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Abstract

Approximation algorithms are motivated by the fact that for many important
optimization problems we cannot hope to efficiently find an optimal solution
(unless P=NP). Instead, we have to settle for second best — a solution that
is close to being optimal. A natural question that arises is: how close to the
optimal solution can one get with an efficient algorithm? The past two decades
have seen major progress in answering this question for several fundamental op-
timization problems, including clique, set-cover, and graph coloring. In spite of
this progress, our understanding of approximability for some classes of problems
has remained weak. In this thesis we address several prominent open problems
in the area of approximation algorithms for two such classes, namely machine
scheduling and certain graph problems.

The first part of the thesis is devoted to the study of the classical precedence-
constrained single machine scheduling problem with the weighted sum of com-
pletion times objective. By exploiting the scheduling problem’s relationship to
partial orders and vertex cover, we present a framework that achieves a bet-
ter approximation guarantee as soon as the precedence constraints have low
complexity (i.e. low dimension). We also complement these positive results by
giving the first inapproximability result for the scheduling problem together with
evidences that the various 2-approximation algorithms might be tight.

In the second part, we focus on the uniform sparsest cut and optimal linear
arrangement graph problems. These classical graph problems are typical cases
of problems for which neither a hardness of approximation result, nor a ‘good’
approximation algorithm exists. We use a recent so-called Quasi-random PCP
construction to give the first hardness of approximation results for these prob-
lems that rule out the existence of a polynomial time approximation scheme for
each of these problems.

We conclude the thesis by considering two notorious scheduling problems
in shop environments, namely the job shop problem together with the more
restricted flow shop problem. We close a major open problem in scheduling
theory by providing stronger inapproximability results for these problems. More
precisely, we give a gap-preserving reduction from graph coloring that gives an
inapproximability result that matches the best known approximation algorithm
for the general version of flow shops, where jobs are not required to be processed
on each machine. Our result is also tight for the more general acyclic job shop
problem and gives the first non-constant hardness of approximation result for
the job shop problem.
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Chapter 1

Introduction

Picture yourself in the following situation. You and your rivals are competing
for the precious prize of one million dollars. A big bowl full of coins is presented
for exactly one minute, and the winner will be selected according to who gives
the closest estimate of the number of coins. As the bowl is presented during
only one minute, you do not have enough time to count each coin. Instead, you
have to give a qualified guess — an approximation — of the number of coins. In
order to win, it is crucial to give a good approximation. For example, if the bowl
contains 1000 coins and you give a factor 3 approximation (you guess that the
bowl contains 3 · 1000 coins), then the risk that one of your rivals gives a better
approximation is overwhelming.

In computer science we face a similar dilemma. Many of the computational
problems that arise in practice are NP-hard optimization problems. Assuming
P6=NP1, the NP-hardness of an optimization problem says that there is no effi-
cient (polynomial time) algorithm that finds an optimal solution. Instead, one
can only hope to efficiently find a good approximate solution — one that is not
optimal, but is within a small factor away from optimal. A natural question
that arises is how close to the optimal solution one can get with an efficient
algorithm. In this thesis we address this question for some classical scheduling
problems and the notorious uniform sparsest cut and optimal linear arrangement
graph problems.

After briefly describing the methodology for analyzing the approximability of
NP-hard optimization problems, we give an overview of our results followed by
a short outline of this thesis.

1Whether P=NP or P6=NP is regarded as one of the most important open problems in mathe-
matics and theoretical computer science; its resolution is worth one million dollars! Informally,
it is the question whether it is easier to verify a solution than finding one. Most people believe
that the latter is harder than the former, i.e., P6=NP.

1



2 1.1 Approximability of NP-hard Optimization Problems

1.1 Approximability of NP-hard Optimization Problems
In the field of approximation theory we are interested in understanding the ap-
proximability of NP-hard optimization problems. More precisely, given an NP-
hard optimization problem, we would like to, on the one hand, provide an effi-
cient (polynomial time) algorithm that is guaranteed to find a solution within a
small factor β of optimal. We refer to such an algorithm as a β-approximation
algorithm. On the other hand, we would like to know our limits by giving a
so-called inapproximability or hardness of approximation result. This is a result
stating that the problem is not efficiently approximable within some factor α. In-
variably, such a result is based on a plausible complexity theoretic assumption,
the weakest possible being P 6= NP since if P=NP, all considered problems can be
solved to optimality efficiently (in polynomial time).

The ultimate goal is to have a tight result, i.e., a result so that the bound β
given by the best approximation algorithm matches the bound α given by the
strongest inapproximability result. When this is the case, we fully understand
the approximability of the addressed problem.

The motivation for the first type of results, also called positive results, is obvi-
ous: since we cannot hope to find an exact solution efficiently for all instances of
our problem (unless P=NP) we have to settle for second best — a solution that
is close to optimal. The second type of results, also called negative results, might
seem harder to motivate. Why are we interested in knowing that we cannot
efficiently find a good solution? There are many answers to this question. Here,
we include three that we find especially convincing.

1. A negative result that matches the best known positive result prevents
hours of hard (fruitless) work trying to improve on the positive result.

2. A negative result often gives insights as to what is precisely the difficulty
of the addressed problem. After identifying that difficulty, we can restrict
our attention to an easier but often relevant “sub”-problem that allows for
better approximation.

3. Establishing that a problem is hard can have unexpected and useful con-
sequences. For example, cryptography is based on the hardness of some
problems.

As described above, the process of determining the approximability of an
NP-hard optimization problem involves both positive and negative results. One
of the first positive results can be traced back to 1966, when Graham [Gra66]
analyzed a simple procedure, called list scheduling, for one of the most basic
scheduling problems: minimizing makespan in an identical parallel machine



3 1.2 Motivation of this Thesis

environment. Since then a large amount of work has been devoted to finding
efficient approximation algorithms for a variety of optimization problems (see
e.g. [ACG+99] and [Vaz01]). Nevertheless, our understanding of their approx-
imability has, until recently, been impeded by the lack of techniques for proving
negative results.

A turning point was the discovery of the now famous PCP Theorem [ALM+98;
AS98] and its connection to negative results [FGL+96]. The PCP Theorem has
had a similar impact on the theory of approximation as the establishment of
a natural NP-hard problem had for analyzing exact problems [Coo71; Kar72].
Indeed, this theorem implies that the fundamental optimization problem MAX-
3SAT is NP-hard to approximate within a small constant factor. Once this was es-
tablished, negative results were subsequently obtained by “translating” the hard-
ness of MAX-3SAT to other problems. In particular, negative results that match
the best known positive results have been obtained for several fundamental NP-
hard optimization problems, including MAX-3SAT [Hås01], set cover [Fei98],
clique [Hås99], and graph coloring [FK98].

1.2 Motivation of this Thesis

Despite our increased understanding of the approximability of NP-hard opti-
mization problems, today’s techniques seem insufficient for obtaining tight or
even nearly tight results for some classes of problems. Scheduling problems form
one of those classes, where tight results are regarded as exceptional. In [SW99],
Woeginger & Schuurman highlighted this point by listing ten of “the most out-
standing open problems in the approximation of scheduling problems”. Under-
standing their approximability is not only interesting from a theoretical point of
view, it is also motivated by the fact that these classical scheduling problems arise
frequently when analyzing more complex problems that occur in practice. Ex-
amples include problems from traffic planning, manufacturing, transportation,
packet routing, etc.

The objective of this thesis is to improve our understanding of the approx-
imability of these scheduling problems. While addressing these scheduling prob-
lems, we discovered a connection to a graph problem called maximum edge bi-
clique. Interestingly, this graph problem is part of another class of problems,
formed by graph problems that have a similar status as the scheduling prob-
lems, i.e., their approximability is not well understood. Other graph problems
in this class include the notorious sparsest cut problem and the optimal linear
arrangement problem. As these problems often appear as “sub”-problems when
analyzing other problems, understanding their approximability is another major
open problem in the theory of approximation (see e.g. [Vaz01; Tre04; DKSV06]).



4 1.3 Overview of our Contributions

1.3 Overview of our Contributions
The main contributions of this thesis regard three classical scheduling problems
together with the uniform sparsest cut and optimal linear arrangement graph
problems.

Single Machine Scheduling with Precedence Constraints

In Chapter 3, we study the classic precedence-constrained single machine schedul-
ing problem with the weighted sum of completion times objective. Improving on
the various known 2-approximation algorithms (or proving that none exists) is
considered one of the most prominent open problems in scheduling theory (see
e.g. “Open Problem 9” in [SW99]).

By exploiting the scheduling problem’s relationship to partial orders and its
close relationship to vertex cover [CS05; AM09], we present a framework that
achieves a better approximation guarantee as soon as the precedence constraints
have low complexity, where the complexity of the precedence constraints are
measured by their dimension. This general framework gives the best known
approximation ratios for all considered special cases of precedence constraints.

We also establish a connection between the scheduling problem and a graph
problem called maximum edge biclique. This connection allows us to present
the first hardness of approximation result for the scheduling problem. More pre-
cisely, we rule out the possibility of having an arbitrarily good approximation
algorithm — a polynomial time approximation scheme (PTAS2) — for the ad-
dressed problem. Finally, we show that if we disregard the so-called “fixed-cost”
always present in a feasible schedule, then the addressed scheduling problem
is as hard to approximate as vertex cover. This gives further evidence that the
various 2-approximation algorithms might be tight, since vertex cover is strongly
conjectured to be NP-hard to approximate within a factor (2−ε) for any constant
ε > 0.

Maximum Edge Biclique, Optimal Linear Arrangement, and Sparsest Cut

Motivated by the connection to precedence-constrained single machine schedul-
ing, we focus in Chapter 4 on the approximability of maximum edge biclique and
the two related optimal linear arrangement and sparsest cut graph problems.

Optimal linear arrangement and (uniform) sparsest cut are typical cases of
classical graph problems for which we have neither a hardness of approximation
result, nor a ‘good’ approximation algorithm (they all have a worse than con-
stant approximation guarantee). We give the first hardness of approximation re-

2For a formal definition of a PTAS, we refer the reader to Section 2.1.
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sults for these problems by showing that they have no PTAS, unless NP-complete
problems can be solved in randomized subexponential time. Our results use
the recent Quasi-random PCP construction of Khot, who proved important in-
approximability results for graph min-bisection, densest subgraph, and bipar-
tite clique [Kho06]. The Quasi-random PCP construction, or even the stronger
average-case assumptions recently used by Feige [Fei02], was not known to gen-
eralize to the uniform sparsest cut problem and the optimal linear arrangement
problem (see e.g. [Tre04]) prior to this work.

Job and Flow Shops

Finally in Chapter 5, we consider two scheduling problems in shop environ-
ments, namely the classical job shop problem and the more restricted flow shop
problem. The study of these problems can be traced back to the late 50’s and is
motivated by several natural applications, including packet routing and multi-
stage production optimization. Even though the best approximation algorithms
for both problems have worse than logarithmic performance guarantee, the only
previously known inapproximability result says that they are NP-hard to approx-
imate within a factor less than 5/4 [WHH+97].

For job shops, we provide stronger inapproximability results. We show that it
is NP-hard to approximate job shops within any constant factor. Moreover, under
a stronger assumption, we obtain a hardness result that matches (up to smaller
terms) the best known approximation algorithm for acyclic job shops. When
the number of machines and the number of operations per job are assumed to
be constant the job shop problem is known to admit a PTAS [JSOS03]. We
conclude by showing that both these restrictions are indeed necessary to obtain
a PTAS.

Our inapproximability results for job shops do not apply to flow shops, whose
approximability remains poorly understood. The current algorithm of choice
for flow shops is Feige & Scheideler’s approximation algorithm for acyclic job
shops [FS02] which (roughly) guarantees a schedule with makespan at most a
logarithmic factor away from a trivial lower bound on the optimal makespan.
As flow shops are more structured than acyclic job shops, they raised as an
open question if the approximation guarantee for flow shop scheduling can be
improved significantly. We resolve this question (negatively) by providing flow
shop instances with optimal makespan a logarithmic factor away from the trivial
lower bound used by Feige & Scheideler [FS02]. By combining these new gap
instances with our techniques for proving hardness of approximation for job
shops, we also show that the current approximation algorithm is tight (up to
smaller terms) for the more general variant of the flow shop problem, where
jobs are not required to be processed on each machine.



6 1.4 How to Read this Thesis

1.4 How to Read this Thesis
In Chapter 2, we introduce the basic definitions and methods used when analyz-
ing the approximability of NP-hard optimization problems. For other essential
definitions regarding graphs, optimization problems, and complexity classes, we
refer the reader to Appendix A, where we also give pointers to useful references.

In Chapters 3, 4 and 5, we present the contributions of this thesis. Each of
these chapters starts with the definition(s) of the addressed problem(s), a review
of the relevant literature, followed by a statement of the contributions together
with an overview of the proof techniques. The formal proofs are given in the
main body of the chapter. We have made an effort to present the proofs in order
of increasing difficulty, with the hope that the reader will become familiar with
the basic intuitions, before advancing to the more involved proofs. The main
implications are then summarized in the chapter specific conclusions, where we
also list some of our favorite open problems. In summary, these chapters are
designed to be self-contained to allow the reader to jump directly to the part of
most interest.

In the last part of this thesis, we discuss the contributions in a wider context
together with future research directions we find interesting.



Chapter 2

Approximation: Coping with
NP-Hardness

When confronted with an NP-hard optimization problem, we cannot hope to
solve all instances to optimality in polynomial time. Instead we can hope to
efficiently find an approximate solution – one that is not optimal, but is within
a factor α of optimal. To understand how close to the optimal solution we can
get in polynomial time, we need to provide both so-called positive and negative
results. In Sections 2.1 and 2.2, we review some of the basic definitions and
methods regarding positive and negative results.

2.1 Positive Results — Approximation Algorithms

We assume some familiarity with optimization problems, see e.g. [Vaz01] for
an introduction. Let Π be an optimization problem. Given an instance I of
Π, we let OPT (I) denote the value of an optimal solution to instance I . We
denote the value of another solution S to instance I by val(S). For the considered
optimization problems we have that both OPT (I) and val(S) are strictly positive.
We say that S is an α-approximate solution to I if

val(S)
OPT (I)

≤ α if Π is a minimization problem;

val(S)
OPT (I)

≥ α if Π is a maximization problem.

An algorithmA is said to be an α-approximation algorithm for Π if, on each
instance, A produces an α-approximate solution, and the running time of A
is bounded by a polynomial in the instance size. The factor α is called the

7



8 2.1 Positive Results — Approximation Algorithms

(worst-case) performance guarantee, approximation ratio or factor of the algo-
rithm. Note that the performance guarantee is at least 1 and at most 1 for
minimization problems and maximization problems, respectively; an algorithm
with performance guarantee 1 always finds an optimal solution.

Some NP-hard optimization problems allow approximability to any desired
degree. Formally, we say that an algorithmA is a polynomial time approximation
scheme (PTAS) for a minimization problem Π if, on each instance and for each
fixed ε > 0,A produces an (1+ε)-approximate solution and the running time of
A , for a fixed ε, is bounded by a polynomial in the instance size. Note that the
definition above allows the running time of the algorithm to depend arbitrarily
on ε. If the running time of A is bounded by a polynomial in the instance size
and 1/ε, then we say that A is a fully polynomial time approximation scheme
(FPTAS) for problem Π. For example, on the one hand ifA runs in time O(n1/ε)
on an instance of size n thenA is a PTAS but not an FPTAS. On the other hand,
ifA runs in time O

�

n4(1/ε)100� thenA is an FPTAS.
The definitions of PTAS and FPTAS for maximization problems are obtained

by substituting (1+ ε) with (1− ε), 0< ε < 1, in the above definitions.

2.1.1 Analyzing the Performance Guarantee

Consider a minimization problem Π. In order to establish the performance guar-
antee of an approximation algorithmA for Π, the cost of the solution produced
by A , on an instance I , needs to be compared with the value of an optimal so-
lution, i.e., OPT (I). However, calculating OPT (I) is NP-hard for problems that
we are interested in approximating. Instead, we have to settle for a lower bound
LB(I) on OPT (I) 1. The performance guarantee of A can then be measured
with respect to LB(I). It follows that A is an α-approximation algorithm if, on
each instance I ,A produces a solution S so that

val(S)
OPT (I)

≤
val(S)
LB(I)

≤ α.

As the analyzed performance guarantee will depend on LB(I), the task of
achieving a good lower bound on the value of an optimal solution is crucial in
the design of approximation algorithms. A powerful and popular method for this
purpose, that we use in Chapter 3 and give an example of in the next section, is
to first state the addressed problem as an integer program and then lower bound
the value of an optimal solution, by solving the linear relaxation of this program.

1The issue described here also arises when considering a maximization problem. In that
case, we need an upper bound on the value of an optimal solution to be able to analyze the
performance guarantee of an approximation algorithm.
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2.1.2 An Example of a Positive Result

As an example of a positive result we present the famous 2-approximation al-
gorithm for minimum weighted vertex cover using linear programming. In the
weighted vertex cover problem we are given a graph G = (V, E) where each
vertex v ∈ V has a nonnegative weight wv. A vertex cover is a subset V ′ ⊆ V
of vertices so that for each edge {u, v} ∈ E, at least one of u and v belongs to
V ′. Minimum weighted vertex cover is then the problem of finding a vertex cover
V ′ ⊆ V so as to minimize w(V ′) =

∑

v∈V ′ wv. See Figure 2.1 for a small example.

7108

10

Figure 2.1: An example of a small weighted vertex cover instance. The vertices
depicted in gray form a minimum vertex cover of value 20.

In 1973, Nemhauser & Trotter [NT73; NT75] used the following integer
program to model the weighted vertex cover problem:

[VC-IP] minimize
∑

v∈V

wv xv

subject to xu+ xv ≥ 1 {u, v} ∈ E, (2.1)

xv ∈ {0, 1} v ∈ V.

It is not hard to see that the above integer program is equivalent to the weighted
vertex cover problem. On the one hand, given a weighted vertex cover solution
V ′ ⊆ V we can define a feasible solution x∗ to [VC-IP] with the same cost by
setting x∗v = 1 if and only if v ∈ V ′. On the other hand, given a solution x∗

to [VC-IP], the set V ′ = {v : x∗v = 1} is a feasible vertex cover with w(V ′) =
∑

v∈V wv x∗v . As [VC-IP] exactly models the weighted vertex cover problem, it
is NP-hard and we cannot hope to find an optimal solution in polynomial time.
Instead, we can relax the integrality constraint to obtain a linear program that
can be solved in polynomial time.

The linear programming relaxation [VC-LP] of [VC-IP] is the linear program
with the same objective and constraints as [VC-IP] with the exception that the
integrality is relaxed, i.e., the constraint xv ∈ {0,1} is replaced by the constraint
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0 ≤ xv ≤ 1. The linear program [VC-LP] is a relaxation of [VC-IP] (and the
vertex cover problem) since each feasible solution to [VC-IP] is also a solution
to [VC-LP], but the reverse is not true: setting all variables to 1/2 is a feasible
solution to [VC-LP] but not to [VC-IP].

