
A Robust and Lightweight
Stable Leader Election Service

for Dynamic Systems

Nicolas Schiper† Sam Toueg‡

†Faculty of Informatics ‡Department of Computer Science
University of Lugano University of Toronto

6900 Lugano, Switzerland Toronto, Ontario, Canada M5S 3G4

University of Lugano
Faculty of Informatics

Technical Report No. 2008/001 Revision 2
March 2008

Abstract
We describe the implementation and experimental evaluation of a fault-tolerant leader election service for dynamic sys-

tems. Intuitively, distributed applications can use this service to elect and maintain an operational leader for any group of
processes which may dynamically change. If the leader of a group crashes, is temporarily disconnected, or voluntarily leaves
the group, the service automatically re-elects a new group leader. The current version of the service implements two recent
leader election algorithms, and users can select the one that fits their system better. Both algorithms ensure leader stability,
a desirable feature that lacks in some other algorithms, but one is more robust in the face of extreme network disruptions,
while the other is more scalable.

The leader election service is flexible and easy to use. By using a stochastic failure detector [5] and a link quality estimator,
it provides some degree of QoS control and it adapts to changing network conditions. Our experimental evaluation indicates
that it is also highly robust and inexpensive to run in practice.



1. Introduction
In this paper we describe and experimentally evaluate

a fault-tolerant leader election service for dynamic sys-
tems. Leader election plays an important role in the de-
sign of fault-tolerant applications. Intuitively, this is be-
cause a leader can be used as a central coordinator that en-
forces consistent behavior among processes. For example,
the algorithms in [13, 16, 9] require a fault-tolerant leader
election mechanism to manage data replication or to en-
force process agreement despite failures. More generally,
a leader election service can be used to solve consensus and
atomic broadcast — two primitives at the core of Lamport’s
state machine approach for building fault-tolerant applica-
tions [12].

The service we propose can be used to elect and main-
tain a leader among any dynamically changing subset of ap-
plication processes (called a group) in a system with ran-
dom process crashes, process recoveries, message losses
and message delays. The leader of a group must be oper-
ational (and a current member of that group): if it crashes,
is temporarily disconnected, or voluntarily leaves the group,
the service automatically re-elects a new leader and notifies
the processes in the group of this change. There may be pe-
riods of time when a group has no operational leader or has
several leaders (e.g., just after a crash of the current leader
or when several processes compete to gain the group lead-
ership), but the service ensures that these periods are very
short in practice: roughly speaking, as long as a group has
at least one reasonable candidate for leadership (an opera-
tional process with well-behaved communication links), the
service provides the group with a unique and stable leader.

Groups are dynamic, i.e., each application process can
join or leave any group at any time (each process can con-
currently belong to several groups), and the service provides
a leader among the operational processes of each group. If
the current leader of a group fails or leaves the group, the
service automatically elects a new leader.

When a process joins a group, it can indicate whether it
is willing to be a leader for this group (i.e., whether it is
a “candidate” for leadership). For each group, the service
selects a leader only among the (currently operational) can-
didates in that group. This feature can be useful in practice
for several reasons. First, a process may be unwilling to
be the group leader because it cannot handle the associated
workload. Second, the cost of a leader election (in terms of
messages exchanged) is typically proportional to the num-
ber of candidates that concurrently compete for this posi-
tion. So a large group may want to restrict the election to a
small number of candidates (e.g., among t+ 1 candidates, t
of which may fail).

To select the “core” algorithms for our service, we imple-
mented three different leader election algorithms and exper-
imentally compared their performance under several differ-

ent settings. Of these three algorithms, two performed ex-
tremely well even in systems with very high rates of work-
station and communication failures. These two algorithms
are enhanced versions of algorithms in [2, 4] that were mod-
ified to integrate the stochastic failure detector (FD) algo-
rithm of Chen et al. [5] and a link quality estimator in or-
der to provide some degree of QoS control and to adapt to
changing network conditions. In the current version of the
service, users can chose between these two leader election
algorithms, and select the one that fits their system better:
as our experimental evaluations show, one is more robust
in the face of extreme network disruptions, while the other
is more scalable. With either algorithm, the service have
several desirable features, that we now describe.

The service ensures a high degree of leader stability.
Roughly speaking, leader stability means that the current
leader is not demoted and replaced if it is still opera-
tional [1]. This is in contrast to several leader election
algorithms, notably those that select a leader using some
fixed function on process identifiers. For example, consider
the algorithm that selects the leader as the process with the
smallest identifier among the processes that seem to be cur-
rently alive [17, 8, 14]. With this algorithm, a group leader
` is systematically demoted and replaced every time a pro-
cess with a smaller identifier than ` newly joins the group
(or rejoins the group after it recovers from a crash), and
this occurs even if ` is fully functional and has been work-
ing well as the group leader. It is clear that demoting fully
functional leaders for such spurious reasons can be costly
and disruptive to leader-based applications, and therefore
should be avoided.

With this service, applications have some control on the
Quality of Service (QoS) of the leader election. More pre-
cisely, for each group g, each application process p in g can
specify bounds on (1) the time p takes to detect the crash
of the current leader of g, and (2) the “accuracy” of this de-
tection (in terms of the frequency and duration of mistakes,
i.e., of false crash detections). Bounding (1) is important
because, as our experiments suggests, the time it takes to
detect the crash of a leader is often the dominating com-
ponent of what we call leader recovery time (i.e., the time
that elapses from the crash of a leader to the installation of
a new leader). Bounding (2) is also important because mak-
ing a mistake on the leader (i.e., thinking that it has crashed
while it is still functional) can lead to an unnecessary and
expensive change of leader. To achieve the above, we im-
plemented the stochastic failure detector (FD) algorithm of
Chen et al. [5] and integrated it in (the leader election al-
gorithms of) our service: Under some conditions, this FD
provides QoS guarantees on the speed and accuracy of the
failure detection.

