from the accessor methods, while the many in-
teractions mediated by the accessors are not captured. A test suite that covers
all (context-free) def-use associations involving accessors would focus on trivial
interactions only, missing the relevant ones. Contextual def-use associations dis-
tinguish between direct and mediated invocations of accessors, thus capturing
also interactions between methods that access state variables through acces-
sors. In the previous example the test cases derived from context-free def-use
associations would focus on the trivial interaction between setStored() and
getStored() only, missing the more relevant interaction between storeMsg()
and getStored(), while the test cases derived from contextual def-use associa-
tions would capture all interactions through variable stored.

Object aggregation indicates the use of an object as part of the data struc-
ture of another object. Since it is a good practice to encapsulate the state of
an aggregated object within its methods, definitions and uses of the internal
state variables are located within these methods. State interactions that involve
internal variables of aggregated objects are then characterized by context-free
def-use associations that involve methods of the aggregated object only. Test
cases that cover context-free def-use associations focus on single objects and not
the aggregated ones, thus missing complex and usually semantically more rele-
vant interactions, while contextual def-use associations identify interactions of
simple as well as aggregated objects and lead to a more thorough set of test
cases. For example the context-free def-use association for variable info at lines
(4, 5) in Figure 3 characterizes both the interaction between methods setInfo()
and getInfo() in class Msg, and the interaction between methods recvMsg()
and storeMsg() in class Storage (which aggregates a Msg object as part of its
state).

Table 1. Definitions and uses computed for the sample program in Figure 3.

Method Line (state var) Context

Defs@exit
Msg::Msg 3 (info) Msg::Msg
Msg::setInfo 4 (info) Msg::setInfo
Storage::Storage 12 (stored) Storage::Storage
Storage::setStored 15 (stored) Storage::setStored
Storage::storeMsg 15 (stored) Storage::storeMsg→Storage::setStored
Storage::Storage 11 (msg) Storage::Storage
Storage::Storage 3 (msg.info) Storage::Storage→Msg::Msg
Storage::recvMsg 4 (msg.info) Storage::recvMsg→Msg::setInfo

Uses@entry
Msg::getInfo 5 (info) Msg::getInfo
Storage::getStored 18 (stored) Storage::getStored
Storage::recvMsg 22 (msg) Storage::recvMsg
Storage::storeMsg 25 (msg) Storage::storeMsg
Storage::storeMsg 5 (msg.info) Storage::storeMsg→Msg::getInfo

3.3 Deriving contextual associations

We compute state-based def-use associations by first identifying contextual def-
initions and uses that reach method boundaries, and then pairing definitions
and uses of the same state variables across methods. In this phase, our main
contribution is the redefinition of the first step of classic data flow algorithms:
Differently from Harrold and Rothermel, we compute contextual information of
definitions and uses, and thus we capture important interprocedural properties of
object oriented software; We adapt the classic Harrold and Soffa’s interprocedu-
ral algorithm to contextual definitions and uses in the context of object oriented
software; We borrow the definitions of contextual information by Souter and
Pollock, but we use a more efficient algorithm that focuses on definitions and
uses of state variables that reach method boundaries as illustrated in the next
paragraphs.

We present the algorithm through the example of Figure 3. In the first step,
we statically analyze the methods of the classes in isolation, and we compute two
sets of data, defs@exit and uses@entry. The defs@exit set includes all definitions
of state variables that can reach the end of the method, i.e., for which there
exists at least a (statically identified) def-free path from the definition to an exit
of the method. The uses@entry set includes all uses of state variables that can
be reached from the entry of the method, i.e., for which there exists at least
one def-free path from the entry of the method to the use. For each element in
the two sets, we record location, related state variable, and context information.
Table 1 shows the defs@exit and uses@entry sets for the code in Figure 3.

In the second step, we match the information computed in the first step, by
combining definitions in defs@exit and uses in uses@entry that relate to same
state variables. In this way, we compute the set of contextual def-use associations
for the class under analysis. Table 2 shows the complete set of def-use associations
for the classes in Figure 3.

Table 2. Def-use associations for the sample program in Figure 3.

Class (state var) Association Def context Use context

Msg (info) (3, 5) Msg::Msg Msg::getInfo
Msg (info) (4, 5) Msg::setInfo Msg::getInfo
Storage (stored) (12, 18) Storage::Storage Storage::getStored
Storage (stored) (15, 18) Storage::setStored Storage::getStored
Storage (stored) (15, 18) Storage::storeMsg→Storage::setStored Storage::getStored
Storage (msg) (11, 22) Storage::Storage Storage::recvMsg
Storage (msg) (11, 25) Storage::Storage Storage::storeMsg
Storage (msg.info) (3, 5) Storage::Storage→Msg::Msg Storage::storeMsg→Msg::getInfo
Storage (msg.info) (4, 5) Storage::recvMsg→Msg::setInfo Storage::storeMsg→Msg::getInfo

Our data flow analysis implements intra-procedural analysis according to the
classic reaching definition algorithm [27, 28]. We then compute inter-procedural
relationships by elaborating the inter-procedural flow graph (IFG), as proposed
by Harrold and Soffa [20]. We extended the algorithm to propagate the context
information on the control-flow edges that represent inter-procedural relation-
ships. The details of the extensions are illustrated in Figure 4: we refer to the
pseudocode from [20] and highlight the points where modifications are required
to include context information.