However, we can obtain an approximate solution to [VC-IP] (and weighted
vertex cover) by the following procedure.

1. Find an optimal solution x LP to [VC-LP] in polynomial time.

2. Round x LP to obtain a solution x∗ to [VC-IP]. More specifically, set x∗v to
one if x LP

v ≥ 1/2, and to zero otherwise.

To show that the above procedure gives a 2-approximation algorithm for the
weighted vertex cover problem, we need to prove that x∗ is indeed a feasible
solution to [VC-IP] and that

∑

v∈V wv x∗v ≤ 2 ·OPT , where OPT is the value of an
optimal solution to [VC-IP]. That x∗ is binary is clear from the rounding. Now
suppose toward contradiction that one of the constraints (2.1) is violated. Then
there are two adjacent vertices u and v of G such that x∗u = 0 and x∗v = 0. By the
way we rounded the solution this implies that x LP

u < 1/2 and x LP
v < 1/2 which

contradicts the feasibility of x LP , because the constraint xu + xv ≥ 1 would be
violated. Hence, x∗ is a feasible solution to [VC-IP].

As [VC-LP] is a relaxation of [VC-IP], the solution x LP is a lower bound on
OPT . The performance guarantee of 2 now follows from

∑

v∈V

wv x∗v ≤ 2 ·
∑

v∈V

wv x LP
v ≤ 2 ·OPT,

where the first inequality holds since for each v ∈ V we have x∗v ≤ 2 · x LP
v .

2.2 Negative Results — Hardness of Approximation
A negative result (also called hardness of approximation or inapproximability re-
sult) is a result that states that a problem has no approximation algorithm with
performance guarantee α. These results are invariably based on plausible com-
plexity theoretic assumptions, the weakest possible being P 6=NP since if P=NP,
all considered problems can be solved exactly in polynomial time. For a list of
complexity classes used in the assumptions in this thesis see Appendix A.3.

2.2.1 Gap-Introducing and Gap-Preserving Reductions

We start by recalling the methodology for establishing that an exact optimiza-
tion problem is NP-hard. Suppose we would like to prove that it is NP-hard to
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compute an optimal solution to a maximization problem ΠMAX . The traditional
way to do so is to first select an NP-complete decision problem, say satisfiability
(SAT), and then provide a polynomial time reduction from SAT to ΠMAX . The
reduction maps an instance φ of SAT to an instance I of ΠMAX so that

• (Completeness) if φ is satisfiable then OPT (I)≥ f (I), and

• (Soundness) if φ is not satisfiable then OPT (I)< f (I),

where f is a function that comes with the reduction and has the instance as
argument. Note that such a reduction does not yield any inapproximability re-
sult: it only says that it is hard to find an optimal solution but it leaves open the
possibility to find a solution arbitrarily close to the optimal, i.e., a solution with
value (1− ε) ·OPT (I) for an arbitrarily small ε > 0.

Instead, we need more powerful reductions to establish hardness of approx-
imation results. There are mainly two types of such reductions: gap-introducing
and gap-preserving reductions.

Gap-Introducing Reductions

The formal definition of a gap-introducing reduction differs slightly for maxi-
mization and minimization problems. We give the definition for maximization
problems; the definition for minimization problems is similar and left to the
reader. A gap-introducing reduction from SAT to a maximization problem ΠMAX

comes with an additional function α (apart from f also present in the exact
reduction presented above). Given an instance φ of SAT, it computes, in polyno-
mial time, an instance I of ΠMAX of size n, such that

• (Completeness) if φ is satisfiable then OPT (I)≥ f (I), and

• (Soundness) if φ is not satisfiable then OPT (I)< α(n) · f (I).

Notice that α is a function of the instance size and since ΠMAX is a maximization
problem α(n)≤ 1. Moreover, from the gap-introducing reduction above, it is not
hard to conclude that Πmax has no α(n)-approximation algorithm on an instance
of size n, unless P=NP (see Corollary 2.2.2 for an example).

Any hardness of approximation result is ultimately based on a gap-introducing
reduction. For many years there was limited progress in analyzing the approx-
imability of NP-hard optimization problems, due to the lack of “good” gap-
introducing reductions. A major breakthrough was the discovery of the PCP
Theorem [AS98; ALM+98] and its connection to inapproximability [FGL+96].
The PCP Theorem can be seen as a (very complicated) gap-introducing reduc-
tion stated as follows:
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Theorem 2.2.1 There is a constant ε > 0 and a polynomial time reduction that
takes as input an instance φ of SAT and outputs an instance ψ of MAX-3SAT2 with
m clauses so that

• (Completeness) if φ is satisfiable then OPT (ψ) = m, and

• (Soundness) if φ is not satisfiable then OPT (ψ)< (1− ε)m.

Note that the reduction introduces a gap of factor (1− ε) in the number of
ψ’s clauses an optimal assignment satisfies, depending on whether the original
SAT formula φ was satisfiable. As a direct consequence, we have the following
corollary.

Corollary 2.2.2 There is no (1− ε)-approximation algorithm for MAX-3SAT, un-
less P=NP.

Proof. Suppose MAX-3SAT has an (1− ε)-approximation algorithmA . We will
show that A solves SAT in polynomial time. Given an instance φ of SAT we
apply the reduction given in Theorem 2.2.1 to obtain an instance ψ of MAX-
3SAT. Let val(S) be the value of the solution S returned by A on instance ψ.
Then we have the following:

• if φ is satisfiable then val(S)≥ (1− ε) ·OPT (ψ)≥ (1− ε) ·m, and

• if φ is not satisfiable then val(S)≤ OPT (ψ)< (1− ε)m.

We can thus use A to distinguish between satisfiable and unsatisfiable SAT
instances. It follows that no such approximation algorithm exists, unless P=NP.
�

Gap-Preserving Reductions

The negative results in this thesis are obtained by so called gap-preserving re-
ductions. The idea is as follows. Once we have obtained a hardness result for
an optimization problem, as we did in the previous section for MAX-3SAT, we
can prove a hardness result for another optimization problem Π, by giving a
special reduction, called gap-preserving reduction, from MAX-3SAT to Π so that
the hardness (gap) of MAX-3SAT translates to a (potentially different) gap for
Π.

The formal definition is slightly different for maximization and minimization
problems. We present the formal definition, as given in [Vaz01], for the case

2Recall that MAX-3SAT is the following problem: given a 3-CNF formula ψ (i.e. with at most
3 literals per clause), find an assignment that satisfies the largest number of clauses.
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when one reduces from a maximization problem Π1 to a minimization problem
Π2. The three remaining cases where Π1 and Π2 are maximization or mini-
mization problems are similar and left to the reader. To clarify the concept of
gap-preserving reductions we also present a simple example in Section 2.2.2.

A gap-preserving reduction, from a maximization problem Π1 to a minimiza-
tion problemΠ2, comes with four parameters (functions), f1, α, f2, and β . Given
an instance I1 of Π1 of size n1, it computes, in polynomial time, an instance I2

of Π2 of size n2 such that

• (Completeness) if OPT (I1)≥ f1(I1) then OPT (I2)≤ f2(I2),

• (Soundness) if OPT (I1)< α(n1) f1(I1) then OPT (I2)> β(n2) f2(I2).

In keeping with the fact that Π1 is a maximization problem and Π2 is a minimiza-
tion problem, α(n1) ≤ 1 and β(n2) ≥ 1. Furthermore, by a similar argument as
in the proof of Corollary 2.2.2, if it is NP-hard to distinguish between the bounds,
in the completeness case and soundness case, on the value of an optimal solu-
tion to the instance of Π1, then there is no β(n2)-approximation algorithm for
problem Π2 on instances of size n2, unless P=NP.

2.2.2 An Example of a Negative Result

As an example of a gap-preserving reduction we reduce MAX-3SAT to the (un-
weighted) vertex cover problem (see Section 2.1.2 for a definition). We remark
that this is a classical example and can also be found, for example, in the book
by Vazirani [Vaz01].

Given an instance φ of MAX-3SAT with m clauses we construct a vertex cover
instance G with 3m vertices so that

• (Completeness) if OPT (φ)≥ m then OPT (G)≤ 2 ·m,

• (Soundness) if OPT (φ)< (1− ε)m then OPT (G)> (2+ ε) ·m.

As Theorem 2.2.1 says that there is a constant ε > 0 so that it is NP-hard
to distinguish whether OPT (φ) = m or OPT (φ) = (1 − ε)m, the reduction
presented here implies that there is no approximation algorithm for the vertex
cover problem with performance guarantee (2+ε)/2= 1+ε/2, unless P 6= N P.
We start by presenting the construction of the vertex cover instance followed by
the completeness and soundness analysis.
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Construction

Given an instance φ of MAX -3SAT with m clauses C1, . . . , Cm, we construct a
vertex cover instance G = (V, E) as follows (see Figure 2.2 for a small example).
Corresponding to each clause of φ, G has a clique3 of three vertices, one vertex
for each literal in the clause. Hence |V |= 3m. The final graph G is then obtained
by adding edges between any two vertices corresponding to literals that are
negations of each other. The intuition behind the construction is that each vertex
cover defines a partial truth assignment: each literal that corresponds to a vertex
not in the vertex cover is set to be true. The value of a minimal vertex cover
can then be seen to be the number of clauses satisfied by the (partial) truth
assignment subtracted from |V |.

φ = (¬x ∨ y ∨ z) ∧ (x ∨ y ∨ ¬z)

¬x

y z

x

¬zy

G =

Figure 2.2: An example of the graph G constructed from φ.

Completeness and Soundness.

A subset I ⊆ V of the vertices is called an independent set if no two vertices in I
are adjacent. It is easy to see that vertex covers and independent sets are com-
plements of each other, i.e., if I ⊆ V is an independent set then V \ I is a vertex
cover, and vice versa, if V C ⊆ V is a vertex cover then V \ V C is an indepen-
dent set. We claim that the size of the maximum independent set of G is exactly
OPT (φ). In the completeness case consider an optimal truth assignment and
pick one vertex, corresponding to a satisfied literal, from each satisfied clause.
Clearly, the picked vertices form an independent set. Conversely, in the sound-
ness case, consider an independent set I in G, and set the literals corresponding
to its vertices to be true. Any extension of this truth setting to all variables will
satisfy at least |I | clauses. As the graph has 3m vertices and the complement of
an independent set forms a vertex cover, we have that in the completeness case,
G has a vertex cover of size

3m−OPT (φ)
︸ ︷︷ ︸

=m

= 2 ·m

3A clique is a set of pairwise adjacent vertices.
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whereas in the soundness case, any vertex cover must have size

3m−OPT (φ)
︸ ︷︷ ︸

≤(1−ε)m

≥ (2+ ε)m,

for some ε > 0.
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Chapter 3

Single Machine Scheduling with
Precedence Constraints

3.1 Introduction

We consider the classic precedence-constrained single machine scheduling prob-
lem with the weighted sum of completion times objective. In the notation
of Graham et al. [GLLK79], the problem is known as 1|prec|

∑

w jC j. A set
N = {1, . . . , n} of jobs are to be scheduled, without interruptions, on a single
machine that can process at most one job at a time. Each job j has a process-
ing time p j and a weight w j, where p j and w j are non-negative rationals. The
precedence constraints are specified in the form of a partially ordered set (poset)
P = (N , P), consisting of the set of jobs N and a partial order i.e. a reflexive,
antisymmetric, and transitive binary relation P on N , where (i, j) ∈ P (i 6= j)
implies that job i must be completed before job j can be started. The goal is
to find a feasible schedule, i.e., a total ordering L of the jobs with P ⊆ L, so
as to minimize

∑n
j=1 w jC j, where C j is the time at which job j completes in the

schedule. By rewriting the objective function we can divide it into a variable-cost
and a fixed-cost:

n
∑

j=1

w jC j =
n
∑

j=1

w j



p j +
∑

(i, j)∈L

pi



=
∑

(i, j)∈L\P

piw j

︸ ︷︷ ︸

variable-cost

+
∑

(i, j)∈P

piw j +
n
∑

i=1

piwi

︸ ︷︷ ︸

fixed-cost

.

We note that the fixed-cost is only dependent on the instance and is present in
all feasible schedules, whereas the variable-cost depends on the solution. As
a result, finding a schedule that minimizes

∑

w jC j is equivalent to finding a
schedule that minimizes the variable-cost. However, as the fixed-cost can always

17
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1 2 3

4 5

p4 = 2 p5 = 1

p1 = 3 p3 = 3p2 = 4

Job 1 must be
scheduled before 4

Scheduling Instance (all jobs have unit weight)

Note that the instance
has fixed-cost 27

2

5

1

3

4 An optimal schedule with value∑
Cj = 14︸︷︷︸

variable-cost

+ 27︸︷︷︸
fixed-cost

1

2

3

4

5 A feasible schedule with value∑
Cj = 18︸︷︷︸

variable-cost

+ 27︸︷︷︸
fixed-cost

Note that it is a 45
41 -approximate

solution to the scheduling
problem and a 18

14 -approximate
solution to the variable-cost.

Figure 3.1: On the top we give an example instance of 1|prec|
∑

w jC j (where all
jobs have unit weight). An optimal schedule of this instance is depicted on the
left and an approximate solution on the right. Note that the fixed-cost improves
the approximation ratio: 45/41< 18/14.

be included in a lower bound on the value of an optimal schedule, it might help
to improve the analysis of approximation algorithms. See Figure 3.1 for an
example.

3.1.1 Literature Review

For the general version of 1|prec |
∑

w jC j, closing the approximability gap is
considered an outstanding open problem in scheduling theory (see e.g. “Open
Problem 9” in [SW99]). It was shown to be strongly NP-hard in 1978 by Lawler
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[Law78] and Lenstra & Rinnooy Kan [LK78]. While no inapproximability re-
sults were known (other than that the problem does not admit a fully poly-
nomial approximation scheme), several 2-approximation algorithms have been
proposed [Pis92; Sch96; HSSW97; CM99; CH99; MQW03; Pis03].

Schulz [Sch96] gave 2-approximation algorithms using linear programming
relaxations1. Chudak & Hochbaum [CH99] gave another algorithm based on
a linear programming relaxation with two variables per constraint. Further-
more, they showed that their linear programming relaxation can be solved using
one min-cut computation, making their algorithm combinatorial. Independently,
Chekuri & Motwani [CM99] and Margot, Queyranne & Wang [MQW03], pro-
vided identical, simple combinatorial 2-approximation algorithms based on Sid-
ney’s decomposition theorem [Sid75] from 1975.

A Sidney decomposition partitions the set N of jobs into sets S1, S2, . . . , Sk,
such that there exists an optimal schedule where jobs from Si are processed
before jobs from Si+1, for any i = 1, . . . , k − 1. Lawler [Law78] showed that
a Sidney decomposition can be computed in polynomial time by performing
a sequence of min-cut computations. Chekuri & Motwani [CM99] and Mar-
got, Queyranne & Wang [MQW03] proved that every schedule that complies
with a Sidney decomposition is a 2-approximate solution. It turns out that the
fixed-cost is crucial for this analysis: a schedule that complies with a Sidney
decomposition is not necessarily a 2-approximate solution if we only consider
the variable-cost [Uha08]. Correa & Schulz [CS05] showed that all known
2-approximation algorithms follow a Sidney decomposition, and therefore be-
long to the class of approximation algorithms described by Chekuri & Mot-
wani [CM99] and Margot, Queyranne & Wang [MQW03]. Recently, Schulz &
Uhan [SU08] showed for a large class of random generated instances that al-
most all instances are not Sidney decomposable. Hence, for almost all of those
instances, any feasible schedule is a 2-approximation. They actually proved the
stronger statement that for almost all randomly generated instances, all feasible
schedules are arbitrarily close to optimal.

Due to the difficulty of obtaining better than 2-approximation algorithms
for the general case, it is interesting to understand for which special cases one
can achieve a better performance guarantee. A particular successful and popu-
lar approach has been to consider special cases of precedence constraints. In-
deed, Smith [Smi56] showed already in 1956 that, in the absence of precedence
constraints, an optimal solution can be found by sequencing the jobs in non-
increasing order of the ratio wi/pi. Later, several other results for special classes

1This work later appeared in a joint journal version [HSSW97] together with the work of
Hall, Shmoys, & Stein [HSW96], who used linear programming relaxations to give a constant
factor (4+ ε)-approximation algorithm for 1|prec|

∑

w jC j .
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of precedence constraints were proposed (see [LLKS93] for a survey), most no-
tably, Lawler’s [Law78] O(n log n) time algorithm for series-parallel precedence
constraints. Goemans & Williamson [GW00] provided a nice alternative proof
for the correctness of this algorithm by using the two-dimensional Gantt charts
of Eastman et al. [EEI64]. For interval orders and convex bipartite precedence
constraints, Woeginger [Woe03] gave approximation algorithms with an approx-
imation ratio arbitrarily close to the golden ratio 1

2
(1+

p
5) ≈ 1.61803. Using a

similar approach, Kolliopoulos and Steiner [KS02] gave an approximation algo-
rithm with the same performance guarantee (≈ 1.61803) for the special case of
two-dimensional precedence constraints.

Recently, Ambühl & Mastrolilli [AM09] settled an open problem first raised
by Chudak & Hochbaum [CH99] and whose answer was subsequently conjec-
tured by Correa & Schulz [CS05]. As showed by Correa & Schulz, the settlement
of this conjecture has several interesting consequences for 1|prec|

∑

w jC j. The
results in [CS05; AM09] imply the existence of an exact polynomial time algo-
rithm for the special case of two-dimensional precedence constraints, improving
on previously known approximation algorithms [KS02; CS05], and generalizing
Lawler’s exact algorithm for series-parallel orders [Law78].

The most significant implication of [CS05; AM09] is that 1|prec |
∑

w jC j is
in fact a special case of the weighted vertex cover problem. More precisely, they
proved that every instance S of 1|prec |

∑

w jC j can be translated in polynomial
time into a weighted graph GS

P (see Section 3.3 for details), such that finding
an optimum of the variable-cost of S can be reduced to finding a minimum ver-
tex cover in GS

P . This result even holds for approximate solutions: finding an
α-approximate solution for the variable-cost of S can be reduced to finding an
α-approximate vertex cover in GS

P . By using this relationship several previous re-
sults for the scheduling problem can be explained, and in some cases improved,
by means of the vertex cover theory. In particular, as vertex cover can be approx-
imated within a factor of 2, it follows that the variable-cost of the scheduling
problem can be approximated within a factor of 2.

3.1.2 Results and Overview of Techniques

The vertex cover problem is one of the best studied problems in theoretical com-
puter science. There are several 2-approximation algorithms (see [Pas97] for a
survey) and it seems unlikely that one can do better: assuming the unique games
conjecture [Kho02], it is NP-hard to approximate vertex cover within (2−ε) for
any constant ε > 0 [KR08].