The leader election service adapts to changing network
conditions. In fact, applications do not specify static, low-

2



level parameters such as timeout durations or the frequency
of “I-am-alive” messages, these are automatically deter-
mined and continuously updated according to the “current”
network conditions as follows. The underlying FD algo-
rithm of Chen et al. periodically reevaluates these FD pa-
rameters as a function of two inputs: (a) the required QoS of
the FD (as specified by an application), and (b) the current
quality of the communication links (as given by a link qual-
ity evaluator module). This allows the underlying failure
detector, and ultimately the service, to automatically adjust
to changing network conditions.

Finally, our experimental evaluation indicates that the
leader election service is indeed quite stable, robust and
inexpensive to run. This is shown in details in Section 6
and is briefly explained below. As we mentioned earlier,
the service gives the option between two different leader
election algorithms. The first one, denoted Ωl, is based on
a message-efficient algorithm designed to tolerate “lossy”
links (intuitively, links with intermittent message losses and
delays) [2]. The second one, denoted Ωlc, is based on an
algorithm designed to tolerate both lossy links and links
that may “crash” (i.e., completely disconnect receiver from
sender) [4]. With both leader election algorithms, the ser-
vice performs well even in “difficult” environments. For
example, consider a scenario where: (a) A group of 12 pro-
cesses, each one on a distinct workstation, compete for lead-
ership over a point-to-point network; (b) Every workstation
crashes once every 10 minutes on average (and later recov-
ers); (c) Every communication link “loses” one message
every 10 messages on average; moreover both the average
message delay and its standard deviation is 100 ms; (d) The
group sets the QoS of the underlying FD to detect process
crashes within one second and to make at most one mistake
(per monitored process) every 100 days.

Note that the frequency of workstation crashes and recov-
eries, the amount of message losses, and the magnitude of
message delays of this scenario are quite pessimistic: they
are orders of magnitude larger than in many networks. In
this scenario, with both Ωl and Ωlc, the service never de-
moted a leader by mistake, i.e., it replaced only the leaders
that really crashed — this indicates that the service is ex-
tremely stable. Moreover, with Ωl and Ωlc, the service pro-
vided the group with a commonly agreed operational leader
99.84 and 99.82 percent of the time, respectively (the group
was left leaderless only for a brief period of time after each
leader crash, namely, during the time taken to detect the
crash and reelect a new leader) — this shows the service
robustness in the presence of high workstation and link fail-
ure rates. Finally, even in this challenging environment, the
cost of running the service remained reasonable. With the
message-efficient algorithm Ωl, the service took only 0.04
percent of the CPU and 6.48 KB/second of network band-
width per workstation. With Ωlc, the service took about 0.3

percent of the CPU and 62.38 KB/second per workstation
— which is considerably more than Ωl, but is still reason-
able for many current network technologies.

Our experiments also suggest that Ωl is essentially as
good as or better than the more-expensive algorithm Ωlc in
most systems, except those with extremely poor communi-
cation links. In such systems, Ωlc may be more robust than
Ωl. For example, we run an experiment where, in addition
to the workstation crashes described above, we also crashed
every link every minute on average, and kept each crashed
link down for 3 seconds (which was long enough to trigger
an erroneous workstation crash suspicion). Even in such a
hostile environment, with Ωlc the service still managed to
provide a commonly agreed operational leader 98.78 per-
cent of the time. In contrast, in this same scenario, with Ωl
a leader was available only 77.42 percent of the time.

The source code of our leader election service, as well as
information on how to install and use it, are available at:
http://www.inf.unisi.ch/phd/schiper/LeaderElection/. Sev-
eral experimental results that are omitted here are also
posted on that site.

Roadmap. The rest of the paper is structured as follows.
Section 2 summarises related work. Section 3 describes the
failure detector of Chen et al.. Section 4 presents the archi-
tecture of the leader election service. Section 5 describes
the QoS metrics that we use to evaluate and compare the
different leader election algorithms that we implemented in
our service. Section 6 describes our experimental settings
and results. Some concluding remarks appear in Section 7.

2. Related Work

The literature on failure detectors and more specifically
leader election is abundant. We now briefly review some of
the relevant papers. In [8], the authors study the problem of
leader election in partitionable networks. They define the
notion of stable partition as a partition in which every pair
of processes can communicate in a timely manner. In each
one of these stable partitions, the process with the small-
est identifier is elected as the partition leader. In [14], the
authors give a communication-efficient algorithm, an algo-
rithm in which eventually only the leader sends messages.
However, their algorithm requires strong system assump-
tions, i.e., all links have to be eventually timely (a link is
eventually timely if all messages sent after some time t take
at most δ units of time to be received). In [10], the au-
thors study the leader election problem in a probabilistic
model, i.e., a model where process crashes and link failures
are probabilistic. In this algorithm, a parameter controls the
trade-off between the correctness probability guarantee and
the message complexity.

In [1], several leader election algorithms are given for
systems where at least one non-faulty process has input and

3



output communication links that are eventually timely (all
the other links may lose all messages). These algorithms
are message-efficient, i.e., after a leader is elected, only the
leader sends messages (it must do so periodically to inform
other processes that it is still alive). Furthermore, they en-
sure a strong form of leader stability, i.e., a leader is not
demoted if its input and output links have been timely for
some amount of time ∆ (∆ depends on the algorithm). In
[2] and [4], algorithms are given for systems where only
the output links of some non-faulty process are eventu-
ally timely (the input links may be arbitrarily slow). One
of these algorithms is communication-efficient but it as-
sumes that message losses are only intermittent (a message
repeatedly sent over a lossy link is eventually received).
Another algorithm tolerates links that completely “crash”
(i.e., lose all messages), but it requires quadratic commu-
nication even after a leader has been elected. In [3], the
authors consider systems where at most f processes may
crash and give a communication-efficient algorithm where
only f of the output links of a non-faulty process need to
be eventually timely. In [15], the authors give a strongly
stable and communication-efficient algorithm that requires
one non-faulty process to be eventually f -accessible, i.e., a
process that has eventually timely input and output links
to f processes. An interesting feature of this algorithm
is that these eventually timely links need not be fixed and
may change during the execution of the algorithm. In [7],
a communication-efficient algorithm is presented that does
not require a priori knowledge of the processes’ identities.