Context tracking in presence of recursive calls and programs with recursive
data structures requires specific handling. Recursion of method calls may gener-
ate infinitely many new contexts, which may cause the algorithm to diverge. To
avoid divergence, at each node of the IFG our algorithm distinguishes only one
level of nested calls, by merging contexts that contain repeated subsequences of
method calls. Recursive data structures define aggregations of possibly infinite
state variables, which may generate unbounded sets of definitions and uses. Our
algorithm expands recursive data structures up to one level of recursion. While
limiting the depth of recursion and recursive data structures may threaten the
validity of the analysis, it should not impact significantly on integration testing,
since one level of depth is enough to test at least once all interactions between
distinct modules.

The extended algorithm works with the same number of propagation steps as
the original algorithm, and thus has a temporal complexity of the same order of
magnitude as the original one (O(n2) worst case complexity.) Space complexity
slightly increases because of the extra space for memorizing context information,
and because definitions and uses that reach IFG nodes through different contexts
are now tracked as distinct items.

Both the algorithms for computing intra- and inter-procedural information
are rapid data flow problems, thus although their worst-case complexity is quadratic
in the size of the analyzed program, the complexity is linear in most practical
situations ([27, 28, 20]). (Recall that Souter and Pollock’s algorithm is O(n4).)
In our experiments, we completed static data flow analysis in few minutes, even
for large programs (see Section 5 for details.)

procedure propagate(N, E)

input N: set of node types to be processed

E: set of edge types to be processed

BEGIN

WHILE dataflow changes DO

FOR each node n of type N DO

FOR each node s that is a successor over E of n DO

let e in E be the edge (n -> s)

//begin extension

IF (n is a call node) and (s is the entry node of procedure P) THEN

IN’_use[s] = addContext(P, IN_use[s])

ELSE

IN’_use[s] = IN_use[s]

//end extension

OUT_use[n] = OUT_use[n] U IN’_use[s]

IN_use[n] = OUT_use[n] U UPEXP[n]

OD

OD

OD

END propagate

procedure addContext(C, INSET): OUTSET

input C: the new context

INSET: set of propagated uses

output OUTSET: modified set of propagated uses

BEGIN

OUTSET = copy of INSET, where context is updated by C

prune recursive contexts for items in OUTSET

return OUTSET

END addContext

Fig. 4. Details of our context-sensitive extension of the algorithm from [20]. The ex-
tensions apply to the procedure Propagate in the inte-procedural data flow analysis
algorithm from [20](refer to [20] for the role of Propagate in the algorithm). With no
loss of generality, the figure shows how we extend Propagate to track context infor-
mation, in the case of backward propagation of uses. Refer to [20] for the version of
Propagate for forward propagation of definitions.

4 Evaluation Framework

Contextual def-use analysis captures many non-trivial object interactions that
depend on program state. Thus, covering contextual def-use associations should
increase the possibility of revealing state-dependent faults and the confidence
in the proper behavior of the program. However, complex interaction patterns
may result in many contextual def-use associations, that may be expensive to
compute. Moreover, the contextual information may increase the amount of in-
feasible associations, thus weakening testing criteria based on contextual def-use
associations.

To estimate the actual costs of computing def-use associations, the amount of
infeasible associations and the amount of faults that can be revealed only when
covering contextual def-use associations, we built a prototype implementation
that computes all contextual-uses coverage of Java programs.

Figure 6 and 5 illustrate the fundamental components of the DaTeC (Data
flow Testing of Classes) prototype and the information flow to and from a classic
testing environment. In a classic testing environment, a test driver, e.g., JUnit,
executes a set of test cases for the classes under test, and produces a set of test
results. The DaTeC prototype extends a classic testing environment to compute
the coverage of contextual def-use associations.

The prototype is composed of a data flow analyzer, DUAnalyzer, that stat-
ically computes the contextual def-use associations for the class under test, a
code tracer, Instrumenter, that inserts probes into the classes under test to
identify the executed def-use associations, and a coverage analyzer, DUCoverage,
that computes the “all contextual uses coverage”. The code tracer has been im-
plemented by modifying the setUp() and tearDown() methods of the TestCase
class in JUnit. The first method is automatically executed every time a JUnit

Fig. 5. The logical structure of the DaTeC prototype

Fig. 6. The DaTeC component diagram

test case is run. The second one is invoked when the execution is over. Our mod-
ified JUnit library creates a different trace file for each test case that is executed.
The content of a file is the execution trace of the test case. The application under
test has to be instrumented according to the information provided by the data
flow analyzer. Below we describe the data flow and the coverage analyzers.

4.1 Data flow analyzer

The data flow analyzer implements a classic reaching definition algorithm [27,
28]. The algorithm computes the definitions that may reach uses with a forward
visit of a control flow graph. It uses a lattice of bit vectors where each bit
corresponds to a definition to optimize computation space.

We instantiated the algorithm for analyzing Java bytecode. Our implementa-
tion relies on the JABA API (Java Architecture for Bytecode Analysis [29]) for
exploring the control flow graphs of class methods. We adapted the traditional
algorithm to compute the uses@entry and defs@exit sets for each method of the
classes under test (the uses that are reachable from the method entry and the
definitions that reach the method exit, as defined in Section 3.3.) We extended
the algorithm to trace the context information of definitions and uses.