Instead, one can hope that the special structure of the vertex cover graph
GS

P associated to 1|prec|
∑

w jC j, allows for better approximation. Indeed, the
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structure of GS
P heavily depends on the precedence constraints, which determine

its vertices and edges. Moreover, Correa & Schulz [CS05] showed that the graph
GS

P is bipartite if and only if the precedence constraints are two-dimensional.
As vertex cover is solvable in polynomial time on bipartite graphs, it follows
that 1|prec|

∑

w jC j with two-dimensional precedence constraints has an exact
algorithm that runs in polynomial time.

In this chapter we make the connection between the structure of GS
P and the

precedence constraints explicit. More specifically, in Section 3.3.1 we show that
the vertex cover graph GS

P associated to 1|prec|
∑

w jC j is exactly the graph of
incomparable pairs GP defined in dimension theory of partial orders [Tro92] (see
also Section 3.2). This equivalence allows us to benefit from dimension theory
to obtain both positive and negative results.

Positive Results

In dimension theory of partial orders, it is well known [FT00] that the chromatic
number of GP (and hence GS

P) is at most d, whenever the dimension of the
precedence constraints at hand is (at most) d. Hochbaum [Hoc83] showed that
if a given graph for the weighted vertex cover problem can be colored using d
colors in polynomial time, then there exists a (2−2/d)-approximation algorithm
for the corresponding weighted vertex cover problem. It follows that there exists
a (2−2/d)-approximation algorithm for (the variable-cost of) 1|prec|

∑

w jC j for
special classes of precedence constraints that have dimension at most d (that can
be computed in polynomial time; see Theorem 3.3.4 for an exact statement).

Following a similar argument, we further generalize the above described
approach to precedence constraints of fractional dimension [BS92b] (see Sec-
tion 3.4). This generalization yields (2−2/ f )-approximation algorithms for (the
variable-cost of) 1|prec|

∑

w jC j whenever precedence constraints have fractional
dimension bounded by a constant f and satisfy an additional mild condition (see
Theorem 3.4.1).

By following this general approach, we obtain improved approximation algo-
rithms for relevant special classes of precedence constraints of low (fractional)
dimension, such as interval orders (Section 3.5.1), semi-orders (Section 3.5.2),
precedence constraints of bounded up/down degree (Section 3.5.3), and con-
vex bipartite precedence constraints (Section 3.5.4)2. In fact, our approach
yields the best known approximation ratios for all previously considered special
classes of precedence constraints, and it provides the first results for precedence
constraints of bounded up/down degree. We remark that the complexity of

2We refer the reader to the respectively sections for the definitions of these classes of prece-
dence constraints.
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1|prec|
∑

w jC j with these special classes of precedence constraints is unknown
with the exception of precedence constraints of bounded up/down degree d
which is known to be NP-hard for d = 2 [Law78].

For the considered special classes of precedence constraints, Table 3.1 sum-
marizes the achieved approximation guarantees for 1|prec|

∑

w jC j.

Precedence Constraints Previous Best Our
Interval orders (*) ≈ 1.618 [Woe03] 1.5

Bounded up/down degree d (*) 2 2− 2/(d + 1)
Semi-orders ≈ 1.618 [Woe03] 4/3

Convex bipartite ≈ 1.618 [Woe03] 4/3

Table 3.1: A comparison between the previous best and our approximation guar-
antees for 1|prec|

∑

w jC j with the considered special classes of precedence con-
straints. For the precedence constraints marked with (*), we need the general-
ization to fractional dimension as they have unbounded dimension.

Negative Results

In this chapter, we also show that 1|prec|
∑

w jC j with interval order precedence
constraints remains (weakly) NP-hard, a result that motivates the design of ap-
proximation algorithms for this special case. Moreover, we explain why our
approach failed to improve the approximation guarantee in the general case
by showing that minimizing the variable-cost of 1|prec|

∑

w jC j is as hard to
approximate as the vertex cover problem. Finally, we present the first inap-
proximability result for 1|prec|

∑

w jC j that rules out, under a fairly standard
assumption, the existence of a PTAS for the addressed scheduling problem.

Theorem 3.1.1 Problem 1|prec|
∑

w jC j restricted to interval order precedence
constraints is NP-hard.

Proof overview. In Section 3.6, we present a reduction to 1|prec|
∑

w jC j with
interval order precedence constraints from the NP-hard problem of finding a
minimum (unweighted) vertex cover in a graph with bounded degree 3 [GJS76].

The main idea is to exploit the vertex cover nature of problem 1|prec |
∑

w jC j:
finding an optimum solution to a scheduling instance S, where precedence con-
straints are given by an interval order P, is equivalent to solving the minimum
weighted vertex cover in the graph GS

P .
Given a graph G, we first transform it into another graph G′ such that finding

a minimum vertex cover of G is equivalent to finding a minimum vertex cover
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of G′ (see Lemma 3.6.1). The reason for this transformation is that the graph G′

has some desirable structure, which allows us to construct a scheduling instance
S, with interval order precedence constraints P, such that:

1. A vertex of GS
P has either weight 1 or weight at most 1/k, where k can be

selected to be arbitrarily large (see Lemma 3.6.4).

2. The subgraph of GS
P induced by the vertices of weight 1 is isomorphic to

G′ (see Lemma 3.6.5).

As k can be selected to be arbitrarily large, we can conclude that finding
an optimal schedule for S — a minimum vertex cover of GS

P — is essentially
equivalent to finding a minimum vertex cover of G′, which in turn is equivalent
to finding a minimum vertex cover of G.

�

The positive results of this chapter yield improved approximation algorithms
for several classes of precedence constraints by exploiting the vertex cover na-
ture of the problem and deriving better than 2-approximation algorithms for
the variable-cost of 1|prec|

∑

w jC j. It is a natural and interesting question to
ask whether a better than 2-approximate solution for the general version of the
problem can be obtained in a similar vein. The following theorem shows this to
be unlikely by showing that optimizing the variable-cost of 1|prec|

∑

w jC j is in
fact equivalent to vertex cover in terms of approximability.

Theorem 3.1.2 Approximating the variable-cost of 1|prec|
∑

w jC j is equivalent
to approximating the vertex cover problem.

Proof overview. The results in [CS05; AM09] imply that minimizing the variable-
cost of 1|prec|

∑

w jC j is a special case of vertex cover, and therefore is not
harder to approximate. In Section 3.7.1 we prove the other direction (Theo-
rem 3.7.1).

The main idea is similar to the one in the proof of Theorem 3.1.1, i.e., we
again exploit the vertex cover nature of 1|prec|

∑

w jC j. As the precedence con-
straints are not restricted to form an interval order, we get the following stronger
reduction. Given a graph G, we construct a scheduling instance S, with prece-
dence constraints P, such that:

1. A vertex of GS
P has either weight 1 or weight at most 1/k, where k can be

selected to be arbitrarily large.

2. The subgraph of GS
P induced by the vertices of weight 1 is isomorphic to G.
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Recall that optimizing the variable-cost of S is equivalent to the weighted
vertex cover problem on GS

P . As k can be selected to be arbitrarily large, we can
conclude that approximating the variable-cost of S, i.e., approximating vertex
cover on GS

P , is essentially equal to approximating vertex cover on G.
�

The best known hardness results for the vertex cover problem give us the fol-
lowing corollaries.

Corollary 3.1.3 (Theorem 3.1.2 + [DS05]) The variable-cost of 1|prec|
∑

w jC j

is NP-hard to approximate within a factor of 1.3606.

Corollary 3.1.4 (Theorem 3.1.2 + [KR08]) Assuming the unique games conjec-
ture, the variable-cost of 1|prec|

∑

w jC j is NP-hard to approximate within a factor
of 2− ε for any constant ε > 0.

Unfortunately, the techniques used to prove Theorem 3.1.2 fail to yield any
inapproximability results if the complete objective function (i.e. the fixed-cost
plus the variable-cost) is considered: the fixed-cost introduced during the re-
duction can be seen to dominate the objective function value, which makes any
feasible solution close to optimal.

By a different approach, we present the first inapproximability result for
1|prec|

∑

w jC j that rules out, under a fairly standard assumption, the existence
of a PTAS for 1|prec|

∑

w jC j.

Theorem 3.1.5 Let ε > 0 be an arbitrarily small constant. If there is a PTAS for
1|prec|

∑

w jC j then SAT has a (probabilistic) algorithm that runs in time 2nε on
an instance of size n.

Proof overview. The result is obtained in Section 3.7.2, by showing a nice re-
lationship between 1|prec|

∑

w jC j and the maximum edge biclique problem
(MEB): given an n by n bipartite graph G, the maximum edge biclique prob-
lem is to find a k1 by k2 complete subgraph of G that maximizes k1 · k2.

More precisely, given an n by n bipartite graph G, we construct a scheduling
instance SG such that if a maximum edge biclique of G has value an2 for some
a ∈ (0,1], then

n2− an2(ln1/a+ 2)≤ val(σ∗)≤ n2− an2,

where val(σ∗) denotes the value of an optimal schedule σ∗ of S.
This relationship allows us to use hardness results for MEB to obtain hardness

results for 1|prec|
∑

w jC j. In particular, the currently best inapproximability
result for maximum edge biclique (that we obtain in Chapter 4) yields that the
scheduling problem has no PTAS unless SAT can be solved by a (probabilistic)
algorithm that runs in time 2Nε , where N is the instance size and ε > 0 can be
made arbitrarily close to 0. �
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3.2 Dimension Theory of Partial Orders

A partially ordered set (or poset) formalizes the intuitive concept of an ordering,
sequencing, or arrangement of the elements of a set. The theory of partially
ordered sets is central to combinatorics and arises in many different contexts.
We are going to introduce it by giving an example.

Consider the set N = {1, 2,3, 4,5}. The elements of the set N , called the
ground set, can be partially ordered by the reflexive, antisymmetric and transitive
relation P which we define, in the example, to be the precedence constraints of
the jobs in Figure 3.1, i.e. P = {(1, 4), (2,4), (2, 5), (3,4)}. To emphasize the
order concept, we write x ≤ y when (x , y) ∈ P.

For any x , y ∈ N , in case x ≤ y or y ≤ x , we will say that the pair (x , y) is
comparable, otherwise it is called incomparable (for x 6= y we say that y is above
x , if x ≤ y , also denoted by x < y). For instance, 1 and 4 are comparable since
1 ≤ 4, whereas neither 1 ≤ 5 nor 5 ≤ 1 holds which makes the pairs (1,5) and
(5,1) incomparable. The ground set N together with the partial order P define
a partially ordered set (poset) P = (N , P). We denote the set of all incomparable
pairs of a poset P by inc(P). A poset that does not have any incomparable pairs
is called a linear order.

A partial order P ′ on N is an extension of P (on the same set N), if P ⊆ P ′.
Moreover, if P ′ is a linear order, we call P ′ a linear extension of P. We can
construct an extension of P by adding, for example, 3 ≤ 5 to P. The resulting
poset P′ = (N , P ′) is depicted in Figure 3.2. We say that the extension P ′ reverses
the (ordered) incomparable pair (5, 3).

1 2 3

4 5

Figure 3.2: An extension of the partial order P with P ′ = P ∪ {(3,5)}.

Constructing a linear extension that satisfies certain properties is central to
several problems in combinatorics. The addressed scheduling problem falls in
this category. Indeed, it can be formulated as the problem of finding a lin-
ear extension L of a partial order P on the set N of jobs so as to minimize
∑

(i, j)∈L piw j +
∑

i∈N piwi. The construction of linear extensions of a poset also
arises when determining its dimension, as explained in the following.
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For a family R of linear extensions of a partial order P on N , we call R a
realizer of P = (N , P), if

⋂

R = P, i.e. for all a, b,∈ N , a ≤ b in P if and only
if a ≤ b in every L ∈ R . Note that for each incomparable pair (a, b) ∈ inc(P),
there must be at least one linear extension in the realizer that reverses it. For
a realizer of the example poset see Figure 3.3. The least positive integer t for
which there is such a realizer R = {L1, . . . , Lt} of P is called the dimension of P,
denoted by dim(P) [DM41]. We will refer to a realizer R = {L1, . . . , Lt} of size
t as a t-realizer. Generalizing this concept, a k:t-realizer is a multiset of t linear
extensions R = {L1, . . . , Lt} in which each incomparable pair is reversed at least
k times. The fractional dimension of P, denoted by fdim(P), is the infimum of
the set of ratios t/k for which there exist k:t-realizers [BS92b]. Note that the
fractional dimension of a poset is always bounded from above by its dimension
and for some classes of posets we will see that the fractional dimension can be
significantly smaller than the dimension.

A natural question is for which posets one can construct a t-realizer in poly-
nomial time. In the general case, Yannakakis [Yan82] proved that determining
whether the dimension of a poset is at most t is NP-complete for every t ≥ 3.
Moreover, Hedge & Jain [HJ07] recently proved that, in general, it is NP-hard to
approximate the (fractional) dimension of a poset with n elements within a fac-
tor n0.5−ε, for any constant ε > 0. However, for several special cases, a minimal
realizer can be computed in polynomial time (see e.g. [Möh89; Tro92]).

3.2.1 The Hypergraph and Graph of Incomparable Pairs

It is easy to see that, when constructing an extension of a partial order P on
a ground set N , there are some groups of incomparable pairs that cannot be
reversed at the same time. Obviously, an extension of the example partial order
P cannot reverse both (3, 5) and (5,3) at the same time. This implies that, unless
a poset is already a linear order, any realizer needs to contain more than one
linear extensions in order to reverse every incomparable pair at least once. For
the pairs of incomparable pairs mentioned above, it is obvious that they cannot
be reversed at the same time. There are also less obvious pairs of incomparable
pairs for which this is true. By examining P, defined by the jobs and precedence
constraints of Figure 3.1, one can conclude that reversing both (2, 1) and (1,5)
would lead to an inconsistency, i.e. a cycle in the ordering: adding 1 ≤ 2 and
using transitivity leads to 1 ≤ 2 ≤ 5, which contradicts 5 ≤ 1. In general, there
can also be groups bigger than two pairs that cannot be all reversed at the same
time without introducing contradictions (e.g. (2,1), (1, 3) and (3, 5)).

The above observations naturally lead to the definition of the hypergraph of
incomparable pairs HP of a poset P [FT00] defined as follows. The vertices of
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HP are the incomparable pairs in P. The edge set consists of those sets U of
incomparable pairs such that:

1. No linear extension of P reverses all incomparable pairs in U .

2. For every proper subset of U there is a linear extension that reverses all
incomparable pairs in U .

Let GP denote the ordinary graph, called the graph of incomparable pairs, deter-
mined by all edges of size 2 in HP. Figure 3.3 depicts the hypergraph and graph
of incomparable pairs for our example poset.

Recall that a k:t-coloring of a (hyper)graph is an assignment of sets of k
colors to vertices by using a pool of at most t colors, such that the intersection
of the sets assigned to vertices of any (hyper)edge is empty. Note that, with this
terminology, the classical graph coloring problem is to find the minimal t such
that there exists a 1:t coloring. Felsner & Trotter [FT00] defined the hypergraph
of incomparable pairs so as to capture the properties of a poset. In [BS92b] it is
pointed out that these properties can be generalized to the fractional dimension.

The following result is known in dimension theory of partial orders (see
e.g. [Tro92; BS92b]). We include the proof as it gives insights in the structure
of the hypergraph (and graph) of incomparable pairs.

Proposition 3.2.1 ([Tro92; BS92b]) Let P = (N , P) be a poset which is not a
linear order, and let HP be its hypergraph of incomparable pairs. Then

a) HP can be k:t-colored if and only if P has a k:t-realizer.

b) For a linear extension L of P, the vertex sets {(x , y) ∈ inc(P) : (y, x) ∈ L}
and {(x , y) ∈ inc(P) : (x , y) ∈ L} form an independent set and vertex cover
of HP (and GP), respectively.

Proof. For statement a), note that a k:t-coloring suggests a way of reversing
each incomparable pair in at least k linear extensions, with each color corre-
sponding to a linear extension. Since a valid coloring does not use a color com-
mon to all vertices of a hyperedge, these extensions do not contain cycles and are
therefore valid partial orders. On the other hand, a k:t-realizer suggests a way of
coloring the vertices of the graph by assigning color i to each pair (a, b) ∈ inc(P)
if and only if it is reversed in Li. Since a linear extension can only reverse a
proper subset of vertices for each hyperedge, there is no hyperedge with a color
common to all of its vertices. Therefore, the coloring is valid. Finally, note that
b) follows by the above arguments since all pairs that are reversed in a linear
extension are assigned the same color and as the coloring is feasible, they form
an independent set (and the complement, i.e., the pairs that are not reversed,
form a vertex cover). �
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Figure 3.3: a) The example poset P. b) A realizerR = {L1, L2} of P. c) The graph
GP, where the independent sets defined by L1 and L2 are depicted in white and
black, respectively. d) The hyperedges of HP; the remaining edges of HP are
depicted in (c).
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3.3 The Scheduling Problem and Vertex Cover
In a series of recent papers [CH99; CS05; AM09] it was proved that 1|prec|

∑

w jC j

is a special case of minimum weighted vertex cover. In this section we give an
overview of how this result was obtained. We will also make the connection
between the scheduling problem and dimension theory explicit by pointing out
that the vertex cover graph obtained from a scheduling instance, with prece-
dence constraints in the form of a poset P, is in fact the graph of incomparable
pairs GP, defined in dimension theory of partial orders (see Section 3.2).

To simplify notation, we implicitly assume hereafter that tuples and sets of
jobs have no multiplicity. Therefore, (a1, a2, . . . , ak) ∈ N k and {b1, b2, . . . , bk} ⊆
N denote a tuple and a set, respectively, with k distinct elements.

In the following, we introduce several linear programming formulations and
relaxations of 1|prec |

∑

w jC j using linear ordering variables δi j. The variable
δi j has value 1 if job i precedes job j in the corresponding schedule, and 0 other-
wise. The first formulation using linear ordering variables is due to Potts [Pot80],
and it can be stated as follows.

[P-IP] min
∑

j∈N

p jw j +
∑

(i, j)∈N2

δi j piw j (3.1a)

s.t. δi j +δ ji = 1 {i, j} ⊆ N (3.1b)

δi j = 1 (i, j) ∈ P (3.1c)

δi j +δ jk +δki ≤ 2 (i, j, k) ∈ N 3 (3.1d)

δi j ∈ {0,1} (i, j) ∈ N 2 (3.1e)

Constraint (3.1b) ensures that either job i is scheduled before j or vice versa.
If job i is constrained to precede j in the partial order P, then this is seized by
Constraint (3.1c). The set of Constraints (3.1d) is used to capture the transitivity
of the ordering relations (i.e., if i is scheduled before j and j before k, then i is
scheduled before k). It is easy to see that [P-IP] is indeed a complete formulation
of the problem [Pot80].

Chudak & Hochbaum [CH99] suggested to study the following relaxation
of [P-IP]:

[CH-IP] min (3.1a)
s.t. (3.1b), (3.1c), (3.1e)

δ jk +δki ≤ 1 (i, j) ∈ P, {i, j, k} ⊆ N (3.1d’)

In [CH-IP], Constraints (3.1d) are replaced by Constraints (3.1d’). These in-
equalities correspond in general to a proper subset of (3.1d), since only those
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transitivity Constraints (3.1d) for which two of the participating jobs are already
related to each other by a precedence constraint are kept.