3. Chen et al.’s Failure Detector with QoS

Failure detection is at the core of any leader election ser-
vice: it is used to detect whether the current leader has failed
and needs to be replaced, and to determine which of the can-
didates for replacing the failed leader are operational.

In our service, we implemented the stochastic failure de-
tector algorithm due to Chen et al. [5] and integrated it with
a link quality estimator module and a dynamic scheduler.
Together, these modules provide some QoS control on fail-
ure detection under changing network conditions. We now
briefly describe these modules (shown in Figure 1).

When a process p monitors the status of another process
q, it gives the QoS requirement of this monitoring in terms
of 3 parameters, denoted TUD , TLMR, and PLA : (a) TUD is an
upper bound on the time the FD takes to detect the crash
of q, (b) TLMR is a lower bound on the expected time be-
tween two consecutive mistakes of the FD (the FD makes a
mistake when it tells p that q crashed and this is not true),
and (c) PLA is a lower bound on the probability that, at a
random time, the FD is correct about the operational status
of q.

It is clear that achieving such a QoS requirement depends

Failure Detector 
Configurator

Link Quality 
Estimator

Scheduler

(TdU, TmrL, PaL) trust/suspect proc.

(!, ")

(Ed, Sd, pl)

network

send/receive 
ALIVE

receive 
ALIVE

Figure 1. The failure detector module

on the frequency at which q sends alive messages to p, the
timeout that p uses on these messages, and on quality of
the communication link from q to p. In the following, we
briefly explain the three modules that are related to this.

The Link Quality Estimator module continuously estimates
the “quality” of the link from q to p in terms of three quanti-
ties: the probability of message loss pL, the expected value
of message delayEd, and the standard deviation of message
delay Sd. This estimation is done using the alive messages
that p receives from q.

The Failure Detector Configurator computes the FD param-
eters that ensure the required QoS under some assumptions
on the network behavior [5]. More precisely, this module
(dynamically) computes (1) the frequency η at which q must
send alive messages to p, and (2) the timeout δ that p must
use to determine q’s operational status. To compute η and
δ, the module takes two inputs: (a) the required QoS of the
monitoring of q, i.e., the values of TUD , TLMR, and PLA given
by p, and (b) the estimated quality of the link from q to p,
i.e., the latest values of pL, Ed, and Sd computed by the
Link Quality Estimator module.

The Scheduler uses the output (η, δ) of the Failure Detector
Configurator as follows: it schedules the sending of alive
messages by q at a frequency of η, and it uses the current
timeout δ and the time that p received its last alive message
from q to schedule the trust/suspect notifications at p.

4. The Leader Election Service Architecture

The architecture of the leader election service is based
on the failure detector service proposed by Deianov et al.
in [6] and implemented by Ivan et al. in [11]. This archi-
tecture reduces the overall network and CPU overhead by
sharing some tasks (e.g., estimating the quality of the com-
munication links or determining whether a workstation is
operational): the cost of these tasks is shared by the various
applications that concurrently use the service. The leader
election service is written in C and is compatible with any
Unix/Linux. The service’s architecture is illustrated in Fig-
ure 2 and briefly explained below.

4



Application processes are linked to a shared library im-
plementing the service’s API. The main API functions al-
low processes to register/unregister with the service and
to join/leave groups. This library communicates with the
Command Handler module to serve the requests of applica-
tion processes.

To use the leader election service, a process p must first
register itself with the service using a unique process iden-
tifier. Once this is done, p can join and leave any group at
anytime. To join a group g, p must specify the following
four parameters: (1) g’s identifier, (2) whether p is a candi-
date for g’s leadership or not, (3) the way p wishes to find
out who is the current leader of g (by an interrupt from the
service, whenever the leader of g changes, or by querying
the service, whenever p wants to do so), and (4) the QoS
(TUD , TLMR, PLA ) of the underlying FD used by the service
to elect a leader in group g.

network

Application Process

Shared Library

API calls

receive answer
send command

Command Handler

send answer
receive command

Leader Election
Algorithm

Group
Maintenance

Failure Detector

start leader
election

leader

join 
group

trust/suspect proc.

(TdU, TmrL, PaL)
send/receive

ALIVE
send/receive

HELLO

group members

Figure 2. The leader election service

The core functionality of the service resides in the Group
Maintenance, the Failure Detector, and Leader Election Al-
gorithm modules.

For each group g, the Group Maintenance module builds
and maintains (a) the set of processes that are currently in g,
and (b) the subset of processes of g that are currently “ac-
tive” in g (roughly speaking, a process in g is active if it is
currently alive and competing for the leadership of g; as we
will see in Section 6, depending on the leader election algo-
rithm used, either all the alive processes in g are active [4]
or eventually only the leader of g remains active [2]). To de-
termine (a) and (b), the Group Maintenance module needs
to determine the status of processes in each group. To do
so, it uses the Failure Detector module, which was imple-
mented using the failure detector of Chen et al. as decribed
in Section 3.

The Leader Election Algorithm module maintains a
leader in each group g by executing the algorithm in [4] or
in [2] in g, depending on the version of the service used

(these two algorithms are sketched in Section 6). Other
leader election algorithms can be “plugged in” here in fu-
ture versions of the service.