The temporal complexity of the algorithm is linear in the size of the input. In
fact, we analyze each method at most once, since we handle invocations between
methods at the invocation sites, by importing the information that results from
the analysis of the called methods. Moreover, we traverse the nodes of the control
flow graphs at most a constant number of times, since we visit the control flow
graphs in depth-first reverse post order [28]. The upper bound for node traversal
depends on the complexity of loops, which is usually low in object-oriented
programs. In our experiments, we completed static data flow analysis in few
minutes, even for large programs (see Section 5 for details.)

4.2 Coverage analyzer

The coverage analyzer computes the def-use associations covered by a set of
program traces. A trace T is a sequence of program locations that correspond to
a program execution. For each location, a trace records the class and the object
involved in the execution at that point.4 A trace T covers a def-use association
(d, u, cd, cu) for a state variable v if and only if:

– the locations d and u occurs in T in this order;
– the variable v is instantiated within the same object;
– no killing definition for v occurs in T between d and u;
– the trace T satisfies the contexts cd and cu at locations d and u, respectively.

A trace T satisfies a context c at a location l, if, in T , l is reached through
a chain c of method invocations. Notice that if T satisfies c at l, it satisfies
also all contexts obtained by considering the tails of c.

For example, referring to Figure 3, consider the trace T showed in Table 3,
obtained by executing the method sequence s=new Storage(); s.storeMsg();
s.getStored(); for an object s of class Storage which instantiates an object m
of class Msg.

T covers the def-use association

〈15, 18, Storage::setStored(), Storage::getStored()〉
since it contains locations 15 and 18 that define and use variable stored of object
s, without killing definitions in between.

T covers also the def-use association

〈15, 18, Storage::storeMsg→Storage::setStored(),
Storage::getStored()〉
since location 15 is reached through the invocation of method storeMsg() at
line 24.

The algorithm for coverage analysis is computation intensive. The trivial
algorithm that scans all traces and checks all def-use associations for each trace
4 Object identifiers are ignored for static methods.

class method line object

Storage Storage() 10 s
Msg Msg() 3 m
Storage Storage() 11 s
Storage Storage() 12 s

Storage storeMsg() 24 s
Msg getInfo() 5 m
Storage storeMsg() 25 s
Storage setStored() 14 s
Storage setStored() 15 s
Storage storeMsg() 26 s

Storage getStored() 17 s
Storage getStored() 18 s

Table 3. Execution trace of the method sequence s=new Storage(); s.storeMsg();
s.getStored();

has a complexity linear in the product of the number of traces, the length of the
traces, and the number of def-use associations. To reduce the execution time,
we compare contexts incrementally, to avoid waste of memory for long traces,
and we index the def-use associations by the traversed locations. In this way,
we consider only the associations related to the locations in the trace currently
analyzed, thus reducing the impact of the total number of associations on the
complexity. In our experiments, we processed programs with traces containing
up to 108 entries, and a total of up to 105 def-use associations without problems.

4.3 Scope of the prototype

Although the technique is applicable to general Java programs, the prototype
does not currently handle exceptions and polymorphism; it does not statically
analyze the code for aliases; and it treats arrays with some imprecision. In this
subsection we briefly discuss the impact of these limits on the empirical results.

Exceptions require special treatment as discussed by Sinha and Harrold [30],
Chatterjee and Ryder [31], and Chatterjee et al. [32]. Exceptions are part of the
plans for the next release of our prototype. In the current release, the data flow
analyzer ignores exception handlers and the coverage analyzer does not report
the related coverage.

Polymorphism and dynamic binding can cause an exponential explosion of
combinations. For example, Rountev et al. propose a technique to efficiently
treat polymorphism based on class analysis [33]. The current prototype does not
solve the bindings, but considers the ones indicated by the user.

As mentioned in Section 2, aliases widen the set of possible interactions. The
current prototype relies on JABA for building control flow graphs annotated

with definitions and uses. We will include the JABA alias analyzer [24] as soon
as released.

Data flow analysis, as most static analysis techniques, cannot handle well
arrays, since array elements are often accessed though indexes whose values
are computed dynamically. The Java dynamic initialization of arrays worsen
the problem. Forgács and Hamlet et al. present some techniques for handling
arrays efficiently [34, 35]. The current prototype approximates arrays as a whole,
without distinguishing accesses to single element.

The limitations discussed in this section characterize most static analysis
techniques, but none of them prevents the applicability of data flow analysis.

5 Empirical data

We identified three main aspects that characterize the efficiency of the tech-
nique proposed in this paper: ability of dealing with large programs (scalabil-
ity), amount of infeasible def-use associations (feasibility) and ability of revealing
failures (effectiveness).