Correa & Schulz [CS05] proposed the following integer programming for-
mulation [CS-IP], which is a relaxation of [P-IP]. For (i, j) ∈ N 2, the term i‖ j
means that (i, j) 6∈ P and ( j, i) 6∈ P. Note that in [CS-IP], we only need variables
δi j for i‖ j.

[CS-IP] min
∑

j∈N

p jw j +
∑

(i, j)∈P

piw j+
∑

i‖ j

δi j piw j (3.2a)

s.t. δi j +δ ji ≥ 1 i‖ j (3.2b)

δik +δk j ≥ 1 (i, j) ∈ P, j‖k, k‖i (3.2c)

δi`+δk j ≥ 1 (i, j) ∈ P, j‖k, (k,`) ∈ P,`‖i (3.2d)

δi j ∈ {0,1} (i, j) ∈ N 2, i‖ j

We remark that the objective function is split into the fixed-cost
∑

(i, j)∈P piw j +
∑

i∈N piwi and the variable-cost
∑

(i, j)∈L\P piw j defined in Section 3.1, where L =
{(i, j) : δi j = 1} is not necessarily a total ordering of the jobs. It follows that
solving [CS-IP] is equivalent to solving the same integer program but with the
objective to only minimize the variable-cost, which in turn can be interpreted
as a weighted vertex cover problem on a graph with a vertex of weight piw j

for each variable δi j and an edge between two vertices if their corresponding
variables occur together in a constraint.

Correa & Schulz [CS05] also proved that their formulation [CS-IP] is equiva-
lent to [CH-IP] and they conjectured that an optimal solution to 1|prec |

∑

w jC j

gives an optimal solution to [CH-IP] as well. The conjecture in [CS05] was re-
cently settled in the affirmative by Ambühl & Mastrolilli [AM09], who proved
that any feasible solution to [CH-IP] can be turned, in polynomial time, into a
feasible solution to 1|prec |

∑

w jC j without deteriorating the objective value.
As the fixed-cost remains unchanged during the transformations, the results
in [CS05; AM09] imply that the problem of minimizing the variable-cost of
1|prec|

∑

w jC j is a special case of minimum weighted vertex cover.
For a scheduling instance S with precedence constraints P = (N , P), we let

GS
P be the vertex cover graph obtained by interpreting [CS-IP] as a vertex cover

problem. The following theorem summarizes the aforementioned results.

Theorem 3.3.1 ([CH99; CS05; AM09]) Let S be an instance of 1|prec|
∑

w jC j

with precedence constraints P. Then an α-approximate solution to the weighted ver-
tex cover problem on GS

P can, in polynomial time, be turned into an α-approximate
solution to the variable-cost part of S.
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As the approximation guarantee might only improve by taking into account
the fixed-cost, we have that an α-approximation algorithm for the weighted ver-
tex cover problem associated to 1|prec|

∑

w jC j, yields at least an α-approxima-
tion algorithm for the scheduling problem. Understanding whether the approx-
imation guarantee for 1|prec|

∑

w jC j can be improved significantly by taking
into account the fixed-cost turns out to be fundamental for understanding its
approximability (see Section 3.7.1).

3.3.1 Structure of the Graph GS
P

The vertex cover problem is one of the best studied problems in theoretical com-
puter science (see [Pas97] for a survey). In general, assuming the unique games
conjecture [Kho02], it is NP-hard to approximate vertex cover within (2−ε) for
any constant ε > 0 [KR08]. However, the graphs obtained from 1|prec|

∑

w jC j

have a very nice structure; a fact that will lead to better approximation algo-
rithms for several kinds of precedence constraints. To see this, consider an in-
stance S of 1|prec|

∑

w jC j with precedence constraints P = (N , P). Recall that
the vertices of GS

P are the incomparable pairs of P. Graph GS
P has three types of

edges (see also Figure 3.4):

(i) Two vertices (i, j) and ( j, i) are adjacent.

(ii) Two vertices (i, k) and (k, j) are adjacent if (i, j) ∈ P.

(iii) Two vertices (i,`) and (k, j) are adjacent if (i, j) ∈ P and (k,`) ∈ P.

i

j

i

j

k

i

j k

!

(i) (ii) (iii)

Figure 3.4: The three types of edges of GS
P . The incomparable pairs that are

adjacent vertices in GS
P are depicted by dashed arrows. Note that, in all three

cases, no linear extension reverses both incomparable pairs.
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It is not hard to see that the edge set of GS
P consists of those sets U of two

incomparable pairs such that no linear extension of P reverses both incompa-
rable pairs in U . As a result (see the definition of graph of incomparable pairs
in Section 3.2.1), we have the following proposition that establishes a strong
relationship between dimension theory and 1|prec|

∑

w jC j.

Proposition 3.3.2 The vertex cover graph GS
P associated to 1|prec|

∑

w jC j and
the graph of incomparable pairs GP coincide.

The combinatorial theory of partially ordered sets is well studied. Tapping this
source can help in designing approximation algorithms. The following theorem
is such an example.

Theorem 3.3.3 ([Tro92; CS05]) Let P = (N , P) be a poset that is not a linear
order. Then the graph GP is bipartite if and only if dim(P) = 2.

We note that the poset depicted in Figure (3.3-a) is two-dimensional, and hence
the graph of incomparable pairs is bipartite (Figure (3.3-c)). Theorem 3.3.3 is
a well-known result in dimension theory. Using a different approach, Correa &
Schulz [CS05] rediscovered it for the vertex cover graph GS

P , independent of the
connection pointed out by Proposition 3.3.2. Furthermore, Propositions 3.3.2
and 3.2.1 give us that graph GS

P can be colored using dim(P) colors and, given a
realizer, this can be done in polynomial time (see the proof of Proposition 3.2.1).
Combining this with Hochbaum’s [Hoc83] (2 − 2/t)-approximation algorithm
for the weighted vertex cover problem, whenever the vertex cover graph is t-
colorable in polynomial time, gives us the following.

Theorem 3.3.4 Problem 1|prec|
∑

w jC j, whenever precedence constraints are given
by a t-realizer, has a polynomial time (2− 2

t
)-approximation algorithm.

In the next section we generalize the above theorem to hold for fractional di-
mension.

3.4 Scheduling with Low Fractional Dimension
We prove that better than 2-approximation algorithms are possible provided that
the set of precedence constraints has low fractional dimension.

We say that a poset P admits an efficiently samplable k:t-realizer if there ex-
ists a randomized algorithm that, in time polynomial in the size of the ground
set (number of jobs), returns any linear extension from a k:t-realizer R =
{L1, L2, . . . , Lt} of P with probability 1/t.
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The following theorem generalizes Theorem 3.3.4. The main idea of the
proof is the observation that Hochbaum’s approach [Hoc83] for approximating
the vertex cover problem can be extended to fractional coloring, yielding a sim-
ilar approximation result.

Theorem 3.4.1 The problem 1|prec|
∑

w jC j, whenever precedence constraints ad-
mit an efficiently samplable k:t-realizer, has a randomized (2− 2

t/k
)-approximation

algorithm.

Proof. Let S be an instance of 1|prec|
∑

w jC j where precedence constraints are
given by a poset P = (N , P) that admits an efficiently samplable k:t-realizer
R = {L1, L2, . . . , Lt}. Furthermore, we assume that fdim(P) ≥ 2. The case when
fdim(P) = 1, i.e., P is a linear order, is trivial.

Let GS
P = (VP, EP) be the weighted vertex cover instance associated to S where

each vertex (incomparable pair) v = (i, j) ∈ VP has weight wv = pi · w j, as
specified in Section 3.3. In 1973, Nemhauser & Trotter [NT73; NT75] used
the following integer program to model the minimum weighted vertex cover
problem (see also Section 2.1.2):

[VC-IP] min
∑

v∈VP

wv xv

s.t. xu+ xv ≥ 1 {u, v} ∈ EP

xv ∈ {0, 1} v ∈ VP

They also studied the linear relaxation [VC-LP] of [VC-IP], and proved that any
basic feasible solution to [VC-LP] is half-integral, that is xv ∈ {0, 1

2
, 1} for all

v ∈ VP.
We now proceed by solving the [VC-LP] formulation of GS

P . By a result of
Nemhauser & Trotter [NT75], this can be done combinatorially and in polyno-
mial time. We let Vi be the set of vertices with value i (i ∈ {0, 1

2
, 1}) in the

optimum solution. Denote by GS
P[V1/2] the subgraph of GS

P induced by the vertex
set V1/2. We consider the linear extensions of R as outcomes in a uniform sam-
ple space. For an incomparable pair (x , y), the probability that y > x in a linear
extension picked from R is given by

ProbR[y > x] =
1

t
|{i = 1, . . . , t : y > x ∈ Li}| ≥

k

t
(3.4)

The last inequality holds because every incomparable pair is reversed in at least
k linear extensions of R .

By Proposition 3.2.1, a linear extension L of P defines an independent set of
GS

P by taking the incomparable pairs that are reversed in L, i.e., the vertex set
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{(x , y) ∈ inc(P) : (y, x) ∈ L}. Let us pick one linear extension L uniformly at
random from R = {L1, . . . , Lt}. Then, by linearity of expectation, the expected
value of the independent set I1/2, obtained by taking the incomparable pairs in
V1/2 that are reversed in L, is

E[w(I1/2)] =
∑

(i, j)∈V1/2

ProbR[ j > i] ·w(i, j) ≥
k

t
·w(V1/2) (3.5)

A vertex cover solution C for the graph GS
P[V1/2] can be obtained by picking the

nodes that are not in I1/2, namely C = V1/2 \ I1/2. The expected value of this
solution is

E[w(C)] = w(V1/2)− E[w(I1/2)]≤
�

1−
k

t

�

w(V1/2)

As observed in [Hoc83], V1∪C gives a valid vertex cover for graph GS
P . Moreover,

the expected value of the cover is bounded as follows

E[w(V1 ∪ C)] ≤ w(V1) +
�

1−
k

t

�

w(V1/2) (3.6)

≤ 2
�

1−
k

t

��

w(V1) +
1

2
w(V1/2)

�

(3.7)

≤
�

2−
2

t/k

�

OPT (3.8)

where the last inequality holds since w(V1) +
1
2
w(V1/2) is the optimal value of

[VC-LP]. Note that t/k ≥ fdim(P) ≥ 2 was used for the second inequality.
Theorem 3.3.1 implies that any α-approximation algorithm for GS

P also gives
an α-approximation algorithm for S. Thus we obtain a randomized (2− 2

t/k
)-

approximation algorithm for S. �

3.5 Applications
In this section we will apply the framework described in Sections 3.3.1 and 3.4 to
design approximation algorithms for special cases of posets with low (fractional)
dimension.

3.5.1 Interval orders

A poset P = (N , P) is an interval order if it has an interval representation F ,
which assigns to each x ∈ N a closed interval F(x) = [ax , bx] of the real line R,
so that x < y in P if and only if bx < ay in R. For an example see Figure 3.5.
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a

b

c

ed f

a b

c d

e

f

Poset P Interval representation of P

Figure 3.5: An example of an interval order.

Interval orders can be recognized in O(n2) time [PY79]. The dimension
of interval orders can be of order log log n [Tro92], whereas the fractional di-
mension is known to be less than 4 [BS92b], and this bound is asymptotically
tight [FT94]. In the following we show how to obtain a 1.5-approximation algo-
rithm for 1|prec|

∑

w jC j with precedence constraints in the form of an interval
order. By Theorem 3.4.1, it is sufficient to prove that interval orders admit an
efficiently samplable k:t-realizer with t/k ≤ 4.

Given a poset P = (N , P), disjoint subsets A and B of the ground set N , and
a linear extension L of P, we say that B is over A in L if, for every incomparable
pair of elements (a, b) with a ∈ A and b ∈ B, one has b > a in L. The following
property of interval orders is fundamental for our approach.

Theorem 3.5.1 (Rabinovitch [Rab78]) A poset P = (N , P) is an interval order
if and only if for every pair (A, B) of disjoint subsets of N there is a linear extension
L of P with B over A.

We remark that given a pair (A, B) of disjoint subsets of N , we can find a linear
extension L of P with B over A in polynomial time: add the relations A× B to
P and complete the partial order to obtain a linear extension L. By using this
property we can easily obtain a k:t-realizer R = {L1, . . . , Lt} with k = 2n−2 and
t = 2n, where n= |N |. Indeed, consider every subset A of N and let LA be a linear
extension of P in which B = N \A is over A. Now let R be the multiset of all the
LA’s. Note that |R|= 2n. Moreover, for any incomparable pair (x , y) there are at
least k = 2n−2 linear extensions inR for which x ∈ B and y ∈ A. Finally, observe
that we can efficiently pick uniformly at random one linear extension from R:
for every job j ∈ N put j either in A or in B with the same probability 1/2.
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By the previous observations and Theorem 3.4.1, we have a randomized
polynomial time 1.5-approximation for 1|prec|

∑

w jC j with interval order prece-
dence constraints. As described below, the algorithm can easily be derandomized
by using the standard method of conditional probabilities.

Theorem 3.5.2 Problem 1|prec|
∑

w jC j for which the precedence constraints form
an interval order has a 1.5-approximation algorithm.

Derandomization for Interval Orders

We let V1/2 be the set of vertices with value 1/2 in the optimal solution to the
[VC-LP] formulation of the scheduling problem (see Section 3.4).

Our goal is to partition the set of jobs into two sets A and B, such that any
linear extension L with B over A will satisfy w(V1/2 \ L)≥ w(V1/2)/4, i.e., defines
an independent set with weight at least w(V1/2)/4. For every pair (Ai, Bi) of
disjoint sets of jobs, consider the following function where (x , y) ∈ inc(P):

Φ(Ai, Bi) =
∑

(x ,y)∈Ai×Bi

py wx +
∑

x∈Ai ,y 6∈Ai∪Bi or
x 6∈Ai∪Bi ,y∈Bi

py wx

2
+

∑

x ,y 6∈Ai∪Bi

py wx

4

Note that the pair (Ai, Bi) defines a partition of a subset of N and that Φ(Ai, Bi)
gives a lower bound on the expected value of the independent set conditioned
upon our current choices of Ai and Bi.

Set A0 = B0 = ; and observe that Φ(A0, B0) = w(V1/2)/4. For i = 1, . . . n we
have to decide if job i is in set Ai or in set Bi. We evaluate both possibilities:

1. A1
i := Ai−1 ∪ {i} and B1

i := Bi−1

2. A2
i := Ai−1 and B2

i := Bi−1 ∪ {i}

Let g = argmax
h=1,2
{Φ(Ah

i , Bh
i )} and observe that

Φ(Ai−1, Bi−1)≤ Φ(A
g
i , Bg

i ).

We therefore set

Ai := Ag
i

Bi := Bg
i .

At the end we have partitioned the set of jobs into two sets An and Bn such that
Φ(An, Bn) ≥ w(V1/2)/4. Since P is an interval order P ∪ {(a, b) ∈ An × Bn : a||b}
is a valid extension of P and any linear extension of it gives an independent set
of value ≥ w(V1/2)/4.
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3.5.2 Semi-Orders

An interval order P= (N , P) is called a semi-order (or unit interval order) if P has
an interval representation F assigning to each x ∈ N an interval F(x) = [ax , ax+
1] so that x < y in P if and only if ax + 1 < ay . Semi-orders can be recognized
in O(n2) time (see e.g. [Möh89; Tro92]). In contrast to interval orders that have
unbounded dimension [Tro92], Rabinovitch proved, by constructing a realizer,
that the dimension of semi-orders is at most three [Rab78] (see also [Tro92]
for a good explanation). The realizer proposed by Rabinovitch is constructed
as follows (see Figure 3.6 for an overview). Given a semi-order P = (N , P), let
N1 = N , P1 = P and P1 = (N1, P1). Then set A1 =max(P1), where

max(P) := {x ∈ N : ∀y ∈ N , either (y, x) ∈ P or (y, x) ∈ inc(P)}.

If Ni, Pi,Pi, and Ai have been defined for some i : 1 ≤ i < |N |, set Ni+1 =
Ni \ Ai, Pi+1 = Pi ∩ (Ni+1 × Ni+1), Pi+1 = (Ni+1, Pi+1), and Ai+1 = max(Pi+1).
Note that the sets A1, A2, . . . , A|N | form a partition of N and all elements in a
set Ai are incomparable. Let A = {x ∈ N : x ∈ Ai for some odd i} and let B =
N \ A. As semi-orders are a subset of interval orders, we can construct two
linear extensions L1 and L2 so that B is over A in L1 and A is over B in L2 (see
Theorem 3.5.1). Finally, we construct a third linear extension L3 so that an
incomparable pair (i, j) ∈ L3, if either (i) i ∈ Ak and j ∈ A` with k > ` or (ii)
{i, j} ⊆ Ak and ( j, i) ∈ L1.

It is not hard to see that we can construct R = {L1, L2, L3} in polynomial
time, which is a realizer of P [Rab78]. This together with Theorem 3.3.4, gives
us the following theorem.

Theorem 3.5.3 Problem 1|prec|
∑

w jC j for which the precedence constraints form
a semi-order has a (1+ 1/3)-approximation algorithm.

3.5.3 Posets of Bounded Up/Down Degree

In the following we will see how to obtain, using Theorem 3.4.1, an approxima-
tion algorithm for 1|prec |

∑

w jC j when the precedence constraints form a poset
of bounded up/down degree. Before we proceed, we need to introduce some
definitions.

Let P = (N , P) be a poset. For any job j ∈ N , define the degree of j, denoted
deg( j), as the number of jobs comparable (but not equal) to j in P. Let ∆(P) =
max{deg( j) : j ∈ N}. Given a job j, let D( j) denote the set of all jobs which are
less than j, and U( j) those which are greater than j in P. Define degD( j) = |D( j)|
and ∆D(P) = max{degD( j) : j ∈ N}. The quantities degU( j) and ∆U(P) are
defined analogously.
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A2 = {d, e, f}
A3 = {a, b, c}
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B = {d, e, f}
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L2 =

L3 =

Realizer

Semi-order Sets

Figure 3.6: Overview of the construction of a 3-realizer for semi-orders. The jobs
are partitioned into two sets A and B, depicted in gray and white, respectively.

We observe that the NP-completeness proof for 1|prec |
∑

w jC j given by
Lawler [Law78] was actually provided for posets P with ∆D(P) = 2. By using
fractional dimension we show that these posets (with bounded min{∆D,∆U})
allow for a better than 2-approximation.

Theorem 3.5.4 Problem 1|prec |
∑

w jC j has a (2 − 2/ f )-approximation algo-
rithm, where f = 1+min{∆D,∆U , 1}.