5. Leader Election QoS Metrics

We used three QoS metrics to compare the performance
of leader election services in various settings. The first one
captures the “speed” of the leader election service: it mea-
sures the time that the service takes to recover from the
crash of the current leader, i.e., the time that elapses from
the moment a group loses its current leader due to a crash to
the time when the service completes the election of a new
group leader. Roughly speaking, this measures the sum of
two periods: (a) detection time, i.e., the time that the service
takes to detect that the current leader of a group has crashed
(and so an election must occur), and (b) election time, i.e,
the time that the service takes to ensure that all the alive
processes in the group agree on a new leader. Note that the
group is effectively leaderless during all this time.

To define this metric more precisely, we say that a group
has a leader at time t if, at time t, there is some alive process
` such that every alive process in this group has ` as its
leader. The leader recovery time, denoted Tr, is a random
variable that measures the time that elapses from the time
when the leader of a group crashes to the time when the
group has a leader again. The average leader recovery time
metric, denoted Tr, is the expected value of Tr.

The second metric that we use, called average mistake
rate, captures the “accuracy” and “stability” of a leader
election service: it is the rate at which the service makes
a “mistake” by demoting a functional group leader. Intu-
itively, such a mistake may occur for one of two reasons.
First, the service’s failure detection mechanism may be in-
accurate: it erroneously suspects that the current leader `
has crashed, and this triggers an unnecessary reelection to
replace `. Second, the service may be unstable: it may de-
mote and replace a well-behaved leader ` for spurious rea-
sons (e.g., it may demote and replace ` just because a pro-
cess with a smaller id than ` joins the system). It is clear
that demoting a functional leader should be avoided: it pre-
vents the progress of all leader-based applications until a
new leader is elected.

To capture the above metric, we say that the demotion of
a proces ` from leadership is unjustified if ` loses the lead-
ership of the system even though ` has not crashed. The
mistake rate, denoted λu, is a random variable that mea-
sures the number of unjustified leader demotions that occur
in an hour. The average mistake rate, denoted λu, is the
expected value of λu.

The last metric that we consider measures the availabil-
ity of a group leader. Specifically, for any given group, the
leader availability metric, denoted Pleader, is the proba-

5



bility that, at a random time, the group has a (commonly
agreed and alive) leader. Intuitively, this metric is of inter-
est to applications for the following reason. Suppose that
a leader-based application needs to use the services of a
leader at random times. Then Pleader is the probability that
when the application needs a leader, it finds that a com-
monly agreed and functional leader is available. Note that,
for each group, this metric corresponds to the proportion of
time when the group has a leader.

6. Evaluation of Leader Election Services
In this section, we experimentally evaluate and compare

three different versions of the leader election service, de-
noted S1, S2, and S3, under various network behavior set-
tings. All three versions share the same service architecture
(described in Section 4) except that each one uses a differ-
ent algorithm in the Leader Election Algorithm module (as
we explain later). To evaluate and compare the performance
of S1, S2, and S3, we use the leader election QoS metrics
described in Section 5. We also evaluate their costs in terms
of CPU and network bandwidth utilization.

In the following, we first describe the parameters of our
experiments, and then describe the experimental results for
each version of the service.

6.1. Experimental System Parameters

The experiments were conducted on a LAN consisting of
a cluster of 12 workstations connected with a gigabit switch.
Each workstation is a P4 3.2 Ghz, with 512 MB of RAM,
running an instance of the leader election service on top of
SuSe Linux 9.2. All our experiments, except those measur-
ing scalability, consisted of a single group of 12 application
processes, one in each workstation, using the service. The
duration of each experiment varied between 1 and 5 days.

In our local area network, workstations rarely crash,
there are practically no message losses and the average
message delay is only about 0.025 ms. To evaluate our
leader election service implementation in other (less favor-
able) network environments, we implemented a module that
causes message losses or delays (by actually dropping or
delaying the service messages) and a module that simu-
lates the crashes and recoveries of workstations (by actually
killing and later restarting individual instances of the ser-
vice running on those workstations). Note that each work-
station crash also kills one of the 12 application processes
using the leader election service (in particular, it may kill
the current leader of the group).

Our experiment parameters control (1) the behavior of
the network that runs the leader election service and (2) the
QoS of the underlying FD used by the service. We now
describe these parameters in more detail.
Workstations behavior. In all our experiments, worksta-
tions crash and recover at random times. More precisely,

for each workstation, the time between two consecutive
workstation crashes is exponentially distributed with an ex-
pected value of 600 seconds (i.e., on the average each pro-
cess crashes every 10 minutes). The time that a worksta-
tion takes to recover from a crash is also exponentially dis-
tributed, with an expected value of 5 seconds (i.e., on the
average a workstation takes 5 seconds to recover from a
crash). Even though crashing every workstation every 10
minutes on the average is extremely pessimistic for realis-
tic environments, we chose this setting for two reasons: (1)
to stress-test and evaluate the leader election service under
adverse conditions, and (2) to collect enough samples (e.g.,
to estimate the average leader recovery time) in reasonable
time. A recovery time of about 5 seconds is long enough to
force the algorithms to notice and react to every crash, and
it is short enough to prevent frequent periods during which
no process is alive.
Communication links behavior. Every group of n pro-
cesses has n(n − 1) directed communication links. In our
experiments, we simulated two types of links — lossy links
and links that are prone to crashes — as described below.

LOSSY LINKS. In most of our experiments (Figure 3 to Fig-
ure 5) we simulate communication links with random mes-
sage losses and delays. More precisely, every message sent
through a lossy link has a probability pL of being dropped
by the link. If a message is not dropped by the link, its delay
is exponentially distributed with an expected value D.

We run experiments where the probability of message
loss pL is 1/10, 1/100, or 1/1000, and the expected message
delay D is 1ms, 10ms, or 100ms. Thus, we evaluated each
version of the leader election service with 9 different values
of the tuple (D, pL) that characterizes lossy links behav-
ior. For brevity, in this paper we only show the experimen-
tal results for the “worst” 4 of these 9 pairs, namely, those
where D is 10ms or 100ms, and pL is 1/10 or 1/100, i.e.,
for the pairs (10ms, 0.01), (100ms, 0.01), (10ms, 0.1), and
(100ms, 0.1).