Program name Vers. Description Analyzed elements SLOC No. of classes State vars

JEdit 4.2 Programming text editor Whole 92,213 910 2,975
Ant 8 Java build tool Whole 80,454 785 4,081

BCEL 5.2 Bytecode engineering li-
brary

Whole 23,631 383 929

Lucene 2.0 Text search engine li-
brary

Whole 19,337 287 1,013

JTopas 4 Java tokenizer and
parser tool

Whole 5,359 63 196

NanoXML 5 XML parser Whole 3,279 25 39
Siena 2 A wide-area event notifi-

cation service
Whole 2,162 27 66

JUnit 3.8.1 Regression testing frame-
work

junit.framework 650 12 22

Coffee Maker / Simple representation of
a Coffee Machine

Whole 279 3 14

Table 4. Features of the analyzed applications.

5.1 Scalability

The size of the programs that can be analyzed may be limited by the complexity
of data flow and coverage analysis. As discussed in Section 4, data flow analysis
is linear in the size of the code, while coverage analysis depends on both the
length of the analyzed traces and the amount of def-use associations.

To appreciate the impact of the complexity of data flow and coverage analysis,
we analyzed a set of sample open-source programs of increasing complexity with

Max as-
soc. for
90% of
classes

Max as-
soc. for
95% of
classes

Max as-
soc. per
class

Max defs
of a state-
var per
method

Max uses
of a state-
var per
method

Exec time
1 in sec

Exec time
2 in sec

Exec time
3 in sec

Average
time in
sec

Jedit 44 130 255,608 251 879 66.935 65.707 79.763 ∼70 s
Ant 91 198 11,337 200 1,990 60.61 60.857 60.945 ∼60 s
BCEL 23 81 4,166 42 100 27.928 22.344 22.363 ∼24 s
Lucene 74 170 43,557 90 2,930 17.879 17.821 17.988 ∼17 s
JTopas 56 120 32,588 72 170 11.36 7.778 7.819 ∼8 s
NanoXML 76 137 209 2 68 5.753 5.653 5.665 ∼5 s
Siena 15 23 1,993 26 75 5.456 5.455 5.488 ∼5 s
JUnit 21 30 39 2 23 4.593 4.588 4.658 ∼4 s
CoffeeMaker 49 53 56 5 17 2.355 2.442 2.353 ∼2 s

Table 5. Amount of data computed by the data flow analyzer for a set of sample
programs

our prototype. Table 4 reports the features of the applications we analyzed.
Most of them are available at the Software-artifact Infrastructure Repository [36]
(Ant, JTopas, NanoXML and Siena). Apache website provides two additional
applications (BCEL and Lucene) and SourceForge website hosts the others. We
performed a complete analysis of all the programs, except for JUnit, for which
we have considered only the core package of the application (junit.framework).

Columns SLOC, No. of classes and State vars of Table 4 report the size of
the applications, expressed in number of classes (including non public classes),
source lines of code (computed with SLOCCount), and number of state variables.
Table 5 reports the data flow analysis results for all the analyzed programs. In
the first columns of this table, we report the number of definitions, uses and
associations for single methods and classes. Data are given per class and method,
since in this paper we focus on integration testing, and we are thus interested
in the amount of information relative to the classes under test and not to the
programs as a whole.

The table suggests that in general the amount of associations per class does
not depend on the complexity of the program, but on the amount of definitions
and uses per method (see the columns Max defs of a state var per method and
Max uses of a state var per method). For example, Lucene is smaller than BCEL,
but the amount of definitions and uses per method as well as the amount of
associations are higher in the smaller program.

The number of associations for a single class can be very high: it is more
than 255,000 in the worst case (JEdit, column Max assoc. per class). However,
most classes are characterized by a limited amount of associations: up to 44 if we
do not consider the 10% of the classes with the highest number of associations,
and up to 130 if we ignore only 5% of the classes with the highest number of
associations (columns Max assoc. for 90% of classes and Max assoc. for 95%
of classes.) In the cases considered so far, the classes with the highest number
of associations are algorithm intensive classes, tokenizers or parsers for Jedit,
Lucene and JTopas, which use state variables for storing intermediate results of
the computation. Most of these classes are automatically produced with parser

generators, and are of little interest from the class testing viewpoint. Thus, we
can obtain good results even ignoring the associations of these classes. As shown
in the example of Section 4, a single test case may cover several associations,
thus we can cover the associations with a number of test cases smaller than the
amount of associations.

Fig. 7. Size of JUnit traces

We ran data flow analysis three times on each program. The execution times
are reported in the last columns of table 5. The results indicate that the technique
can scale up well.

We performed coverage analysis for JUnit and Lucene. Figure 7 represents
the frequency of the generated traces grouped per size (number of lines). Most
of the traces are small, between 10 and 20 lines, and all of them are shorter than
1000 lines. JUnit traces have been analyzed in less than 1 second.

The coverage analysis of Lucene produced interesting results. Since the test
cases provided with the source code are longer than the ones provided with
JUnit, the generated traces are longer, too. Figure 8 represents the frequency
of Lucene traces grouped per size. Most of the traces are between 104 and 105

lines long, but some traces have more than 108 lines. We could analyze all of
them in at most 46 minutes. In Figure 9 we plot the time required to analyze
traces of different size. As we have already said in section 4, the computation
time depends on both the number of lines in a trace and the number of def-use
associations involved. Thus, bigger traces usually take more time to be analyzed,
but sometimes the analysis of small and more complex traces is longer.

All data have been computed on the server of our laboratory (a Dell Pow-
erEdge 2900 server with two 3.0 GHz Dual-Core Intel Xeon processors and 8 GB
of RAM).