Proof. Let P= (N , P) be the poset representing the precedence constraints with
bounded min{∆D,∆U}. We will show that P has an efficiently samplable k:t-
realizer with t/k ≤ min{∆D,∆U} + 1 by using a result by Felsner and Trot-
ter [FT94]. To describe their approach we need to first introduce some concepts.
Assume, without loss of generality, that P is not decomposable with respect to
lexicographic sums (see Section 3.5.5). Otherwise, a decomposition with re-
spect to lexicographic sums can be done in O(n2) time (see e.g. [Möh89]),
and each component will have degree no larger than the degree of P and can
be considered separately (see Theorem 3.5.9). We call an incomparable pair
(x , y) ∈ inc(P) a critical pair if for all z, w ∈ N \ {x , y}

1. z < x in P implies z < y in P, and
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2. y < w in P implies x < w in P.

Critical pairs play an important role in dimension theory: any incomparable pair
(a, b) can be associated with at least one critical pair (x , y) so that a linear
extension reversing (x , y) also reverses (a, b) [Tro92]. It follows that if for
each critical pair (x , y), there are at least k linear extensions inR = {L1, . . . , Lt}
which reverse the pair (x , y) thenR is a k:t-realizer of P and vice versa [BS92b].

For an element x ∈ N and a set A⊆ N we write x > A, if x > y for all y ∈ A.
For any permutation M of N , consider the set C(M) of critical pairs (x , y) that
satisfy the following two conditions:

1. x > (D(y)∪ {y}) in M if |D(y)|<∆D

2. x > D(y) in M if |D(y)|=∆D

In [FT94], Felsner & Trotter present an algorithm (for posets that are not de-
composable with respect to lexicographic sums) that converts in polynomial
time a permutation M of N to a linear extension L of P so that L reverses all
critical pairs in the set C(M). Now set t = |N |! and consider the set M =
{M1, M2, . . . , Mt} of all permutations of the ground set N . Observe that for any
critical pair (x , y) there are at least n!/(∆D+1) different permutations Mi ∈M ,
in which either (i) x > (D(y)∪ {y}) in Mi if |D(y)|<∆D or (ii) x > D(y) in Mi

if |D(y)| =∆D, i.e., (x , y) ∈ C(Mi). It follows that for any critical pair there are
at least n!/(∆D+1) different permutations so that the critical pair is reversed in
the associated linear extensions.

Applying the algorithm in [FT94] we obtain a k:t-realizer R = {L1, . . . , Lt}
of P with t = n! and k = n!/(∆D + 1). Moreover, we can efficiently pick
uniformly at random one linear extension from R: generate uniformly at ran-
dom one permutation of jobs (e.g. by using Knuth’s shuffle algorithm [Knu69])
and transform it into a linear extension with the described properties by us-
ing the algorithm in [FT94]. As described below, the algorithm can be de-
randomized by using the standard method of conditional probabilities. Finally
observe that we can repeat a similar analysis by using ∆U instead of ∆D: let
Pd = (N , Pd), where Pd = {(i, j) : ( j, i) ∈ P} then ∆D(Pd) = ∆U(P) and a k:t-
realizer Rd = {Ld

1 , . . . , Ld
t } of Pd gives a k:t-realizer R = {L1, . . . , Lt} of P, where

Li = {(i, j) : ( j, i) ∈ Ld
i }. �

We remark that it is necessary to use fractional dimension for obtaining the
above result. To see this, consider the incidence poset P(G) = (N , P) defined as
follows: given an undirected graph G(V, E), let N = V ∪ E and for every v ∈ V
and e = {v1, v2} ∈ E, put (v, e) ∈ P if and only if v ∈ {v1, v2}. Since every edge is
adjacent to only two vertices, ∆D is bounded by 2. For Kn the complete graph on
n nodes, Spencer [Spe71] showed that dim(P(Kn)) = Θ(log log n) whereas from
the above discussion we have fdim(P(Kn))≤ 1+min{∆U ,∆D}= 3.



40 3.5 Applications

Derandomization for Bounded Degree Posets

We let V1/2 be the set of vertices with value 1/2 in the optimal solution to the
[VC-LP] formulation of the scheduling problem (see Section 3.4).

We consider the case when ∆D ≤∆U . The case when ∆U <∆D is symmetric
and omitted. It suffices to compute a permutation that gives a linear extension
whose associated independent set has value at least

w(V1/2)

∆D + 1
.

We already mentioned that any incomparable pair (a, b) can be associated
with at least one critical pair (x , y) so that a linear extension reversing (x , y) also
reverses (a, b) [Tro92]. For simplicity, we associate every incomparable pair with
exactly one critical pair such that the above condition holds and we denote by
C(x ,y) the set of incomparable pairs associated to the critical pair (x , y). Note that
by convention we have (x , y) ∈ C(x ,y) and the set {C(x ,y) : (x , y) is a critical pair}
forms a partition of the incomparable pairs. From the proof of Theorem 3.5.4, it
follows that the probability that any critical pair (x , y) (and thus the incompara-
ble pairs in C(x ,y)) are reversed by a linear extension L obtained from a uniformly
picked permutation is at least

N(x ,y)/D(x ,y),

where at the beginning

N(x ,y) := 1 and D(x ,y) :=
�

|D(y)|+ 2, if |D(y)|<∆D

|D(y)|+ 1, if |D(y)|=∆D
.

Starting from the first position of the permutation, we consider the n possi-
bilities corresponding to placing any job at that position and retain the best one.
Then we remove the job that has been placed at the first position and continue
with the second position, by considering the remaining n− 1 jobs, and so forth
until the end of the permutation. Each time we consider a possibility, we update
the probabilities accordingly. For example, if we decide to put job j at position
i then the probability to reverse the incomparable pairs in C(x ,y) is updated as
follows.

• Set N(x ,y) := 0 if x = j, |D(y)| < ∆D and y has not been placed at a
previous location;

• Set N(x ,y) := 0 if x = j and there exists a z ∈ D(y) that has not been placed
at a previous location;

• Set D(x ,y) := D(x ,y)− 1, if ( j = y and D(y)<∆D) or j ∈ D(y).

With the updated probabilities we can compute the associated value and
retain the best choice.
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3.5.4 Convex Bipartite Precedence Constraints

In this section we consider 1|prec|
∑

w jC j for which the precedence constraints
form a so called convex bipartite order. For this class of partial orders, we show
how to construct a realizer of size 3 in polynomial time. By Theorem 3.3.4, this
gives a (1+ 1

3
)-approximation algorithm.

A convex bipartite order P = (N = J− ∪ J+, P) is defined as follows (see also
Figure 3.7).

1. The set of jobs are divided into two disjoint sets J− = {1, . . . a} and J+ =
{a+ 1, . . . , n}, called the minus-jobs and plus-jobs, respectively.

2. For every k = a+1, . . . , n there are two indices l(k) and r(k) with 1≤ l(k)≤
r(k) ≤ a such that (i, k) ∈ P if and only if l(k) ≤ i ≤ r(k) (bipartiteness
and convexity).

1

2

k

a

n

a+2

a+1
l(a + 2) = 2

r(a + 2) = k

J− J+

Figure 3.7: An example of a convex bipartite order. Only precedence constraints
to (a+ 2) are depicted.

It is not hard to check that convex bipartite orders can be recognized in
polynomial time. Indeed, it is identical to the problem of deciding if the rows
of a (0,1)-matrix can be permuted so as to make the 1’s in each column ap-
pear consecutively. Fulkerson & Gross first gave a polynomial algorithm for this
problem [FG65], which was later improved to linear time algorithms [BL76;
MPT98]. Moreover, the class of convex bipartite orders forms a proper subset of
the class of general bipartite orders, and a proper superset of the class of strong
bipartite orders [Möh89]. Lemma 3.5.5 states that the class of convex bipartite
orders has dimension at most 3. This is indeed a tight bound, since a bipartite
order P is 2-dimensional if and only if it is a strong bipartite order [Möh89].
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Finally, we note that 1|prec|
∑

w jC j with strong bipartite orders is solvable in
polynomial time [Möh89; CS05; AM09].

Lemma 3.5.5 Given a convex bipartite order P = (N , P), a realizer of size three
can be computed in polynomial time.

The proof of this lemma can be found in the next subsection. Theorem 3.3.4 and
Lemma 3.5.5 give us the following result.

Theorem 3.5.6 Problem 1|prec|
∑

w jC j for which the precedence constraints form
a convex bipartite order has a (1+ 1/3)-approximation algorithm.

Proof of Lemma 3.5.5

We create a realizer of size three for a given convex bipartite poset. In the
sequel, we sometimes stress that a job j is a plus- or minus-job by writing j+

and j−, respectively. We also assume, without loss of generality, that the plus-
jobs are numbered such that i+ < j+ if and only if l(i+) ≤ l( j+) (breaking ties
arbitrarily).

Given a convex bipartite poset P= (N , P), we partition its incomparable pairs
into three sets E1, E2, and E3 as follows (see also Figure 3.8):

• For two incomparable minus-jobs k− and `−, with k < `, we let (`−, k−)
and (k−,`−) be members of E1 and E2, respectively.

• For two incomparable plus-jobs q+ and r+, with q < r, we let (q+, r+) and
(r+, q+) be members of E1 and E3, respectively.

• A pair of incomparable jobs (k−, q+) ∈ inc(P) is a member of E1.

• A pair of incomparable jobs (q+, k−) ∈ inc(P) is a member of E2 if there
exists a plus-job r+, with r > q, so that (k−, r+) ∈ P; otherwise (if no such
plus-job exists) (q+, k−) is a member of E3.

The following lemma is a direct consequence of the definitions of E1, E2, and E3.

Lemma 3.5.7 Let P be a convex bipartite order then the sets E1, E2, and E3 form a
partition of inc(P).

Moreover, we have

Lemma 3.5.8 Let Ē1 = E1 ∪ P, Ē2 = E2 ∪ P, and Ē3 = E3 ∪ P. Then Ē1, Ē2, and Ē3

are extensions of P.
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r > q
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Figure 3.8: Solid edges correspond to precedence constraints, whereas dashed
edges are examples of the relations in the different extensions. In this example
we assume that k < ` and p < q < r.

Proof. By the definition of Ēi, it follows that if (a, b) ∈ P then (a, b) ∈ Ēi, where
i = 1, 2,3. Moreover, it is easy to see (Figure 3.8) that the sets Ē1 and Ē3 do not
contain cycles, i.e., are valid extensions of P.

Now, suppose toward contradiction that Ē2 is not a valid extension, i.e., con-
tains a cycle C = {( j1, j2), ( j2, j3), . . . , ( jk, j1)} . By the definition of E2 we have
C ∩ P 6= ; and thus C ∩ (J+× J−) 6= ;. Let i− ∈ J− be the minus-job with largest
index in the cycle, i.e., there does not exist a k > i such that k ∈ J− is part of
the cycle. Then (i−, j+) ∈ P ∩ C and ( j+, m−) ∈ C for some jobs j ∈ J+ and
m ∈ J−, where m < i. However, this implies that there exists an ` > j such
that (m−,`+) ∈ P (recall the definition of E2). Together with convexity and the
ordering of plus-jobs this implies (m−, j+) ∈ P, which contradicts the existence
of ( j+, m−) ∈ C . �

Let L1, L2, and L3 be any linear extensions of Ē1, Ē2, and Ē3, respectively.
That R = {L1, L2, L3} is a realizer follows from the facts that all incomparable
pairs are reversed (Lemma 3.5.7), and that Ē1, Ē2, and Ē3 are valid extensions of
P (Lemma 3.5.8). Furthermore, all steps involved in creating R can clearly be
accomplished in polynomial time.

3.5.5 Lexicographic Sums

In this section we show how to use previous results to obtain approximation al-
gorithms for new ordered sets. The construction we use here, lexicographic sums,
comes from a very simple pictorial idea (see [Tro92] for a more comprehensive
discussion). Take a poset P = (N , P) and replace each of its points x ∈ N with
a partially ordered set Qx such that each element of Qx has the same relation
to points outside it as x had before the replacement. A more formal definition
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follows. For a poset P = (N , P) and a family of posets S = {(Yx ,Q x) | x ∈ N}
indexed by the elements in N , the lexicographic sum of S over (N , P), denoted
∑

x∈(N ,P)(Yx ,Q x) is the poset (Z , R) where Z = {(x , y) | x ∈ N , y ∈ Yx} and
(x1, y1)≤ (x2, y2) in R if and only if one of the following two statements holds:

1. x1 < x2 in P.

2. x1 = x2 and y1 ≤ y2 in Q x1
.

We call P = {P} ∪ S the components of the lexicographic sum. A lexicographic
sum is trivial if |N | = 1 or if |Yx | = 1 for all x ∈ N . A poset is decomposable with
respect to lexicographic sums if it is isomorphic to a non-trivial lexicographic sum.
Moreover, a decomposition of a poset with respect to lexicographic sums can be
done in O(n2) time (see e.g. [Möh89])

In case the precedence constraints of every component admit an efficiently
samplable realizer, we observe that this translates into a randomized approxi-
mation algorithm:

Theorem 3.5.9 Problem 1|prec|
∑

w jC j, whenever precedence constraints form a
lexicographic sum whose components admit efficiently samplable k:t-realizers, has
a randomized (2− 2

t/k
)−approximation algorithm.

Proof. Let P = (N , P) with N = {1, 2, . . . , n} and Q1,Q2, . . . ,Qn be the compo-
nents of the lexicographic sum

∑

x∈(N ,P)Qx , where Qx = (Yx ,Q x).
Given a linear extension Lp of P and linear extensions L1, L2, . . . , Ln of the

components Q1,Q2, . . . ,Qn, we can construct a linear extension of
∑

x∈(N ,P)Qx

by adding the relation (x , y) ≤ (x ′, y ′) between two incomparable elements of
∑

x∈(N ,P)Qx , if either (i) x < x ′ in Lp or (ii) x = x ′ and y < y ′ in Lx .
Now, suppose that all components have efficiently samplable k:t-realizers.

Then we can sample each k:t-realizer independently to obtain linear extensions
of all components, which in turn define a linear extension L of the lexicographic
sum

∑

x∈(N ,P)Qx . It is not hard to see that each incomparable pair of
∑

x∈(N ,P)Qx

is reversed in L with probability at least k/t. Hence, the lexicographic sum has
an efficiently samplable k:t-realizer. This together with Theorem 3.4.1 concludes
the proof. �

Finally, we point out that, if the approximation algorithm for each component
can be derandomized, this yields a derandomized approximation algorithm for
the lexicographic sum. In particular this can be done when all components have
low dimension.



45 3.6 Scheduling with Interval Orders is NP-Hard

3.6 Scheduling with Interval Orders is NP-Hard

In this section we prove Theorem 3.1.1, i.e., that 1|prec|
∑

w jC j remains NP-
hard even in the special case of interval order precedence constraints. To prove
this, we exploit the vertex cover nature of problem 1|prec |

∑

w jC j: finding an
optimum solution to a scheduling instance S, where precedence constraints are
given by an interval order P, is equivalent to solving the minimum weighted
vertex cover problem in the graph GS

P (see Section 3.3).
We provide a reduction to 1|prec|

∑

w jC j with interval order precedence
constraints from the NP-hard problem of finding a minimum vertex cover in
a graph with bounded degree 3 [GJS76]. More precisely, given a connected
graph G = (V, E) with bounded degree 33, we construct a scheduling instance S
(with interval order precedence constraints) so that the graph GS

P has a weighted
vertex cover with value less than m+ c+ 1 if and only if G has a vertex cover of
size at most m , where c is a fixed value that depends on G (see Equation (3.9)).
We present the construction of S in two stages.

Stage 1 (Tree-layout of the graph)

Starting from an arbitrary, but fixed vertex s ∈ V , we obtain a tree T = (V, ET ),
with ET ⊆ E, rooted at s by using, for example, breadth-first search. Further-
more, we number the vertices of T top-down and left-right. Figure 3.9 shows
the breadth-first search tree T for K4.

Let G′ = (V ′, E′) be the graph obtained from T in the following way (see also
Figure 3.9). For each vertex vi in T we add two new vertices u2

i , u1
i and edges

{u2
i , u1

i }, {u
1
i , vi}. Furthermore, for each edge {vi, v j} ∈ E \ ET with i < j we add

vertices e1
i j, e2

i j and edges {vi, e1
i j}, {e

1
i j, e2

i j}, {e
2
i j, u2

j }.
The following lemma relates the minimum unweighted vertex covers of G

and G′. Its proof is similar to the proof in [AK00] for proving APX-completeness
of vertex cover on cubic graphs.

Lemma 3.6.1 Let C∗ ⊆ V and C ′∗ ⊆ V ′ be minimum vertex cover solutions to G
and G′, respectively. Then |C∗|= |C ′∗| − |V | − |E \ ET |.

Proof. On the one hand, it is easy to see that from every vertex cover C ⊆ V of
G we can construct a vertex cover C ′ ⊆ V ′ of G′ of size exactly |C |+ |V |+ |E\ET |.
In C ′ we include

3A similar reduction can be seen to work without the requirement that the reduction is from
graphs with bounded degree at most 3. However, this requirement can be done without loss
of generality (as the vertex cover problem remains NP-hard on these graphs) and simplifies the
reduction.



46 3.6 Scheduling with Interval Orders is NP-Hard

v4

v1

v3v2

v4

v1

v3v2

u1
1 u2

1

u1
2

u2
2

e2
23

e1
23

u2
3

u1
3

e1
24

e2
24

e1
34

e2
34

u2
4

u1
4

Graph G = K4 Tree T

Graph G′

Figure 3.9: The breadth-first search tree T = (V, ET ) for the graph G = K4, and
the graph G′. In the drawing of T the solid edges belong to ET .
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(i) every vertex in C;

(ii) u1
i for all i with vi ∈ V \ C;

(iii) u2
i for all with vi ∈ C;

(iv) e1
i j for each {vi, v j} ∈ E \ ET with vi ∈ V \ C; and

(v) e2
i j for each {vi, v j} ∈ E \ ET with vi ∈ C .

On the other hand, given a vertex cover C ′ ⊆ V ′ of G′ we transform it into a
vertex cover C ⊆ V of G in the following manner. Suppose there exist vi, v j ∈ V
with i < j such that {vi, v j} ∈ E and vi 6∈ C ′, v j 6∈ C ′. Since C ′ is a feasible
vertex cover of G′ we have that {vi, v j} ∈ E \ ET and either {e1

i j, e2
i j, u1

j } ⊆ C ′ or
{e1

i j, u2
j , u1

j } ⊆ C ′. Thus we can obtain a vertex cover C ′′ ⊆ V ′ of G′ with |C ′′| ≤
|C ′| by letting C ′′ = (C ′ \ {u1

j , e2
i j})∪{v j, u2

j }. Repeating this procedure will result
in a vertex cover C ′′′ ⊆ V ′ of G′ with |C ′′′| ≤ |C ′| such that C = C ′′′∩V is a feasible
vertex cover of G. Furthermore, it is easy to see that |C | ≤ |C ′′′| − |V | − |E \ ET |.
�

Stage 2 (Construction of scheduling instance)

Given a vertex cover graph G = (V, E) and its corresponding tree T = (V, ET ),
we now proceed by constructing the instance S of 1|prec|

∑

w jC j with prece-
dence constraints in the form of an interval order. We will do so by defining
several kinds of jobs along with several properties. Let k be a large value to be
determined later.