To see how the various leader election algorithms per-
form in systems with well-behaved communication links,
we also run experiments where the message losses and de-
lays were only those that really occurred in our local area
network. During these experiments, we measured an aver-
age message delay of only 0.025 ms and there were practi-
cally no message losses, i.e., these experiments were con-
ducted over links characterized by the pair (0.025ms, 0).

In summary, we evaluated each leader election algorithm
with ten different behaviors of lossy communication links:
the nine simulated ones and the behavior of our local area
network, which corresponds to (0.025ms, 0). These behav-
iors cover a large spectrum of network types such as local-
area, metropolitan-area, and wide-area networks.

LINKS PRONE TO CRASHES. In some experiments (Fig-
ure 7) we simulate links that are subject to random crashes

6



and recoveries. When a link crashes, it completely dis-
connects the receiver from the sender (by dropping all the
sender’s messages) until the link recovers. When a link re-
covers, it becomes fully operational again.1 In our experi-
ments with link crashes, for each link, the time between two
consecutive link crashes is exponentially distributed with an
expected value of 60 seconds, 300 seconds, or 600 seconds.
So in these experiments each link crashes every 1, 5, or 10
minutes, on the average. The time that a link takes to re-
cover from a crash is also exponentially distributed with an
expected value of 3 seconds — a period that is long enough
to trigger disruptive “false suspicions” (as it will be clear
later, with our QoS settings, any link crash that lasts more
than one second can force some process to falsely suspect
another one to have crashed).
QoS of the underlying FD. As we mentioned earlier, our
leader election service uses the stochastic FD by Chen et
al. [5] as the underlying failure detector. Under some prob-
abilistic assumptions on the system, this FD allows any pro-
cess p to monitor the status of another process q with some
QoS guarantees in terms of the speed and accuracy with
which it detects q’s crash. Every application that uses our
leader election service can set the QoS of the FD to gain
some control on the QoS of the leader election service.2 In
almost all our experiments, we set the QoS of the underly-
ing FD (of Chen et al.) as follows. For every process p that
monitors a process q: (1) Process p takes at most 1 second
to detect q’s crash; (2) on average pmakes at most 1 mistake
about the status of q every 100 days; and (3) the probability
that p correctly estimates q’s operational status, at a random
time, is at least 0.99999988. Formally, TUD = 1 second,
TLMR = 100 days, and PLA = 0.99999988. We selected
this strong QoS setting to evaluate the performance of the
service under demanding requirements.

It is clear that the QoS of the leader election service de-
pends on the QoS of the underlying failure detector that the
service uses. For example, a failure detector that takes a
long time to detect the crash of the current leader will delay
its replacement by at least the same amount of time, and this
increases the leader recovery time and decreases the overall
leader availability (in Section 6.6 we describe some experi-
ments that explore the relation between crash detection time
and leader recovery time). On the other hand, a failure de-
tector that makes frequent mistakes (e.g., by errononeously
declaring that the current leader crashed) can increase the
number of unjustified leader demotions, i.e, increase the av-
erage mistake rate of the leader election service.

Unless we explicitly state otherwise, all the experiments
described henceforth were done with the above settings.

1When a link is operational, its message losses and delays are those
of our (real) network: losses are practically nil, and the average delay is
0.025ms.

2In fact, each group of processes can chose a different QoS for the
underlying FD.

6.2. The Service S1

Description. The leader election algorithm of S1 denoted
Ωid is quite simple: the leader of a group is just the pro-
cess with the smallest identifier among the processes that
are currently deemed to be alive in this group. To estimate
who is currently alive in a group, processes can periodically
send an alive message to every other process in the group,
say once every η seconds, and use some timeout δ on these
messages (so that p declares that q has crashed if more than
δ time elapses since p received the last alive from q).

An ad-hoc implementation of the above failure detector
uses fixed values for η and δ. Such an implementation, how-
ever, has two drawbacks. First, the delicate question of how
to fix η and δ is (usually) left to the user. But determining
the “right” values for η and δ is far from trivial: it depends
on the network characteristics (e.g., the distribution of mes-
sage delays and the probability of message loss) and also on
speed and accuracy of the failure detection that one wants
to achieve. Second, using fixed values for η and δ does not
adapt well to changing network conditions.

To avoid these problems, S1 uses the FD algorithm de-
scribed in [5] (in conjunction with a link quality estimator
module that continuously evaluates the network behavior).
Experimental Evaluation. Figure 3 shows the average
leader recovery time Tr and the average mistake rate λu
of S1 as measured in our experiments.3 More precisely, it
gives the values of Tr and λu that we measured when we
run S1 in each of 5 networks with different lossy link chara-
teristics (recall that D is the average message delay and pL
is the probability of message loss). In Figure 4, we show the
leader availability of S1 (and compare it to the one of S2).

We first note that across 5 networks with widely different
behaviors, the values of Tr and λu are remarkably stable.
For example, in a network with an average message delay
of only 0.025 ms and (practically) no message losses, Tr is
0.81 seconds; while in a network with an average message
delay of 100 ms and where 1 message every 10 is lost (on
average), Tr is 0.94 seconds — a very small increase for a
network whose message delays and message losses are or-
ders of magnitude worse than the first one. Similarly, λu
remains close to 6 mistakes per hour in all 5 networks, de-
spite large differences in network behavior.

While this may be surprising at first, it is due to the un-
derlying FD that adapts to changing network behavior in
order to meet a given QoS: in all our experiments this QoS
remains the same. So, intuitively, the FD layer automati-
cally compensates for the differences in network behavior,
and shields the above layers from these differences.

Note that the leader recovery time of S1 is fairly close
to 1 second (across all the 5 networks), and that 1 second is
also the maximum failure detection time that we chose for

3We also show the 95% confidence intervals of Tr and λu.