Fig. 8. Size of Lucene traces

5.2 Feasibility

Coverage criteria may not be effective when they statically identify too many
infeasible elements, thus resulting in a highly variable coverage. To evaluate the
impact of infeasible associations, we inspected all def-use associations derived
from JUnit and some representative classes of Lucene. JUnit presents a total
of 102 def-use associations, and only 3 of them are infeasible. Thus 96% def-
use associations are feasible in JUnit. Three associations are infeasible because
they involve uses in unreachable code, and none is infeasible due to data flow
limitations.

Complete information on JUnit is provided in the top part of table 6. The first
columns list the analyzed classes and their features. Column Assoc. represents
the number of def-use associations in a class, while Original cov. and Tot cov.
report the amount of associations covered by the original test suite and by the
augmented one. Column Infeasible lists the number of infeasible associations in
a class.

Fig. 9. Coverage analysis execution time

In Lucene we performed a complete analysis of the small package document.
The 9 classes of Lucene that we inspected contain a total of 354 def-use associ-
ations, 74 (20%) of which are infeasible. All these infeasible def-use associations
derive from the impossibility of executing all associations in all possible con-
texts, since class Field invokes some methods with a subset of parameter values
that restrict the amount of code that can be executed. Complete information on
Lucene is listed in the bottom part of the table 6

5.3 Effectiveness

We studied the ability of exposing failures, by comparing the performance of
standard test suites with test suites that guarantee coverage of feasible def-use
associations. We ran the experiments on the 3.8.1 distribution of JUnit, since it is
distributed with a standard test suite. We first augmented the test suite provided
with the distribution with additional test cases that guarantee 100% coverage
of the feasible def-use associations. We then compared the effectiveness of the
standard and the augmented test suites, by measuring the ability of revealing a
set of seeded faults.

The 58 test cases of the standard test suite cover only 52% of the def-use
associations (54 out of a total of 102 associations, 99 of which are feasible) and

JUnit

Class name SLOC State
vars

Methods Assoc. Original
cov.

Tot
cov.

Infeas

junit.framework.Assert 184 0 39 0 0 0 0
junit.framework.AssertionFailedEror 10 0 2 0 0 0 0
junit.framework.ComparisonFailure 44 2 2 18 18 18 0
junit.framework.Protectable 4 0 1 0 0 0 0
junit.framework.Test 5 0 2 0 0 0 0
junit.framework.TestCase 79 1 13 15 8 12 3
junit.framework.TestFailure 38 2 7 7 1 7 0
junit.framework.TestListener 7 0 4 0 0 0 0
junit.framework.TestResult 111 5 18 20 17 20 0
junit.framework.TestResult$1 5 0 2 0 0 0 0
junit.framework.TestSuite 168 4 23 42 10 42 0
junit.framework.TestSuite$1 5 0 2 0 0 0 0
JUnit Total 650 14 115 102 54 99 3

TOT INFEASIBLE ASSOCIATIONS: 1%

Lucene

Class name SLOC State
vars

Methods Assoc. Original
cov.

Tot
cov.

Infeas

org.apache.lucene.document.DateField 49 1 7 6 0 6 0
org.apache.lucene.document.DateTools 130 1 7 4 0 4 0
org.apache.lucene.document.DateTools$Resolution25 8 3 0 0 0 0
org.apache.lucene.document.Document 129 2 14 20 20 20 0
org.apache.lucene.document.Field 257 12 23 321 88 247 74
org.apache.lucene.document.Field$Index 31 6 1 0 0 0 0
org.apache.lucene.document.Field$Store 21 5 1 0 0 0 0
org.apache.lucene.document.Field$TermVector 37 7 1 0 0 0 0
org.apache.lucene.document.NumberTools 52 1 2 3 0 3 0
Lucene Total 617 43 59 354 108 280 74

TOT INFEASIBLE ASSOCIATIONS: 20%

Table 6. Feasible associations in JUnit and Lucene.

76% of the statements. We augmented the default test suite with 19 additional
test cases to cover all 99 feasible associations, and we reached a statement cov-
erage of 87%. Neither of the suites find any fault, as expected, since JUnit is a
mature tool, and the package junit.framework, which we analyze, is the core
of the tool.

A qualitative inspection of the additional test cases indicates that the original
test suite omits some relevant checks: The test cases of the original suite (1) do
not check for the consistency of the initial state of most objects, (2) do not check
some functionalities, and (3) do not check the behavior of some methods when
invoked in states that violate the preconditions of the methods. For example, in
JUnit, test suites can be given a name, but no original test case checks for the
correct treatment of this case; moreover JUnit requires test cases to be defined
in public classes, but the behavior in presence of test suites included in private
classes is not checked.

To further assess the performance of the augmented test suite, we evaluated
the original and the augmented suites with respect to a set of mutants generated
according to the following rules:

– Definition mutation: for each definition of a state variable, we generated
a mutant where the assigned value is the default value:
• 0 if the variable is a number, 1 whether 0 is the actual value.
• the negation of the actual value if the variable is a boolean.
• null and another compatible value if the variable is a reference.

– P-use mutation: for each use of a state variable in a decision predicate, we
replaced the comparison operator with its inverse.
• ! = with == and viceversa
• < with > and viceversa.
• ≤ with ≥ and viceversa.