Tree-jobs. Instance S has |V |+1 so-called tree-jobs referred to as s0, s1, . . . , s|V |.
Their interval representations, processing times and weights are defined as fol-
lows (see also Figure 3.11).

Job Interval Representation Processing Time Weight
s0 [-1,0] 1 0
s1 [0, 1] 1/k 1
s j, j = 2, . . . , |V | [i, j], where 1/k j ki

{vi, v j} ∈ ET , i < j

Recall that two jobs si and s j are incomparable if their interval presentations
overlap (even marginally). Let si and s j with i < j be two tree-jobs with in-
terval representations [a, i] and [b, j] respectively. By the construction of the
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scheduling instance S we have psi
≤ 1/ki and ws j

≤ kb. As i and b are inte-
gers, psi

· ws j
= 1 or psi

· ws j
≤ 1/k, if i and j are incomparable. Moreover, since

psi
· ws j

= 1 only if i = b it follows that psi
· ws j

= 1 only if either vi is the parent
of v j in T or (i, j) = (0,1).

Now let

Ds := {(s0, s1)} ∪ {(si, s j) : vi is the parent of v j in T}.

By the above discussion we have the following lemma.

Lemma 3.6.2 A pair of incomparable jobs (a,b) has pa · wb = 1 if (a, b) ∈ Ds;
otherwise if (a, b) 6∈ Ds then pa ·wb ≤ 1/k.

Let P be the interval order defined on the tree-jobs and let GS
P be the graph

associated to the scheduling problem consisting of the tree-jobs. By the fact that
an interval order does not contain any 2+2 structures (depicted in Figure 3.10)
as induced posets [Tro92], graph GS

P has only two types of edges (see (i) and
(ii) in Figure 3.4):

(i) Two vertices (i, j) and ( j, i) are adjacent.

(ii) Two vertices (i, k) and (k, j) are adjacent if (i, j) ∈ P.

Figure 3.10: A 2+ 2 poset.

We are now ready to relate the tree-jobs to the tree T . Two graphs G and H are
said to be isomorphic if there exists a bijection f between the vertex sets of G
and H so that two vertices u and v of G are adjacent in G if and only if f (u) and
f (v) are adjacent in H.

Lemma 3.6.3 Let TP be the subgraph of GS
P induced by the vertex subset Ds. Then

TP and T are isomorphic.

Proof. See Figure 3.11 for an example of the graph TP. We relate the two graphs
TP and T by the bijection f : Ds→ V , defined by f ((si, s j)) = v j. By the fact that P
is an interval order (see the discussion above) together with the definition of Ds,
we have that two incomparable pairs (si, s j) and (sk, s`) in Ds with i < j ≤ k < `
are adjacent if and only if j = k and (si, s`) ∈ P. The proof is now completed by
noting that
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(i) if {(si, s j), (s j, s`)} is an edge in TP then { f (si, s j), f (s j, s`)} = {v j, v`} is an
edge in T , because, by definition, v j is the parent of v` in T ; and

(ii) if vi and v j are adjacent in T then f −1(vi) = (sa, si) and f −1(v j) = (si, s j),
for some a < i, and as sa’s interval representation is to the left of s j ’s
interval representation no linear extension of P reverses both (sa, si) and
(si, s j), i.e., they are adjacent in TP.

�

0 1 2 3 4

s0

s1

s2

s3

s4

(s0, s1)

(s1, s2) (s1, s3) (s1, s4)

Interval representation of P Graph TP

(1, 0)

(
1
k

.1
)

(
1
k2

.k

)

(
1
k3

.k

)

(
1
k4

.k

)

Figure 3.11: The interval representation of the tree-jobs obtained from K4 (the
processing time p and weight w of a job is depicted by the tuple (p, w)); TP is
the subgraph of GS

P induced by the vertex subset Ds.

Slack- and edge-jobs. Instance S has 2|V | slack-jobs, referred to as m1, m2, . . . , m|V |
and e1, e2, . . . , e|V |. There is also an edge-job bi j for each {vi, v j} ∈ E\ET . Their in-
terval representations, processing times and weights are defined as follows (see
also Figure 3.12).

Job Interval Representation Processing Time Weight
mi, i = 1, . . . , |V | [i− 1

2
, |V |+ i] 1/k(|V |+i) ki

ei, i = 1, . . . , |V | [|V |+ i, |V |+ i+ 1] 0 k(|V |+i)

bi j, where
{vi, v j} ∈ E \ ET , i < j [i, j− 1

2
] 1/k j ki

Let D = Ds

∪ {(si, mi), (mi, ei) : i = 1,2, . . . , |V |}
∪ {(si, bi j), (bi j, m j) : {vi, v j} ∈ E \ ET , i < j}
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Similar to Lemma 3.6.2 we have

Lemma 3.6.4 A pair of incomparable jobs (a, b) has pa · wb = 1 if (a, b) ∈ D;
otherwise if (a, b) 6∈ D then pa ·wb ≤ 1/k.

Proof. For an overview see Figure 3.12. By Lemma 3.6.2 we have that if a = si

and b = s j then pa · wb = 1 if (a, b) ∈ D and otherwise if (a, b) 6∈ D then
pa · wb ≤ 1/k. Since pei

= 0 for all i = 1, . . . |V | the incomparable pairs of
the form (ei, b) have weight pei

· wb = 0. Moreover, it is easy to see that an
incomparable pair of the form (a, ei) has pa ·wei

= 1, if a = mi and pa ·wei
≤ 1/k

otherwise. Similarly, an incomparable pair of the form (mi, b) has pmi
· wb = 1,

if b = ei and pmi
·wb ≤ 1/k otherwise.

Recall that a tree-job si has processing time 1/ki and has interval represen-
tation [x , i] for some x . Any other job j with interval representation [q, r] has
weight at most kdqe. Hence, by the definition of the intervals, an incomparable
pair (si, b), where b is no tree-job, has psi

wb = 1, if b = mi or b = bi j for some
j > i; otherwise we have that psi

· wb ≤ 1/k. By a similar argument we have
that an incomparable pair (bi j, b) has pbi j

wb = 1 if b = m j and pbi j
wb ≤ 1/k

otherwise. �

Let P be the interval order defined on the tree-, slack-, and edge-jobs; and
let GS

P be the graph associated to the scheduling problem S that consists of these
jobs. The following lemma, whose proof can be found in the next subsection,
motivates our construction.

Lemma 3.6.5 Let G′P = (D, EP) be the subgraph of GS
P induced by the vertex subset

D. Then G′P and G′ are isomorphic.

By Lemma 3.6.4, each incomparable pair of jobs (i, j) 6∈ D satisfies p(i) ·
w( j) ≤ 1/k. Let n be the number of jobs in the scheduling instance S and select
k to be n2 + 1. Let CS

P and C ′P be minimum vertex covers of GS
P and G′P and

denote their respective values by w(CS
P ) and w(C ′P). Since G′P is unweighted we

have w(C ′P) = |C
′
P|. By the selection of k and Lemma 3.6.4, we have

∑

(i, j)∈inc(P)\D

piw j < 1, and thus w(C ′P) =
�

w(CS
P )
�

.

Since G′P and G′ are isomorphic (Lemma 3.6.5) we have by Lemma 3.6.1 that
the original graph G has an optimal vertex cover of size at most m if and only if
�

w(CS
P )
�

≤ m+ c, where
c = |V |+ |E \ ET |. (3.9)
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Finally, we note that, as finding a minimum schedule of S is equal to finding
a minimum vertex cover of GS

P , which in turn is as hard as finding a minimum
vertex cover in a graph G with bounded degree 3, we have that 1|prec|

∑

w jC j

remains (weakly) NP-hard in the special case of interval order precedence con-
straints.

3.6.1 Proof of Lemma 3.6.5

We relate the two graphs G′P(D, EP) and G′(V ′, E′) by the bijection f : D → V ′,
defined as follows.

f :























(si, s j) 7−→ v j,

(si, mi) 7−→ u1
i ,

(mi, ei) 7−→ u2
i ,

(si, bi j) 7−→ e1
i j,

(bi j, m j) 7−→ e2
i j.

To complete the proof we need to show that

{(a, b), (c, d)} ∈ EP⇔{ f ((a, b)), f ((c, d))} ∈ E′. (3.10)

If a, b, c, and d are all tree-jobs and hence f ((a, b)) = vi, f ((c, d)) = v j, for some
i and j, then Lemma 3.6.3 guarantees (3.10). The remaining cases follow from
a simple case analysis that is presented below for the sake of completeness (see
also Figure 3.12 for an example).

On the one hand suppose {(a, b), (c, d)} ∈ EP. By the fact that P is an interval
order (see discussion before Lemma 3.6.3) together with the definition of D,
we can assume that b = c and a 6= d. Now consider the possible cases of
{(a, b), (b, d)} (where not all of them are tree-jobs).

Case a = si, b = s j, d = b jk, i < j < k: Then f ((si, s j)) = v j and f ((s j, b jk)) = e1
jk

and by the definition of G′ we have {v j, e1
jk} ∈ E′.

Case a = si, b = s j, d = m j, i < j: Then f ((si, s j)) = v j and f ((s j, m j)) = u1
j and

by the definition of G′ we have {v j, u1
j } ∈ E′.

Case a = si, b = bi j, d = m j, i < j: Then f ((si, bi j)) = e1
i j and f ((bi j, m j)) = e2

i j

and by the definition of G′ we have {e1
i j, e2

i j} ∈ E′.

Case a = si, b = mi, d = ei: Then f ((si, mi)) = u1
i and f ((mi, ei)) = u2

i and by
the definition of G′ we have {u1

i , u2
i } ∈ E′.
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Figure 3.12: The interval representation of the tree-, slack, and edge-jobs ob-
tained from K4 (the processing time p and weight w of a job is depicted by the
tuple (p, w)); G′P is the subgraph of GS

P induced by the vertex subset D. The
additional intervals and vertices compared to Figure 3.11 are depicted in gray.
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Case a = bi j, b = m j, d = e j, i < j: Then f ((bi j, m j)) = e2
i j and f ((m j, e j)) = u2

j

and by the definition of G′ we have {e2
i j, u2

j } ∈ E′.

We have considered all possible cases and it follows that {(a, b), (b, d)} ∈ EP ⇒
{ f ((a, b)), f ((b, c))} ∈ E′.

On the other hand, suppose {a, b} ∈ E′ and again consider the different pos-
sible cases (except the case when a = vi and b = v j that was already considered
in Lemma 3.6.3).

Case a = vi, b = e1
i j, i < j: Then f −1(vi) = (sk, si) and f −1(ei j

1 ) = (si, bi j) for some
k < i < j. Since sk’s interval representation is completely to the left of bi j ’s
interval representation in P, the incomparable pairs (sk, si) and (si, bi j) can-
not be reversed in the same linear extension, i.e., {(sk, si), (si, bi j)} ∈ EP.

Case a = e1
i j, b = e2

i j, i < j: Then f −1(e1
i j) = (si, bi j) and f −1(e2

i j) = (bi j, m j). Since
si ’s interval representation is completely to the left of m j ’s interval rep-
resentation in P the incomparable pairs (si, bi j) and (bi j, m j) cannot be
reversed in the same linear extension, i.e., {(si, bi j), (bi j, m j)} ∈ EP.

Case a = e2
i j, b = u2

j , i < j: Then f −1(e2
i j) = (bi j, m j) and f −1(u2

j ) = (m j, e j). Since
bi j ’s interval representation is completely to the left of e j ’s interval rep-
resentation in P the incomparable pairs (bi j, m j) and (m j, e j) cannot be
reversed in the same linear extension, i.e., {(bi j, m j), (m j, e j)} ∈ EP.

Case a = u1
j , b = u2

j : Then f −1(u1
j ) = (s j, m j) and f −1(u2

j ) = (m j, e j). Since s j ’s
interval representation is completely to the left of e j ’s interval representa-
tion in P the incomparable pairs (s j, m j) and (m j, e j) cannot be reversed in
the same linear extension, i.e., {(s j, m j), (m j, e j)} ∈ EP.

Case a = v j, b = u1
j : Then f −1(v j) = (si, s j) and f −1(u1

j ) = (s j, m j) for some i <
j. Since si ’s interval representation is completely to the left of m j ’s interval
representation in P the incomparable pairs (si, s j) and (s j, m j) cannot be
reversed in the same linear extension, i.e., {(si, s j), (s j, m j)} ∈ EP.

We have considered all possible cases and it follows that {vi, v j} ∈ E′⇒
{ f −1(vi), f −1(v j)} ∈ EP. We have thus proved (3.10), i.e., that the function f
defines an isomorphism between G′P and G′.
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3.7 Hardness of Approximation
Here, we prove hardness of approximation results for 1|prec|

∑

w jC j. Depend-
ing on whether we include the fixed-cost in the objective function, we obtain
negative results of different strengths. In Section 3.7.1, we show that the variable-
cost is as hard to approximate as the vertex cover problem. For the complete
objective function (i.e. the fixed-cost plus the variable-cost), we rule out the
existence of a PTAS for 1|prec|

∑

w jC j (Section 3.7.2).

3.7.1 Hardness of Variable Part

We show Theorem 3.1.2, i.e., that approximating the variable-cost of scheduling
problem 1|prec|

∑

w jC j is equivalent to approximating the vertex cover prob-
lem. Theorem 3.3.1 implies that minimizing the variable-cost of 1|prec|

∑

w jC j

is a special case of vertex cover and therefore is not harder to approximate. It
remains to prove the other direction. We do so by proving that, for any graph G,
we can construct a scheduling instance for which minimizing the variable-cost is
essentially equal to finding a minimum vertex cover of G.

Theorem 3.7.1 Approximating the variable cost of 1|prec|
∑

w jC j is as hard as
approximating vertex cover.

Proof. Let G = (V, E) be a vertex cover instance and let n = |V |. We will con-
struct a scheduling instance S as follows. The construction is inspired by the
so-called adjacency poset of G. Let r ≥ 1,ε > 0 and choose k > n2r/ε. For each
vertex vi ∈ V , there are two jobs v′i and v′′i . The processing time and weight for
a job v′i are 1/ki and 0, respectively. Conversely, the processing time and weight
for a job v′′i are 0 and ki, respectively.

S has the following precedence constraints: for each edge {vi, v j} ∈ E, the
precedence constraints v′i < v′′j and v′j < v′′i . Finally, we add v′i < v′′j for every i, j
with i < j. See Figure 3.13 for a small example.

v1 v2 v3

v′
1 v′

2 v′
3

v′′
1 v′′

2 v′′
3

(v′
1, v

′′
1 ) (v′

2, v
′′
2 ) (v′

3, v
′′
3 )

(v′
3, v

′′
1 )

G S GS
P vertex has weight

pv′
3

· wv′′
1

= k−3 · k1 ≤ k−1

Figure 3.13: The transformation of a graph G.
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Now consider the graph GS
P . It has at most n2 vertices. The n vertices cor-

responding to the incomparable pairs (v′i , v′′i ) have weight 1. All other vertices
have weight at most 1/k, which by the choice of k is very small. The total weight
of these “light” vertices is no more than n2/k.

Moreover, the subgraph induced by the vertices with weight 1 is isomorphic
to G. To see this, recall that there is an edge between the vertices (v′i , v′′i ) and
(v′j, v′′j ) in GS

P if and only if both precedence constraints v′i → v′′j and v′j → v′′i are
present in S. This in turn is the case if and only if {vi, v j} ∈ E.

Using the connection between S and GS
P provided by Theorem 3.3.1 and

the close relation between GS
P and G, it is easy to see that an r-approximation

algorithm for the variable-cost of 1|prec|
∑

w jC j would imply an approximation
algorithm for vertex cover with approximation ratio r(1+ n2/k)< (r + ε). �

We point out that the above reduction fails to yield inapproximability results
if the complete objective function (i.e. the fixed-cost plus the variable-cost) is
considered: the fixed cost introduced during the reduction dominates the objec-
tive function value, which makes any feasible solution close to optimal. Never-
theless, one can rule out, under some fairly standard assumption, the existence
of a PTAS for 1|prec|

∑

w jC j by establishing a connection between the maxi-
mum edge biclique problem and 1|prec|

∑

w jC j. This is done in the following
section.

3.7.2 Ruling out a PTAS

We show a nice relationship between 1|prec|
∑

w jC j and the maximum edge bi-
clique problem (see the proof overview of Theorem 3.1.5 for a definition). This
relationship together with our inapproximability result for maximum edge bi-
clique (MEB), given in Chapter 4, yields Theorem 3.1.5, i.e., that the scheduling
problem has no PTAS unless SAT can be solved by a (probabilistic) algorithm that
runs in time 2Nε , where N is the instance size and ε > 0 can be made arbitrarily
close to 0.

With an n by n bipartite graph G = (U , V, E), we associate a bipartite schedul-
ing instance SG with jobs U ∪ V and precedence constraints P = U × V \ E. The
jobs of U have processing time 1 and weight 0, and the jobs of V have processing
time 0 and weight 1. See Figure 3.14 for a small example.

The intuition behind the relationship between 1|prec|
∑

w jC j and MEB is
best seen by considering the 2D Gantt chart, first introduced by Eastman et
al. [EEI64] and later revived by Goemans and Williamson [GW00] to give ele-
gant proofs for various results related to 1|prec|

∑

w jC j. In a 2D Gantt chart,
we have a horizontal axis of processing time and a vertical axis of weight. For a
scheduling instance of the above form, the chart starts at point (0, n) and ends
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u1 u2 u3

v1 v2 v3

Graph G Scheduling instance SG

u1 u2 u3
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p = 1, w = 0

p = 0, w = 1

Figure 3.14: An example of a graph G with its associated scheduling instance
SG.

at point (n, 0). A job j is represented by a rectangle of length p j and height w j.
Hence, a job of U is represented by a horizontal line of length 1 and a job of
V is represented by a vertical line of length 1. Any schedule (linear extension
of the jobs) is represented in the 2D Gantt chart by placing the corresponding
rectangles of the jobs in the order of the schedule such that the startpoint of a
job is the endpoint of the previous job (or (0, n) for the first job). The value
∑

j w jC j of a schedule is then the area under the “work line” (see the shaded
area in Figure 3.15), or equivalently, the area above the work line subtracted
from n2. The relationship to MEB now becomes clear from the following subtle
observation: each point (s, t) on the work line of a schedule of SG defines an
edge biclique of G of size (n− s)t, by taking the vertices corresponding to the
jobs of U that complete after s (there are n− s of them) and the jobs of V that
complete before s (there are t of them), see striped area in Figure 3.15. We can
thus bound the area above the work line (and the value of an optimal schedule
of SG), in terms of the size of a maximum edge biclique of G.