7



the underlying FD. This is not a coincidence: as we will see
in Section 6.6, the time taken to detect the crash of a leader
is a dominating component of the leader recovery time.

Finally, we note that S1 is unstable: it makes about 6
mistakes every hour. Recall that a mistake occurs when
the service demotes and replaces a functional leader (we
also call this an unjustified demotion). In general such a
mistake occurs if (a) the underlying failure detector erro-
neously suspects that the current leader has crashed, or (b)
the leader election algorithm itself is unstable. In our ex-
periments, the underlying FD never made a mistake4, and
all the unjustified demotions were due to the leader election
algorithm Ωid of S1: about 6 times every hour, a process
with a smaller id than the current leader re-joined the group
(after recovering from a crash) and demoted this leader.

In the next two sections, we describe S2 and S3, two
leader election services that are much more stable than S1.

0.4

0.6

0.8

1.0

1.2

(0.025ms, 0) (10ms, 0.01) (100ms, 0.01) (10ms, 0.1) (100ms, 0.1)

T
r

(s
ec

on
ds

)

S1 �

3 3 3 3
3

2

4

6

8

10

(0.025ms, 0) (10ms, 0.01) (100ms, 0.01) (10ms, 0.1) (100ms, 0.1)

λ
u

(m
is

ta
ke

s/
ho

ur
)

Lossy links (D, pL)

3 3

3

3
3

3 3

3

3
3

Figure 3. S1 in lossy networks

6.3. The Service S2

Description. Roughly speaking, the leader election algo-
rithm of S2, denoted Ωlc, works as follows (a detailed de-
scription appears in [4]). Each process p keeps track of the
last time it was suspected of having crashed, called p’s ac-
cusation time, and p selects its leader among a set of pro-
cesses that is constructed in two stages. In the first stage, p
selects its local leader as the process with the earliest accu-
sation time among the processes that p believes to be alive
(i.e., among the processes from which p recently received
an alive message). In the second stage, p selects its (global)
leader as the local leader with the earliest accusation time
among the local leaders of the processes that p believes to

4This is not surprising since we set the QoS of the FD to make at most
one mistake every 100 days (per monitored process).

be alive. This (local) leader forwarding mechanism makes
the algorithm robust in the face of link failures. In fact, [4]
shows that Ωlc works in a system where every link can be
lossy or permanently crash, except for the outgoing links of
some non-faulty process (these links must be timely).

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

(0.025ms, 0) (10ms, 0.01) (100ms, 0.01) (10ms, 0.1) (100ms, 0.1)

T
r

(s
ec

on
ds

)

S1 � S2×

3 3 3 3
3

× ×

×
× ×

0

2

4

6

8

10

(0.025ms, 0) (10ms, 0.01) (100ms, 0.01) (10ms, 0.1) (100ms, 0.1)

λ
u

(m
is

ta
ke

s/
ho

ur
)

3 3

3
3

3

× × × × ×

0.997

0.998

0.999

1.0

(0.025ms, 0) (10ms, 0.01)(100ms, 0.01) (10ms, 0.1) (100ms, 0.1)

P
le

a
d

e
r

Lossy links (D, pL)

3 3

3

3
3

×
×

×
×

×

Figure 4. S1 and S2 in lossy networks

Experimental Evaluation. We compared S2 to S1 with
the same settings as in the previous experiments (see Fig-
ure 4). First note that, in contrast to S1, S2 was perfectly
stable: in each of the 5 networks considered, λu = 0, i.e.,
no unjustified demotions occurred. This is a remarkable re-
sult given the high rate of failures and recoveries (recall that
each workstation crashes and recovers every 10 minutes on
average) and the very poor quality of the links in some of
the networks considered.

The average leader recovery time of S2, however, is
slightly larger than the one of S1 (this is due to the leader
forwarding mechanism of S2 which slightly delays the de-
motion of a crashed leader). Despite this fact, thanks to its
excellent stability, S2 has a better leader availability than
S1 in all 5 networks. In fact, the availability of S2 is sur-
prisingly high: even when every link drops one message
out of 10 (on average), the average message delay is 100ms,
and every workstation crashes about every 10 minutes, S2

provides a leader 99.82% of the time.

8



With both S1 and S2, however, the number of alive mes-
sages that are periodically exchanged is quadradic with the
number of processes in the group. We now consider a leader
election service with a smaller “message-overhead”.

6.4. The Service S3

Description. The service S3 is based on a leader election al-
gorithm, denoted Ωl, that is communication-efficient: even-
tually only the elected leader transmits alive messages [2].
As with Ωlc, processes select their leader as the process
with the smallest accusation time among a set of processes
that compete for leadership. Communication-efficiency is
achieved by reducing the set of competing processes, as fol-
lows. First, a process p considers that a process q is com-
peting for leadership only if p receives an alive message
directly from q. Second, if p finds that a competing process
q has a smaller accusation time (and hence q is a better can-
didate for leadership than p), p voluntarely drops from the
competition for leadership by stopping to send alive mes-
sages. Note that if p stops sending alive messages, other
processes may think that p crashed, even though this is not
the case. The algorithm includes a mechanism to ensure that
such false suspicions do not increase p’s accusation time.
Experimental Evaluation. We compared S3 to S2 with the
same settings as before. Overall, our experiments showed
that the message-efficient S3 is essentially as good as S2 in
networks with lossy links (see Figure 5).

First, S3 was exceptionally stable: as with S2, in all our
experiments S3 never demoted an operational leader (we do
not show the graph for λu here, since, for all 5 network set-
tings, λu = 0 for both S3 and S2). Second, the average
leader recovery times of S3 and S2 were very similar: they
were both close to the 1 second upper-bound on the time to
detect a crash that we chose for the underlying FD. Third,
even in the worst of all 5 network settings (where each of
the 12 processors crashes every 10 minutes, each of the 132
links loses 1 every 10 messages, and the average message
delay and its standard deviation is 100ms) both services pro-
vide an operational leader at least 99.82 percent of the time.