– C-use mutation: for each use of a state variable in a command statement,
we modified the used value.
• We added 1 to the used integer values.
• We used the negation of used boolean values.
• We used a faulty method invocation that preserved the syntactic valid-

ity, in presence of used references. We replaced the called method with a
different one (whenever possible) having a compatible return type when
the reference was associated to a method call; we set a different method
invocation with a return value compatible with the reference type when
the reference was not associated to a method call (as in a return state-
ment).

– for all indirect definitions and uses of a state variable (i.e., definitions and
uses that take place through method invocations as identified by the context
data), we replaced the input parameters of the called method with default
values, using the same replacement rules as in case of direct definitions. In
case of indirect definitions or uses through methods with no input parame-
ters, we did not seed any fault.

The original suite identifies only 56 out of 83 seeded faults, the original suite
augmented with 9 test cases to reach 100% coverage of the feasible statements
identifies 65 seeded faults, while the test suite augmented to guarantee all def-use
coverage identifies all 83 faults. Table 7 reports the results of this experiment.

Fault type No. of seeded faults Revealed in original Revealed in augmented

Def mutation 32 16 32

P-use mutation 12 11 12

C-use mutation 39 23 39
Table 7. Mutations in JUnit.

5.4 Limitations and threats to validity

The main threats to the validity of the empirical results reported in this section
derive from the limitations of the prototype used in the experimental work: the

language issues that are not addressed by the prototype (exception handling,
polymorphism, and reference aliasing) might affect the precision of the computed
sets of def-use associations, thus biasing our figures. Alias analysis algorithms,
such us the ones proposed by Liang, Pennings and Harrold [24] and Milanova,
Rountev and Ryder [23] should improve the precision of the results. We are
currently including such algorithm in the next release of the prototype. Exception
handlers may worsen the problem of infeasible associations, but we believe that
they should be addressed independently.

The results on fault-detection effectiveness based on mutation analysis may
be biased by the set of injected faults, even if they confirm the preliminary feed-
back from comparing different test suites. We are currently experimenting with
known faults in publicly available applications to further confirm the preliminary
results of mutation analysis.

Additional validity threats may derive from having experimented only with
open-source software, which could not adequately represent software produced
in industrial settings. We are working with our industrial partners to confirm
the preliminary results obtained with open-source software.

6 Related Work

The problem of testing state-dependent behavior has been originally addressed
in the domain of communication protocols [6, 5, 3, 4], and then further extended
to cope with object oriented software [8, 2]. Most work on testing the state-
dependent behavior of object oriented software has focused on deriving test
cases from state-based specifications, often UML [14, 15, 9, 10, 37, 13, 12, 7, 11].

The most relevant code-based approaches to testing the state-dependent be-
havior of object-oriented software have exploited data flow analysis techniques.
Harrold and Rothermel first, and Souter and Pollock later laid down the foun-
dations [19, 21].

Harrold and Rothermel introduced a suitable data flow model of class in-
teractions, and defined intra- and inter-class testing. We based our analysis on
Harrold and Rothermel’s model, and our prototype on the JABA library [29],
which extracts the model from Java bytecode.

Souter and Pollock introduced contextual def-use associations for better char-
acterizing the interactions within object-oriented software, and proposed an al-
gorithm that analyzes method interactions by examining complete chains of
method invocations. Our framework adapts the notion of contextual def-use as-
sociations defined by Souter and Pollock, to provide a framework for defining
intra-class integration testing strategies.

Souter and Pollock instantiated their approach in the prototype tool TATOO [38]
that analyzes inter-method interactions, and used this tool to explore the use
contexts of different granularity. TATOO was not publicly available at the time

of writing, thus we could not make a direct comparison with our prototype.
Based on what published in the literature [38, 21], our prototype seems to scale
up better than TATOO: uses of TATOO are reported for programs up to 10
KLOC and 100 classes, while we have successfully analyzed programs up to 100
KLOC and 1,000 classes. On the other hand, our static analysis for building
contextual def-use associations is less precise than Pollock and Souter’s. Their
algorithm analyzes each method separately for each context in which it can
be invoked, and partially accounts for reference aliasing. We analyze methods
only once, handling invocations between methods based on the raw information
that results from the analysis of the called methods, and ignore aliasing for the
moment.

Other tools that address data flow coverage for Java programs, e.g., Cover-
lipse [26] and JaBUTi [39] consider only intra-method interactions, thus they
are not suitable for intra-class testing.

Several papers propose approaches to increase the precision of the data flow
analysis for Java by accounting for reference aliasing [40, 41, 24, 33, 23, 32]. We
are currently extending our prototype to include alias analysis, and improve the
precision of the results.

The presence of libraries or components available without source code im-
pacts on the precision of data flow analysis. Rountev et al. propose an approach
to interprocedural dataflow analysis that relies on summary information pro-
vided with external libraries, and does not require access to the source code [42].
Since our analysis works at the byte-code level, we face this problem only in
presence of native code in Java libraries.

Buy et al. combined data flow analysis with symbolic execution to automat-
ically generate intra-class test cases for C++ programs [43].