Formalizing the above intuition we obtain the following result

Lemma 3.7.2 Let val(σ∗) denote the value of an optimal schedule σ∗ of SG. If a
maximum edge biclique of G has value an2 for some a ∈ (0,1], then

n2− an2(ln1/a+ 2)≤ val(σ∗)≤ n2− an2.

Proof. We start by showing that val(σ∗) ≤ n2 − an2. Let A ⊆ U , B ⊆ V be an
edge biclique solution with value |A| · |B| = an2. Consider a schedule σ that
schedules the jobs in the order U \ A→ B→ A→ V \ B. The feasibility of such a
schedule can be seen by observing that there is no precedence constraints from
the jobs in A to the jobs in B. The bound now follows since val(σ∗)≤ val(σ) and

val(σ)≤ |U\A|·|B|+|U |·|V \B|= (n−|A|)|B|+n(n−|B|) = n2−|A||B|= n2−an2.
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MEB defined by (s, t)

(s, t)

(0, n)

(n, 0)

Weight

Processing time

(0, 0)

Figure 3.15: 2D Gantt chart representation of a schedule.

To prove the lower bound n2− an2(ln 1/a+ 2)≤ val(σ∗) we shall use σ∗(i)
to denote the total number of jobs of V scheduled before i jobs of U have been
scheduled in σ∗. With this notation the value of σ∗ (where we let σ∗(n+1) = n)
is

n
∑

i=1

(σ∗(i+ 1)−σ∗(i)) i = n2−
n
∑

i=1

σ∗(i).

Note that in any point of the schedule σ∗, the set of jobs of U that have not been
scheduled, say A, has no precedence constraints to the set of jobs of V that have
been scheduled, say B. It follows that A and B form an edge biclique of G with
value |A||B|. As a maximum edge biclique of G has value a · n2, we have that
σ∗(i)(n− i + 1) ≤ an2 for i = 1, . . . , n. Moreover, since |V | ≤ n we have that
σ∗(i)≤ n for i = 1, . . . , n. Using these bounds on σ∗(i), it follows that

n2−
n
∑

i

σ∗(i) = n2−
(1−a)n
∑

i=1

σ∗(i)−
n
∑

i=(1−a)n+1

σ∗(i)

≥ n2− an2
(1−a)n
∑

i=1

1

n− i+ 1
−

n
∑

i=(1−a)n+1

n

= n2− an2(Hn−Han)− an2.
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The statement now follows by the bounds ln(n) ≤ Hn ≤ ln(n) + 1 on the har-
monic series. �

We can now use hardness results for maximum edge biclique to obtain hard-
ness results for 1|prec|

∑

w jC j. The best known hardness result for MEB is
presented in Chapter 4. For our purposes, it will be convenient to state it as
follows (the statement is obtained by using the standard trick of graph products;
see Section 4.5).

Theorem 3.7.3 Let ε > 0 be an arbitrarily small constant. There exist positive
constants b and ε′ (that depend on ε) so that for all constants k > 0, given a SAT
instance φ of size N, we can probabilistically construct an n by n bipartite graph
G in time 2O(Nε) such that with high probability

• (Completeness) if φ is satisfiable then G has an edge biclique of value at least
(b+ ε′)kn2;

• (Soundness) if φ is not satisfiable then G has no edge biclique of value bkn2.

By combining the above theorem with the bounds of Lemma 3.7.2, we have
that, in the completeness case, SG has a schedule of value at most

n2
�

1− (b+ ε′)k
�

whereas, in the soundness case, all schedules of SG have value at least

n2
�

1− bk(ln 1/bk + 2)
�

.

Clearly, there is a sufficiently large k (that depends on b and ε′ which in turn
depend on ε) such that

(b+ ε′)k > bk(ln1/bk + 2).

It follows that 1|prec|
∑

w jC j has no PTAS unless SAT can be solved by a (prob-
abilistic) algorithm that runs in time 2O(Nε), where N is the instance size and
ε > 0 can be made arbitrarily close to 0.
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3.8 Conclusions
We have considered the classic precedence-constrained single machine schedul-
ing problem with the weighted sum of completion times objective. The objective
function of the scheduling problem can be split into a so-called “fixed-cost” and
a “variable-cost”. Only the variable-cost depends on the schedule, whereas the
fixed-cost is the same for all feasible schedules of a given instance. In a series
of recent papers [CH99; CS05; AM09] it was established that (the variable-cost
of) the scheduling problem is in fact a special case of minimum weighted vertex
cover on a graph with certain structural properties [CS05].

We have continued to investigate the structure of the vertex cover graph
associated with the scheduling problem. In particular, we observed that the
obtained graph is exactly the graph of incomparable pairs defined in dimension
theory of partial orders. Exploiting this relationship allowed us to present a
framework for obtaining (2− 2/ f )-approximation algorithms, whenever the set
of precedence constraints has fractional dimension f . Our approach yields the
best known approximation ratios for all previously considered special classes of
precedence constraints and it provides the first results for precedence constraints
of bounded degree.

Unfortunately, our approach fails to improve the approximation guarantee in
the general case. In order to explain this, we showed that the variable-cost of
1|prec|

∑

w jC j is as hard to approximate as the vertex cover problem. This ac-
tually shows that any approach (including ours), which only takes into account
the variable-cost, is unlikely to improve the approximation guarantee.

When the fixed-cost is taken into consideration, the scheduling problem
might become easier to approximate since the techniques for proving hardness
results for the variable-cost do not generalize to the complete objective function
(i.e. the fixed-cost plus the variable-cost). For the complete objective function,
we presented the first inapproximability result that rules out the existence of
a PTAS for the scheduling problem. This result was obtained by establishing a
connection to the maximum edge biclique problem. Consequently, an inapprox-
imability result for maximum edge biclique under a weaker assumption would
lead to a hardness result for the scheduling problem under the same assumption.

Below we mention two open problems that arise naturally from the work
presented in this chapter. The second was also raised in [SW99] as “Open Prob-
lem 9”.

1. What is the complexity of 1|prec|
∑

w jC j with convex bipartite or semi-order
precedence constraints?

We showed that 1|prec|
∑

w jC j restricted to interval order precedence
constraints remains (weakly) NP-hard. The NP-hardness of the schedul-
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ing problem with precedence constraints of bounded up/down degree
follows from the work by Lawler [Law78]. However, the complexity of
1|prec|

∑

w jC j with convex bipartite or semi-order precedence constraints
remains open.

2. Does the general version of 1|prec|
∑

w jC j admit a (2− ε)-approximation
algorithm for some constant ε > 0?

Our results show that an answer to this question is likely to be obtained
by understanding the interplay between the fixed-cost and variable-cost.
Indeed, for scheduling instances with very large fixed-cost we showed that
it is unlikely to approximate the variable-cost within a ratio less than 2.
What remains to be understood is if the variable-cost becomes easier to
approximate when the fixed-cost is smaller than the variable-cost. In an
exiting recent development, Bansal & Khot [BK09] addressed this issue
and showed that if a new stronger version of the unique games conjecture
is true then 1|prec|

∑

w jC j is NP-hard to approximate within a factor 2−ε,
for any ε > 0.



Chapter 4

Maximum Edge Biclique, Optimal
Linear Arrangement and Sparsest Cut

4.1 Introduction

In this chapter we consider the following notorious problems (see also Figure 4.1
for small examples):

• Maximum edge biclique (MEB) is the problem of finding a k1 by k2 complete
bipartite subgraph of an n by n bipartite graph G so as to maximize k1 · k2

(the number of edges).

• (Uniform) sparsest cut (SPC) on a graph G(V, E) is the problem of finding
a cut (S, S̄), where S̄ = V \S, that minimizes the sparsity E(S, S̄)/(|S| · |S̄|),
where E(S, S̄) denotes the number of edges crossing the cut.

• Optimal linear arrangement (OLA) on a graph G(V, E) is the problem of
finding a permutation of the vertices — a bijective function π : V →
{1,2, . . . , |V |}— so as to minimize

∑

{u,v}∈E
|π(v)−π(u)|.

Maximum edge biclique, sparsest cut, and optimal linear arrangement are
fundamental combinatorial problems. They have a rich number of applications
in areas such as computational biology, circuit design, manufacturing optimiza-
tion, and graph drawing (see e.g. [Shm97; CC00; DKST01; DPS02]). Moreover,
as they often appear as sub-routines in algorithms, it is important to understand
if we can efficiently find “good” solutions to these problems. For example, sup-
pose we have a “good” algorithm for the sparsest cut problem. Then we can
partition a graph into large pieces while minimizing the size of the “interface”
between them, a property that is very useful when designing graph theoretic
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algorithms via the divide-and-conquer paradigm (see [Shm97] for a compre-
hensive discussion).

1 2 3 4

An edge biclique
of value 2 · 3 = 6

A cut of sparsity
3

3·3 = 1/3
A linear arrangement of
value 1 + 1 + 1 + 3 = 6

Figure 4.1: Examples of the addressed problems.

4.1.1 Literature Review

Since the addressed optimization problems are NP-hard [GJ79; MS90; Pee03],
one is forced to settle for approximation algorithms. Unfortunately, there is no
known approximation algorithm for the maximum edge biclique problem that
achieves a significantly better approximation guarantee than the inverse of the
number of edges in the bipartite graph. The situation for the sparsest cut prob-
lem and the optimal linear arrangement problem is more hopeful. Leighton &
Rao [LR99] showed that the sparsest cut problem can be approximated within
a factor O(log n) by using a linear programming relaxation. The approxima-
tion guarantee is tight in the sense that it matches the lower bound on the
integrality gap of the corresponding relaxation up to constant factors [LR99].
Recently, Arora, Rao & Vazirani [ARV04] used semidefinite programming to ob-
tain the best known approximation algorithm for uniform sparsest cut with per-
formance guarantee O(

p

log n) 1 . Subsequently, these techniques were also
used to obtain the algorithm of choice for the non-uniform sparsest cut prob-
lem [CGR08], which is a generalization of the uniform sparsest cut problem.
The situation is similar for optimal linear arrangement. Feige & Lee [FL07] and
Charikar et al. [CHKR06] independently showed that combining the techniques
in [ARV04] with the rounding algorithm of Rao and Richa [RR04] yields an
O(
p

log n log log n)-approximation algorithm for OLA. This improves over the

1The same approximation guarantee was later obtained without solving the semidefinite pro-
gram and this approach has better running time [AHK04].
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O(log n)-approximation algorithm of Rao and Richa [RR04]. The semidefinite
programming relaxations used for sparsest cut and OLA were recently shown to
have integrality gap Ω(log log n) by Devanur, Khot, Saket & Vishnoi [DKSV06].
This result suggests that we cannot use those relaxations to obtain a constant
factor approximation algorithm for the sparsest cut problem or the optimal lin-
ear arrangement problem.

Despite substantial efforts, it seems difficult to obtain good (constant factor)
approximation algorithms for the considered problems. Instead, one can hope
for negative results, i.e., results that indeed show the problems to be hard to
approximate. For sparsest cut and optimal linear arrangement, the only known
hardness results are based on the unique games conjecture [Kho02] and say
that the non-uniform sparsest cut problem has no constant factor approximation
algorithm [KV05; CKK+06]. Feige & Kilian showed that the maximum edge
biclique problem is hard to approximate within a factor of 2(log n)δ for some δ >
0 under the plausible assumption that 3-SAT 6∈ DT I M E(2n3/4

). This was later
improved by Feige [Fei02] who showed that maximum edge biclique is hard
to approximate within O(nε), for some ε > 0, by assuming a hypothesis about
average-case hardness of Random 3-SAT.

In summary, no good approximation algorithms are known for maximum
edge biclique, sparsest cut, and optimal linear arrangement. At the same time,
the only known hardness of approximation results use non-standard assump-
tions and apply to non-uniform sparsest cut (a more general and thus possibly
harder problem than uniform sparsest cut) and maximum edge biclique. Improv-
ing our understanding of the approximability of these problems is considered a
major open problem in complexity theory (see e.g. [Vaz01; Tre04; DKSV06]).

4.1.2 Results and Overview of Techniques

Our results use the recent Quasi-random PCP construction of Khot [Kho06],
who proved important inapproximability results for graph min-bisection, dens-
est subgraph, and balanced bipartite clique. These inapproximability results
were obtained under the (fairly) standard assumption that SAT has no proba-
bilistic algorithm that runs in time 2nε , where n is the instance size and ε > 0
can be made arbitrarily close to 0. Prior to Khot’s results, graph min-bisection,
densest subgraph, and balanced bipartite clique had a similar status as maxi-
mum edge biclique, sparsest cut, and optimal linear arrangement, i.e., no good
approximation guarantees, and the only hardness results where obtained by
using non-standard assumptions [Fei02]. However, the results in [Kho06], or
even the stronger average-case assumptions used by Feige in [Fei02], were
not known to generalize to sparsest cut and optimal linear arrangement (see
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e.g. [Tre04; DKSV06]).
The main contribution of this chapter is to show that the Quasi-random

PCP [Kho06] and carefully designed constructions indeed suffice to rule out
the existence of a polynomial time approximation scheme (PTAS) for sparsest
cut, optimal linear arrangement, and maximum edge biclique.

Theorem 4.1.1 Let ε > 0 be an arbitrarily small constant. If there is a PTAS for
sparsest cut, optimal linear arrangement or maximum edge biclique then SAT has
a (probabilistic) algorithm that runs in time 2nε , where n is the instance size.

Proof overview. The hardness of approximation follows by presenting reduc-
tions from the Quasi-random PCP [Kho06]. The Quasi-random PCP is discussed
in Section 4.1.3. Informally, it says that, given a set B of “bits” and a family T
of tests that are subsets of B, it is hard to distinguish whether (i) there exists a
subset B′ ⊆ B of half the bits so that “many” of the tests in T are subsets of B′ or
(ii) for any subset B′ ⊆ B of half the bits, only “few” tests in T are subsets of B′.

The reductions to maximum edge biclique, sparsest cut, and optimal linear
arrangement are presented in Sections 4.2, 4.3, and 4.4, respectively. They all
follow a general pattern that is sketched below. We start by building a graph
instance of the addressed problem with vertices corresponding to the bits and
tests of the Quasi-random PCP. The graph is created in such a way that ver-
tices corresponding to tests (“test-vertices”) have a relatively low impact on the
total solution cost. This is achieved by having a relatively small number of test-
vertices. Moreover, when test-vertices are disregarded, then any optimal solu-
tion is balanced; that is, bit-vertices are evenly partitioned into two parts in such
a solution. Since test-vertices have low impact on the total cost, one can prove
that any “good” solution must be quasi-balanced, i.e., bit-vertices are roughly
evenly partitioned into two parts, B′ and B′′, in the solution. By the construction
of the graph, test-vertices that correspond to tests that are subsets of B′ have a
lower cost (referred to as “good test-vertices”). The gap then follows by noting
that, by the Quasi-random PCP, it is hard to decide whether there are “many” or
“few” good test-vertices. �

The hardness factor for maximum edge biclique can be boosted as done for
balanced bipartite clique in [Kho06] and we get the following theorem that is
proved in Section 4.5.

Theorem 4.1.2 Let ε > 0 be an arbitrarily small constant. Assume that SAT does
not have a probabilistic algorithm that runs in time 2nε on an instance of size n.
Then there is no polynomial (possibly randomized) algorithm for maximum edge
biclique that achieves an approximation ratio of 1/N ε′ on graphs of size N where
ε′ only depends on ε.
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4.1.3 Preliminaries: Quasi-random PCP

The famous PCP Theorem, by Arora & Safra [AS98] and Arora et al. [ALM+98],
can be stated as follows.

Theorem 4.1.3 Given a SAT formula φ of size n we can in time polynomial in n
construct a set of M tests satisfying:

1. Each test queries a constant number d of bits from a proof and based on the
outcome of the queries it either accepts or rejects φ.

2. (Yes Case/Completeness) If φ is satisfiable then there exists a proof so that
all tests accept φ.

3. (No Case/Soundness) If φ is not satisfiable then no proof will cause more
than M/2 tests to accept φ.

Note that by picking one test at random, one can look at only a constant number
of bits of a given proof and then with good probability know whether the given
proof is correct or not. Therefore, such proofs are called probabilistically check-
able proofs (PCP). The algorithm that constructs a set of such tests with the goal
to distinguish between correct and incorrect proofs will be referred to as a PCP
verifier.

Khot [Kho06] introduced the notion of Quasi-random PCPs. The idea is to
focus on the distribution (as opposed to the outcome) of queries made by the
verifier. The distribution is required to depend on whether the input to the PCP
verifier is a YES or a NO instance. In the NO case, the queries are required to
be distributed randomly over the proof, i.e., given any set B of half the bits, if
each test queries d bits from the proof then only a fraction (1/2)d of the tests is
expected to query bits only from B. In the YES case, the distribution is required
to be far from random. Since the verifier does not know whether the input is a
YES or NO instance, it seems quite counter-intuitive at a first sight that he can
make his query pattern depend on the YES/NO case. However, consider the PCP
verifier by Holmerin & Khot [HK03]: each test of their verifier queries three bits
from a balanced proof, i.e. a proof with an equal number of 1 bits and 0 bits, and
accepts if and only if the exclusive-or of the three queried bits is zero. Suppose
the tests of this verifier query the same bits of the proof no matter if it is a YES
or NO instance; then the tests that accepts in the YES case will also accept in
the NO case (given the same proof). It is thus necessary that the query pattern
depend on the YES/NO case, without the verifier knowing which case it is.

The following Quasi-random PCP construction by Khot [Kho06] will be the
starting point for our reductions and can be stated as follows (for an overview
see Figure 4.2).
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Theorem 4.1.4 ([Kho06]) For every ε > 0, given a SAT formula φ of size n, we
can in time 2O(nε) probabilistically construct a set of M = 2O(nε) tests satisfying with
high probability:

1. Each test queries d = O
�

1
ε

log 1
ε

�

bits from a proof of length N = 2O(nε).

2. Each bit of the proof is queried by dM/N tests (queries are uniformly dis-
tributed over the proof).

3. (Yes Case/Completeness) If φ is satisfiable then there exists a set of half the
bits (corresponding to the 0-bits in a correct proof) so that βM tests query
bits only from this set, where β = (1−O(1/d)) 1

2d−1 .

4. (No Case/Soundness) For p > 0, let B be any subset of bits of size (1/2+p)N.
If φ is not satisfiable then at most (α+ pd)M tests query bits only from B,
where α= 1

2d +
1

220d .2

2We note that in [Kho06] the soundness says that for any set of half the bits, at most αM
tests query bits only from this set. The soundness here follows easily by using that each bit is
queried by dM/N tests.
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M tests
Proof of N bits

A test queries d bits

A bit is queried
by dM/N tests

A SAT formula φ

Yes Case/Completeness: φ satisfiable No Case/Soundness: φ not satisfiable

∃ a set of half the bits
so that many tests only
query bits from this set

Given any subset of half
the bits, few tests query
bits only from this set

Figure 4.2: An overview of Theorem 4.1.4.
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4.2 Maximum Edge Biclique

In this section we present a reduction from the Quasi-random PCP construction
given by Theorem 4.1.4 to the maximum edge biclique problem so that in the
completeness case the graph has an edge biclique with “large” value, whereas in
the soundness case all edge bicliques have “small” value (see Section 4.2.5 for
details on the achieved gap). We first present the construction (Section 4.2.1)
followed by an important property of the constructed graph (Section 4.2.2).
We then present the completeness and soundness analyses (Section 4.2.3 and
Section 4.2.4).