6.5. Trade-off between S2 and S3

The previous results indicate that in networks with lossy
links, both S2 and S3 behave well. In contrast to S3, how-
ever, the leader election algorithm of S2 was originally de-
signed to tolerate some permanent link crashes in addition
to lossy links, and so S2 is potentially more robust than S3

in extreme network conditions. As we shall see in this sec-
tion, there is indeed a tradeoff between overhead and robust-
ness: our experiments here indicate that while S3 is more
scalable than S2, S2 performs better than S3 in networks
with frequent link crashes.

CPU and bandwidth overhead. The graphs of Figure 6
show the overhead that S2 and S3 impose on the system

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

(0.025ms, 0) (10ms, 0.01) (100ms, 0.01) (10ms, 0.1) (100ms, 0.1)

T
r

(s
ec

on
ds

)

S2× S3 +

× ×

×
× ×

+ +

+

+

+

0.997

0.998

0.999

1.0

(0.025ms, 0) (10ms, 0.01) (100ms, 0.01) (10ms, 0.1) (100ms, 0.1)

P
le

a
d

e
r

Lossy links (D, pL)

×
×

×
×

×
+ +

+
+ +

Figure 5. S2 and S3 in lossy networks

in terms of CPU and network bandwidth usage. Specifi-
cally, they show the overhead that we measured (per work-
station) when we run S2 and S3 on 4, 8 or 12 workstations,
in two very different networks: our (real) local area net-
work, where the average message delay is 0.025 millisecond
and there is practically no message loss, and a (simulated)
network with lossy links, where the average message delay
is 100ms and the probability of message loss is 1/10. In
all cases, the QoS of the underlying FD is set to the usual
default values explained in Section 6.1.

Note that when the number of workstations increases,
the CPU and network utilization of S2 grow more or less
quadratically, but with S3 they grow only linearly. When
the network quality degrades, the overhead of both services
also increases. Overall, we can say that both services are
lightweight in terms of CPU overhead: in the worst-case
here S3 takes less than 0.04% of the CPU, and S2 takes
at most 0.3% of the CPU. In terms of network bandwidth,
in the worst-case S3 generates at most 6.48 KB/second of
message traffic per workstation, while S2 generates 62.38
KB/s per workstation (which is considerably higher but still
reasonable for many networks).

Robustness. We now compare the robustness of S2 and
S3 in particularly chaotic environments. In our experiments,
we run each service on a network of 12 workstations where
(on average): (1) every workstation crashes (and later re-
covers) every 10 minutes, and (2) every link crashes every
10 minutes, every 5 minutes, or every minute, for a duration
of 3 seconds on average after each crash.5 The results are
shown in Figure 7.

5When a link crashes, it completely disconnects the receiver from the
sender (by dropping all the sender’s messages) until the link recovers.

9



0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

4 8 12

av
rg

.C
PU

/w
or

ks
t.

(%
)

S2-(100ms, 0.1) 2 S3-(100ms, 0.1)×
S2-(0.025ms, 0) � S3-(0.025ms, 0) ◦

3

3

3

+ + +2

2

2

e e e

0

10

20

30

40

50

60

70

4 8 12

av
rg

.t
ra

ff
./w

or
ks

t.
(K

B
/s

)

Number of workstations

3 3
3

+ + +
2

2

2

e e e
Figure 6. CPU and bandwidth overhead

First note that in these extreme environments, S2 has a
better leader availability than S3 (see bottom graph). In
fact, S2 is exceptionally robust: even in a network where ev-
ery link crashes and loses all messages for 3 seconds every
60 seconds, and each workstation crashes every 10 minutes,
S2 is able to provide the group with an operational leader
98.78 percent of the time. In this hostile environment, the
leader availability of S3 is “only” 77.42%. In slightly less
demanding settings, namely, when each links crashes about
every 5 minutes, the leader availability of S3 goes up to
97.66% (compared to 99.80% for S2). Note also that S2 has
a smaller average leader recovery time than S3 (see the up-
per graph): This is especially clear in the extreme scenario
where, on average, every link crashes for 3 seconds every
minute: in this case the leader recovery time of S2 is still
close to 1 second, while it grows to about 3 seconds with
S3. Finally, note that both S2 and S3 now have unjustified
demotions (middle graph). This, however, is unavoidable:
in an environment where links lose all messages for about
3 seconds, no FD can detect the crash of processes within 1
second (as we required here) without making mistakes.

6.6. QoS of the FD vs. QoS of S2 and S3

We also run some experiments to investigate how the
QoS of the underlying FD affects the QoS of the leader
election services S2 and S3. In these experiments, shown
in Figure 8, we run S2 and S3 on 12 workstations, each of
which crashes and later recovers once every 10 minutes on
average, and the message delays and losses are those of our
local area network (0.025ms and pL ≈ 0). We vary the up-
per bound TUD on the crash detection time of the underlying
FD from 0.1 second to 1 second (the other QoS parameters
of the FD are set to the default values given in Section 6.1)

0

1

2

3

4

(600s, 3s) (300s, 3s) (60s, 3s)

T
r

(s
ec

on
ds

)

S2× S3 +

× × ×+ +

+

0

100

200

300

400

500

(600s, 3s) (300s, 3s) (60s, 3s)

λ
u

(m
is

ta
ke

s/
ho

ur
)

× ×

×

+
+

+

0.75

0.8

0.85

0.9

0.95

1.0

(600s, 3s) (300s, 3s) (60s, 3s)

P
le

a
d

e
r

Crash-prone links (avrg. uptime, avrg. downtime)