7 Conclusions

Classic structural testing approaches do not adequately address subtle failures
that may depend on state-dependent behavior of object-oriented classes. Data
flow analysis techniques have been recently extended to capture dependencies
from instance variables that determine the state of the classes, taking into ac-
count the context in which methods that access instance variables are invoked.

In this paper, we propose a framework that adapts and extends previous re-
sults to intra-class structural integration testing [19]. The main contributions of
this paper are the adaptation of Souter and Pollock’s context-sensitive analysis
of object-oriented methods [21] to the incremental analysis of intra-class inter-
actions, and a preliminary set of empirical data obtained though a prototype
implementation of the approach on a set of open-source programs.

The analysis proposed in this paper can be performed incrementally on sin-
gle classes, since definition and use sets can be combined at integration time,

while Souter and Pollock’s analysis combines the points-to-graphs of the differ-
ent methods for each method invocation, and thus gains precision at the expense
of scalability. Souter and Pollock’s approach applies well to the analysis of com-
plete programs and single methods, while our approach fits better the analysis
of the interactions of methods that can be invoked independently form outside
of the class.

The empirical results confirm the complexity results and suggests that the
technique proposed in this paper scales up well to mid-size programs (we ana-
lyzed programs of up to 100,000 lines of code and 1000 classes in few minutes).
The results indicate also a high percentage of feasible def-use associations, thus
sustaining the usefulness of the proposed structural coverage. Finally, the results
suggest that the coverage proposed in this paper include relevant state-dependent
behavior that are ignored by classic structural coverage criteria.

The release of the prototype used in the empirical evaluation and the com-
plexity of some experiments limit the empirical results obtained so far. The
prototype implementation is based on the current release of JABA that derives
inter-class data flow models, but does not implement alias analysis yet. The
analysis of infeasible def-use associations as well as the derivation of test suites
that cover feasible associations require expensive inspection of program code
and test traces. We are currently including well known alias analysis algorithms
in the prototype to improve the precision of the results [24, 23]. We are also
including techniques to deal with polymorphism, dynamic binding and excep-
tion handling [33, 32], and we are analyzing feasibility and coverage of additional
large programs.

In this paper, we focused on intra-class testing, but we are currently extend-
ing the technique to inter-class testing, i.e., to methods that interact through
shared objects, such as global objects and shared state instances. The main
challenge of inter-class testing is understanding which of the shared associations
that can be statically identified can also be dynamically instantiated. Too many
infeasible shared associations lead to too many infeasible test requirements, and
thus almost useless testing criteria. The technique proposed in this paper can
easily identify shared associations, but we are currently investigating the amount
of infeasible associations computed with the technique, to learn if and how to
improve it.

References

1. Meyer, B.: Object-Oriented Software Construction. 2nd edn. Prentice-Hall (March
2000)

2. Pezzè, M., Young, M.: Software Test and Analysis: Process, Principles and Tech-
niques. John Wiley and Sons (2008)

3. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
a survey. Proceedings of the IEEE 84(8) (August 1996) 1090–1123

4. von Bochman, G., Dssouli, R., Zhao, J.R.: Trace analysis for conformance and
arbitration testing. IEEE Transactions on Software Engineering 15(11) (November
1989) 1347–1356

5. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test
selection based on finite state models. IEEE Transactions on Software Engineering
17(6) (June 1991) 591–603

6. Chow, T.S.: Testing design modeled by finite-state machines. IEEE Transactions
on Software Engineering 4 (March 1978) 178–186

7. Kung, D., Gao, J., Hsia, P., Toyoshima, Y., Chen, C., Kim, Y.S., Song, Y.K.: De-
veloping an object-oriented software testing and maintenance environment. Com-
munications of the ACM 38(10) (1995) 75–87

8. Binder, R.V.: Testing Object-Oriented Systems, Models, Patterns, and Tools.
Addison-Wesley (2000)

9. Briand, L.C., Cui, J., Labiche, Y.: Towards automated support for deriving test
data from UML statecharts. In: Proceedings of the International Conference on
the Unified Modeling Languages and Applications. LNCS 2863, Springer (2003)
249–264

10. Briand, L.C., Labiche, Y., Wang, Y.: Using simulation to empirically investigate
test coverage criteria based on statechart. In: Proceedings of the 26th International
Conference on Software Engineering, IEEE Computer Society (2004) 86–95

11. Offutt, A.J., Xiong, Y., Liu, S.: Criteria for generating specification-based tests. In:
Proceedings of the Internationcal Conference on Engineering of Complex Computer
Systems, IEEE Computer Society (1999) 119–129

12. Hartmann, J., Imoberdorf, C., Meisinger, M.: Uml-based integration testing. In:
Proceedings of the 2000 International Symposium on Software Testing and Anal-
ysis, ACM Press (2000) 60–70

13. Fraikin, F., Leonhardt, T.: SeDiTeC - testing based on sequence diagrams. In:
Proceedings of the International Conference on Automated Software Engineering,
IEEE Computer Society (2002) 261–266

14. Abdurazik, A., Offutt, J.: Using UML collaboration diagrams for static checking
and test generation. In: Proceedings of the International Conference on the Unified
Modeling Language. LNCS 1939, Springer (2000) 383–395

15. Andrews, A., France, R., Ghosh, S., Craig, G.: Test adequacy criteria for UML
design models. Software Testing, Verification and Reliability 13 (2003) 95–127

16. Doong, R.K., Frankl, P.G.: The ASTOOT approach to testing object-oriented
programs. ACM Transactions on Software Engineering and Methodology 3(2)
(April 1994) 101–130

17. Chen, H.Y., Tse, T.H., Chan, F.T., Chen, T.Y.: In black and white: an integrated
approach to class-level testing of object-oriented programs. ACM Transactions on
Software Engineering and Methodology 7(3) (1998) 250–295

18. Chen, H.Y., Tse, T.H., Chen, T.Y.: TACCLE: a methodology for object-oriented
software testing at the class and cluster levels. ACM Transactions on Software
Engineering and Methodology 10(1) (2001) 56–109

19. Harrold, M.J., Rothermel, G.: Performing data flow testing on classes. In: Pro-
ceedings of the 2nd ACM SIGSOFT Symposium on Foundations of Software En-
gineering, ACM Press (1994) 154–163

20. Harrold, M.J., Soffa, M.L.: Efficient computation of interprocedural definition-use
chains. ACM Transactions on Programming Languages and Systems 16(2) (1994)
175–204

21. Souter, A.L., Pollock, L.L.: The construction of contextual def-use associations for
object-oriented systems. IEEE Transaction on Software Engineering 29(11) (2003)
1005–1018

22. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns Elements of
Reusable Object-Oriented Software. Addison-Wesley (2000)

23. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for Java. ACM Transactions on Software Engineering and
Methodology 14(1) (January 2005) 1–41

24. Liang, D., Pennings, M., Harrold, M.J.: Evaluating the impact of context-
sensitivity on Andersen’s algorithm for Java programs. In: Proceedings of the
ACM Workshop on Program Analysis For Software Tools and Engineering, ACM
Press (2005) 6–12

25. Rapps, S., Weyuker, E.J.: Selecting software test data using data flow information.
IEEE Transactions on Software Engineering SE-11(4) (1985) 367–375

26. Kempka, M.: Coverlipse: Eclipse plugin that visualizes the code coverage of JUnit
tests Open source project on SourceForge.net, http://coverlipse.sourceforge.net.

27. Kildall, G.A.: A unified approach to global program optimization. In: Proceedings
of the 1st annual ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, ACM Press (1973) 194–206

28. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann (1997)

29. JABA: Aristotele Research Group. Java Architecture for Bytecode Analysis (2005)

30. Sinha, S., Harrold, M.J.: Analysis and testing of programs with exception handling
constructs. IEEE Transactions on Software Engineering 26(9) (2000) 849–871

31. Chatterjee, R., Ryder, B.G.: Data-flow-based testing of object-oriented libraries.
Technical Report DCS-TR-433, Department of Computer Science, Rutgers Uni-
versity (2001)

32. Chatterjee, R., Ryder, B.G., Landi, W.A.: Complexity of points-to analysis of Java
in the presence of exceptions. IEEE Transactions on Software Engineering 27(6)
(June 2001) 481–512

33. Rountev, A., Milanova, A., Ryder, B.G.: Fragment class analysis for testing of
polymorphism in Java software. IEEE Transactions on Software Engineering 30(6)
(2004) 372–387

34. Forgács, I.: An exact array reference analysis for data flow testing. In: Proceedings
of the 18th International Conference on Software Engineering, IEEE Computer
Society (1996) 565–574

35. Hamlet, D., Gifford, B., Nikolik, B.: Exploring dataflow testing of arrays. In:
Proceedings of the 15th International Conference on Software Engineering, IEEE
Computer Society Press (1993) 118–129

36. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact. Empirical Software
Engineering: An International Journal 10(4) (2005) 405–435

37. Briand, L.C., Penta, M.D., Labiche, Y.: Assessing and improving state-based
class testing: A series of experiments. IEEE Transactions on Software Engineering
30(11) (2004) 770–793

38. Souter, A., Wong, T., Shindo, S., Pollock, L.: TATOO: Testing and analysis tool
for object-oriented software. In: Proceedings of the 7th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. LNCS
2031, Springer (2001)

39. Vincenzi, A.M.R., Maldonado, J.C., Wong, W.E., Delamaro, M.E.: Coverage test-
ing of Java programs and components. Science of Computer Programming 56(1-2)
(2005) 211–230

40. Liang, D., Pennings, M., Harrold, M.J.: Extending and evaluating flow-insensitive
and context-insensitive points-to analyses for Java. In: Proceedings of the ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools and En-
gineering, ACM Press (2001) 73–79

41. Rountev, A., Milanova, A., Ryder, B.G.: Points-to analysis for Java using an-
notated constraints. In: Proceedings of the 16th ACM SIGPLAN Conference on
Object Oriented Programming, Systems, Languages, and Applications, ACM Press
(2001) 43–55

42. Rountev, A., Kagan, S., Marlowe, T.: Interprocedural dataflow analysis in the
presence of large libraries. In: Proceedings of the 15th International Conference on
Compiler Construction. LNCS 3923, Springer (2006) 2–16

43. Buy, U., Orso, A., Pezzè, M.: Automated testing of classes. In: Proceedings of
the ACM SIGSOFT International Symposium on Software Testing and Analysis,
ACM Press (2000) 39–48