× × ×+ +

+

Figure 7. S2 and S3 with crash-prone links

and see how this affects the QoS of S2 and S3.
As Figure 8 shows, TUD has a direct influence on both

the average leader recovery time Tr and the leader avail-
ability Pleader of both S2 and S3: Roughly speaking, (a) Tr
remains just a bit smaller than TUD , and (b) decreasing TUD
by some amount improves both Tr and Pleader by a propor-
tional amount. This indicates that detection time is a large
component of the leader recovery time, and that one can
effectively control both Tr and Pleader by setting TUD .6

7. Summary and concluding remarks

We evaluated our leader election service under a wide
variety of settings to encompass a large range of possible
applications and networks. In particular, we considered net-
works where the probability of message loss ranges from
(practically) 0 to 1/10 and the average message delay ranges
from 0.025ms to 100ms, as well as networks where commu-
nication links may completely disconnect for some periods

6It should be noted that while decreasing TU
D improves both Tr and

Pleader , this also increases the cost of running the service. But even if we
decrease the failure detection time to a very small value the cost of running
S3 remains low: with TU

D = 0.1 second, S3 took only 0.1% of the CPU
and generated 12.6 KB/s of traffic per workstation; S2 took 1.23 % of the
CPU and generated 135.17 KB/s of traffic per workstation.

10



0.0

0.2

0.4

0.6

0.8

1.0

0.1 0.25 0.5 0.75 1

T
r

(s
ec

on
ds

)

S2× S3 +

×
×

×
×

×

+
+

+

+

+

0.9985

0.9988

0.9991

0.9994

0.9997

1.0

0.1 0.25 0.5 0.75 1

P
le

a
d

e
r

TU
D (seconds)

×
×

× ×

×

+
+

+

+

+

Figure 8. Effect of TUD on the QoS of S2 and S3

of time.
Overall, we found that two versions of the service,

namely, S2 and S3, behave remarkably well in extremely
unfavorable conditions, i.e., in networks with very high pro-
cessor failures and very poor communication links. We be-
lieve that this robustness is due to the combination of leader
election algorithms that were proven to work under weak
systems assumptions [2, 4], with an underlying failure de-
tector algorithm that provides some QoS control [5].

In future work, we will explore the expansion of the
leader election service to very large networks. We first note
that one of our services, namely S3, seems to be inherently
scalable: it is based on a message-efficient leader election
algorithm, and, as Figure 6 indicates, its CPU and network
bandwidth overhead grows quite slowly with the size of the
network. But it may still be too expensive to use S3 directly
to elect a leader among a very large number of processes.
There are at least two possible (orthogonal) approaches to
do this while keeping the costs down. One is to run the
election only among a relatively small number of candidates
(the election results are then propagated to the rest of the ap-
plication processes, who remain passive listeners during the
election). The other is to arrange for hierarchical elections.

We believe that the current versions of the service can
support both approaches. First, the service already allows
each application process in every group g to declare whether
it is a “candidate for leadership” in g, and the service elects
a leader only among the current candidates in g. Second,
the groups semantics can be used to elect a leader at each
level of the election hierarchy by mapping “groups” to lev-
els (group of local leaders, group of regional leaders, etc...).

Finally, it is worth noting that because the architecture
of the leader election service is modular, the service can

be easily “upgraded” by replacing the current failure detec-
tor or leader election algorithms with future state-of-the-art
ones.

References

[1] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. Stable leader election. In proceedings of DISC’01,
pages 108–122. Springer-Verlag, 2001.

[2] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. On implementing Omega with weak reliability
and synchrony assumptions. In proceedings of PODC’03,
pages 306–314. ACM Press, 2003.

[3] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. Communication-efficient leader election and
consensus with limited link synchrony. In proceedings of
PODC’04, pages 328–337. ACM Press, 2004.

[4] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. On implementing Omega with weak reliabil-
ity and synchrony assumptions. Technical Report HAL-
00259018, CNRS - France, November 2007.

[5] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of
service of failure detectors. IEEE Transactions on Comput-
ers, 51(5):561–580, May 2002.

[6] B. Deianov and S. Toueg. Failure detector service for de-
pendable computing. In proceedings of FTCS’00, pages
B14–B15. IEEE computer society press, 2000.

[7] A. Fernandez, E. Jimenez, and M. Raynal. Eventual leader
election with weak assumptions on initial knowledge, com-
munication reliability, and synchrony. In proceedings of
DSN’06, pages 166–178. IEEE Computer Society, 2006.

[8] C. Fetzer and F. Cristian. A highly available local leader
election service. IEEE Transactions on Software Engineer-
ing, 25(5):603–618, 1999.

[9] R. Guerraoui and P. Dutta. Fast indulgent consensus with
zero degradation. In proceedings of EDCC’02, pages 191–
208. Springer-Verlag, 2002.

[10] I. Gupta, R. van Renesse, and K. P. Birman. A proba-
bilistically correct leader election protocol for large groups.
In proceedings of DISC’00, pages 89–103. Springer-Verlag,
2000.

[11] D. Ivan and S. Toueg. An implementation of a shared failure
detector service with QoS. 2001. Private Communication.

[12] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, July 1978.

[13] L. Lamport. The Part-Time parliament. ACM Transactions
on Computer Systems, 16(2):133–169, May 1998.

[14] M. Larrea, A. Fernandez, and S. Arevalo. Optimal imple-
mentation of the weakest failure detector for solving con-
sensus (brief announcement). In proceedings of PODC’00,
page 334. ACM Press, 2000.

[15] D. Malkhi, F. Oprea, and L. Zhou. Omega meets Paxos:
Leader election and stability without eventual timely links.
In proceedings of DISC ’05, pages 199–213. Springer, 2005.

[16] A. Mostéfaoui and M. Raynal. Leader-based consensus.
Parallel Processing Letters, 11(1):95–107, 2001.

[17] R. D. Prisco, B. Lampson, and N. Lynch. Revisiting the
Paxos algorithm. Theoretical Computer Science, 243(1–
2):35–91, 2000.

11