Since the reduction and analysis are relatively easy, this section serves as
a good starting point before continuing to the more complex reductions (that
follow the same general pattern) in Sections 4.3 and 4.4.

4.2.1 Construction

Let N be the proof size and M be the total number of tests of the PCP verifier
in Theorem 4.1.4. Both N and M are bounded by 2O(nε), where n is the size of
the original SAT formula. Let d be the integer as in Theorem 4.1.4. Select w to

be
�

β−α
12·d

�2
(very small), where β := (1−O(1/d)) 1

2d−1 and α := 1
2d +

1
220d are the

bounds given by the completeness and soundness of Theorem 4.1.4.
Construct a bipartite graph G(V, W, E) with |V | = |W | as follows (for an

overview of the construction see Figure 4.3). The right-hand side (RHS) consists
of N bit-vertices corresponding to the bits in the PCP proof and M test-vertices
corresponding to the tests of the PCP verifier. The left-hand side (LHS) consists
of N bit-vertices corresponding to the bits in the PCP proof and M slack-vertices
to keep the bipartite graph balanced. (The slack-vertices are not adjacent to
any vertices and are thus not included in any bipartite clique). Connect a LHS
bit-vertex to all RHS bit-vertices except the one corresponding to the same bit of
the proof. Furthermore, connect it to a RHS test-vertex if and only if the bit is
not queried by the test. Finally, assume that w N

2
= M . (This can be achieved by

simply copying vertices: every bit-vertex is replaced by cN copies of itself, and
every test-vertex is replaced by cM copies of it such that now wN/2 = M holds.
Copies are connected if and only if the original vertices were. Any maximal
biclique must take none or all the copies of a vertex on either side of G.)

The intuition behind the construction is the following. As there are many
more bit-vertices than test-vertices, any maximum edge biclique must include
approximately half of the bit-vertices of the LHS and the remaining bit-vertices
of the RHS (see Section 4.2.2). We then use Theorem 4.1.4 together with the
fact that bit-vertices are partitioned into two sets of approximately equal size to
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LHS RHSA LHS bit-vertex is adjacent to
all RHS bit-vertices except the one
corresponding to the same bit

A LHS bit-vertex is adjacent to
a RHS test-vertex if and only if
the bit is not accessed by the test

N bit-vertices N bit-vertices

M slack-vertices M test-vertices

Figure 4.3: An example of the construction. Only the edges incident to the dark
gray bit-vertex are depicted.

analyze the completeness and soundness (see Sections 4.2.3 and 4.2.4 respec-
tively).

4.2.2 An Optimal Edge Biclique is Quasi-Balanced

Given a biclique let L and R denote respectively the number of bit-vertices of
LHS and bit-vertices of RHS that are included in the biclique. Note that in any
maximal edge biclique L + R = N . We say that a biclique is quasi-balanced if
|L− R| ≤ β−α

6d
N .

The following lemma follows in a straightforward manner from the fact that
we have many more bit-vertices than test-vertices in our constructed biclique
instance.

Lemma 4.2.1 Any optimal edge biclique is quasi-balanced.

Proof. Any balanced biclique of G, i.e., a biclique with L = R = N/2, has value
at least

�

N
2

�2
, which serves as a lower bound on the optimal solution. Now

consider a biclique with L = 1+b
2

N and R = 1−b
2

N where |b| > β−α
6d

. Taking all
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test-vertices in the biclique gives us the upper bound:

L(R+M) =
1+ b

2
N
�

1− b

2
N +M

�

=
1+ b

2
N
�

1− b

2
N +w

N

2

�

= (1− b2+ bw+w)
1

4
N 2.

The statement follows by recalling w =
�

β−α
12·d

�2
and observing that

1. maximum of f (x) =−x2+ xw+w is achieved when x = w
2
<

β−α
6d

; and

2. f (b) =−b2+ bw+w ≤−(β−α
6d
)2+ β−α

6d
(β−α

12d
)2+ (β−α

12d
)2 < 0.

We have thus that the value of f (b) is always less than 0 when |b|> β−α
6d

. �

4.2.3 Completeness

We will see that there is an edge biclique of size at least

(1+ βw)
�

N

2

�2

. (4.1)

This will be achieved by constructing a “balanced” solution, that is a biclique
where the bit-vertices are partitioned into two equal sized sets. By Theorem 4.1.4,
half the bits in the proof, namely the 1-bits in a correct proof, are such that a
fraction β of tests do not query any of them. Let Γ denote the set of all such tests
with |Γ| = βM = βw N

2
. Now consider the biclique (see also Figure 4.4), where

the LHS consists of the bit-vertices corresponding to the 1-bits in the proof and
the RHS consists of the remaining bit-vertices (corresponding to the 0-bits in the
proof) and the test-vertices corresponding to the tests in Γ. This gives an edge
biclique of size N

2
·
�

N
2
+ βM

�

= N
2
·
�

N
2
+ βw N

2

�

= (1+ βw)
�

N
2

�2
.

4.2.4 Soundness

We will see that there is no edge biclique of size
�

1+
α+ β

2
w
��

N

2

�2

. (4.2)

By Lemma 4.2.1, it is enough to bound the value of quasi-balanced edge
bicliques. Consider such a quasi-balanced biclique and let L, R, and T denote
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LHS RHS

N/2 bit-vertices
corresponding to 1-bits

βM test-vertices
corresponding to tests
that only query 0-bits

N/2 bit-vertices
corresponding to 0-bits

Figure 4.4: The edge biclique in the completeness case. The vertices included in
the edge biclique are depicted in dark gray and only the edges incident to those
vertices are depicted.

respectively the number of bit-vertices of LHS, bit-vertices of RHS, and test-
vertices of RHS that are included in the biclique.

Note that a test-vertex can be included in a biclique only if it is adjacent
to all bit-vertices in the LHS of the biclique. In other words, a test-vertex can
be included in a biclique only if the corresponding test only queries bits that
correspond to bit-vertices included in the RHS of the biclique. The soundness
of Theorem 4.1.4 says that, for any given set of a fraction 1/2+ p of the bits,
at most a fraction α+ p · d of the tests only query those bits. Hence, any edge
biclique with L = 1−b

2
N and R= 1+b

2
N has T ≤

�

α+ |b|
2

d
�

M ≤ (α+ |b|d)w N
2

.

Assuming |b| ≤ β−α
6d

(Lemma 4.2.1), we have the following (rough) bound
on the value of any edge biclique of G:

L(R+ T ) ≤
1− b

2
N
�

1+ b

2
N + (α+ |b|d)w

N

2

�

≤ (1+ (1+ |b|)(α+ |b|d)w)
�

N

2

�2

≤ (1+ (α+ |b|(2d +α))w)
�

N

2

�2

<

�

1+
α+ β

2
w
��

N

2

�2

.
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The last inequality holds because

α+ |b|(2d +α)<
α+ β

2
⇔

2|b|(2d +α)< β −α,

which is easily seen to be true by recalling that |b| ≤ β−α
6d

and α < d.

4.2.5 Inapproximability Gap

By using Theorem 4.1.4, we have provided a probabilistic reduction Γ from SAT
to maximum edge biclique. For any fixed ε > 0, given an instance φ of SAT of
size n, Γ produces an edge biclique instance G in time 2O(nε) satisfying with high
probability:

• (Completeness) If φ is satisfiable then G has an edge biclique of value

(1+ βw)
�

N

2

�2

.

• (Soundness) If φ is not satisfiable then all edge bicliques of G have value
at most

�

1+
α+ β

2
w
��

N

2

�2

.

The claimed hardness of approximation result now follows by recalling that (i)
α,β , and w are all functions of parameter d of Theorem 4.1.4, which in turn is
a function of ε and (ii) α < β .
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4.3 Sparsest Cut

We present a reduction from the Quasi-random PCP construction given by The-
orem 4.1.4 to uniform sparsest cut so that in the completeness case the con-
structed graph has a cut with “small” sparsity, whereas in the soundness case all
cuts have “large” sparsity (see Section 4.3.5 for details on the achieved gap). We
first present the construction (Section 4.3.1) followed by an important property
of the constructed graph (Section 4.3.2). We then present the completeness and
soundness analyses (Section 4.3.3 and Section 4.3.4).

4.3.1 Construction

Let N be the proof size and M the total number of tests of the PCP verifier
in Theorem 4.1.4. Both N and M are bounded by 2O(nε), where n is the size
of the original SAT formula. Let d be the number of bits each test queries as

in Theorem 4.1.4. Select k :=
�

10d
β−α

�8
and h := k

�

k2+ k+ 1
4

�

, where β :=

(1− O(1/d)) 1
2d−1 and α := 1

2d +
1

220d are the bounds given by the completeness
and soundness of Theorem 4.1.4. Note that h >> k >> 1. We now describe
the construction (for an overview see Figure 4.6). The graph G = (V, E) consists
of a bipartite graph Gb and two “huge” cliques of size kMN called C` and Cr .
The graph Gb is a bipartite graph where the left-hand side (LHS) consists of
M test-vertices corresponding to the tests of the PCP verifier. The right-hand
side (RHS) consists of N clusters, one for each bit in the PCP proof, where each
cluster consists of M bit-vertices. Place edges between a test-vertex to all vertices
of a cluster if and only if the bit corresponding to that cluster is queried by the
test.

Finally, we complete the construction of the graph G by connecting the bipar-
tite graph Gb to C` and Cr as follows. Each bit-vertex has hM

N
edges to C` and hM

N

edges to Cr , and each test-vertex has (d − β−α
5d
)M edges to Cr . Furthermore, we

distribute the edges incident to the cliques so that the difference of the degree
between any two vertices in a clique is at most one.

The intuition behind the construction is the following. For a cut to have
low sparsity it is good to divide the vertices into two sets of approximately the
same size. As our construction has relatively few test-vertices compared to the
number of bit-vertices and the size of the cliques, a cut of small sparsity must
place the cliques on different sides and partition the bit-vertices into two sets
of approximately the same size (see Section 4.3.2). We then use Theorem 4.1.4
together with the fact that in any good cut the bit-vertices are partitioned into
two sets of approximately equal size, to analyze the completeness and soundness
(see Sections 4.3.3 and 4.3.4 respectively).
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M test-vertices

C! Cr

N bit-clusters
with M vertices each

A test-vertex is adjacent to all vertices
of a cluster if the corresponding
bit is queried by the test.

A test-vertex
has

(
d− β−α

5d

)
M

edges to Cr

A bit-vertex has
hM

N edges to C! and
hM

N edges to Cr

Clique of
size kMN

Clique of
size kMN

Figure 4.5: The graph G for sparsest cut. Cliques, bit-vertices, and test-vertices
are depicted by polygons, squares and circles, respectively. For simplicity, only
edges incident to dark gray vertices are depicted.

4.3.2 An Optimal Cut is Quasi-Balanced

We say that a cut (S, S̄) is quasi-balanced if it satisfies the following properties:

1. The cliques C` and Cr are placed on different sides of the cut. Assume,
without loss of generality, that the vertices of C` are included in S and the
vertices of Cr are included in S̄.

2. Let L and R be the number of bit-vertices in S and S̄, respectively. Then

|L− R|<
�

β−α
10d

�2
N M .

The goal of this section is to prove that any optimal sparsest cut must be quasi-
balanced. Indeed, if we consider the subgraph induced by all but the test-
vertices, then it is easy to see that any sparsest cut is balanced, that is, quasi-
balanced with |L − R| = 0. The intuition is now that the test-vertices have a
relatively small impact on the cost and, hence, any optimal sparsest cut must be
close to being balanced, i.e., quasi-balanced. For the formal proof, we will need
some useful properties of the constructed graph G.
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C! Cr

≈ half the bit-vertices ≈ half the bit-vertices

S S̄

Figure 4.6: A quasi-balanced cut. (The edges and test-vertices are not depicted).

Observation 4.3.1

1. The number of edges from bit-vertices and test-vertices to a clique is less than
hM

N
·MN + dM2 = (h+ d)M2. By the distribution of edges, a vertex v of C`

or Cr is thus adjacent to at most d (h+d)M2

kMN
e= d (h+d)M

kN
e< 3hM

N
vertices outside

the clique.

2. A bit-vertex is adjacent to 2hM
N

vertices of the cliques. As queries are uniformly
distributed (see Theorem 4.1.4), a bit-vertex is adjacent to at most d M

N
test-

vertices. It follows that a bit-vertex is adjacent to at most 2hM
N
+ d M

N
≤ 3hM

N
vertices.

Lemma 4.3.2 The graph G has a cut (S, S̄) with sparsity

E(S, S̄)

|S||S̄|
≤

1

N 2

 

k+
d
2

k2+ k+ 1
4

!

. (4.3)

Moreover, E(S, S̄) = O(M2) in any optimal sparsest cut of G.

Proof. Consider the cut (S, S̄), where S contains all vertices of C` and the bit-
vertices corresponding to half the bits (S̄ contains the remaining vertices).

Since the cliques are on different sides of the cut and the solution is “bal-
anced”, i.e., the bit-vertices are partitioned into two sets of equal size, we have
that |S||S̄| ≥

�

kMN + MN
2

��

kMN + MN
2

�

= M2N 2(k2+ k+ 1
4
).

We continue by calculating E(S, S̄). Since all vertices of C` are in S and all
vertices of Cr are in S̄, we have that the number of edges between bit-vertices
and the cliques that cross the cut is MN ·hM

N
= hM2. Consider the edges incident

to test-vertices. Note that, as each test queries d bits and in G there is a cluster
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of M bits for each bit, the total number of edges incident to test and bit-vertices
is dM2. By Theorem 4.1.4, the queries are uniformly distributed and thus the
total number of edges between the test-vertices and the bit-vertices in S that
corresponds to half the bits is dM2

2
. Summing up the above observations, we get

E(S, S̄) = M2
�

h+ d
2

�

. It follows that the sparsity of the cut is

E(S, S̄)

|S||S̄|
≤

M2
�

h+ d
2

�

M2N 2(k2+ k+ 1
4
)
,

which, by recalling that h= k
�

k2+ k+ 1
4

�

, can be written as

1

N 2

 

k+
d
2

k2+ k+ 1
4

!

,

which is the right-hand side of (4.3).
Finally, to see that any optimal sparsest cut (S, S̄) has E(S, S̄) = O(M2), note

that the total number of vertices of G is 2kN M + N M + M . Hence |S||S̄| ≤
(|V |/2)2 =

�

kN M + N M
2
+ M

2

�2
≤ ((k+ 1)N M)2 = O

�

(N M)2
�

for any cut. Now
suppose toward contradiction that there exists an optimal sparsest cut with
E(S, S̄) =ω(M2). Then E(S,S̄)

|S||S̄|
=ω(1/N 2), which contradicts its optimality, since

we proved that there exists a cut with sparsity O(1/N 2).
�

We are now ready to prove the main result of this section.

Lemma 4.3.3 Any optimal cut is quasi-balanced.

Proof. We show that an optimal cut is quasi-balanced by first proving that the
cliques are placed on different sides of the cut (Claim 4.3.4 and Claim 4.3.5)
and then that bit-vertices are partitioned into two sets of almost equal sizes
(Claim 4.3.6).

We say that a clique is divided in a cut (S, S̄) if both sets S and S̄ contain
vertices of the clique. The intuition behind the following claim is that the cliques
are so huge so that any cut dividing a clique will have a large number of edges
crossing the cut.

Claim 4.3.4 The cliques C` and Cr are not divided in any optimal sparsest cut.

Proof of Claim. Given an optimal sparsest cut (S, S̄), we prove that all vertices
of Cr are placed in either S or S̄. (The proof that C` is not divided is similar
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and left to the reader). Let l and r be the number of vertices of Cr in S and S̄,
respectively. Suppose toward contradiction that l > 0 and r > 0.

If both l and r are big, say at least kN M
4

, then we have E(S, S̄) ≥
�

kN M
4

�2
,

which contradicts the optimality of the cut since an optimal cut has E(S, S̄) =
O(M2) (see Lemma 4.3.2).

Now consider case 1: when 0 < l < kN M
4

(case 2: when 0 < r < kN M
4

is
symmetric). Let v be a vertex of Cr that is placed in S. We complete the proof
by considering the following two sub-cases.

Case 1.a: Suppose there exists a bit-vertex vb in S̄ and consider what happens
with the sparsity if we swap places of v and vb. As the bit-vertex vb is
adjacent to at most 3hM

N
vertices in total and v is adjacent to at most 3hM

N
+

kN M
4

vertices in S (see Observation 4.3.1) and to at least 3kN M
4

vertices in
S̄ (that belong to Cr), the number of edges that cross the cut will decrease
by at least

3kN M

4
−

kN M

4
− 3h

M

N
− 3h

M

N
>

kN M

4
,

(for big enough N). The sizes of the two partitions S and S̄ remain un-
changed. It follows that the sparsity of the cut will decrease, which con-
tradicts its optimality.

Case 1.b: Suppose there are no bit-vertices in S̄. Then all bit-vertices are in S
and we have |S| ≥ N M and since r > 3kN M/4 we have |S̄| ≥ 3kN M/4.
Consider what happens if we move v to S̄. Similar to the case above, the
number of edges that cross the cut will decrease by at least kN M

4
. The new

value of the sparsest cut will thus be at most

E(S, S̄)− kN M
4

(|S| − 1)(|S̄|+ 1)
=

E(S, S̄)− kN M
4

|S||S̄|(1− 1
|S|
+ 1
|S̄|
− 1
|S||S̄|
)
.

By using that both |S| and |S̄| are at least N M , we have that the sparsity is
at most

E(S, S̄)− kN M
4

|S||S̄|(1− 2
N M
)
,

which is strictly smaller than E(S,S̄)
|S||S̄|

because (using that we have E(S, S̄) =
O(M2) in an optimal cut)

E(S, S̄)
�

1−
2

N M

�

≥ E(S, S̄)−O
�

M

N

�

≥ E(S, S̄)−
kN M

4
,

again contradicting the optimality of the cut.



78 4.3 Sparsest Cut

�

Given that the cliques are not divided in an optimal sparsest cut we now
prove that they are placed on different sides. The intuition is that the cliques are
so huge that a cut that places them on the same side is very unbalanced, i.e., the
product |S||S̄| is small, which in turn will cause the cut to have large sparsity.

Claim 4.3.5 The cliques C` and Cr are placed on different sides in any optimal
sparsest cut.

Proof of Claim. Suppose toward contradiction that both cliques are placed in say
S in an optimal sparsest cut (S, S̄). Recall that each bit-vertex has 2hM

N
edges to

the cliques and each test-vertex has
�

d − β−α
5d

�

M edges to the clique Cr . It
follows that each vertex in S̄ has at least 2hM

N
edges that cross the cut (for big

enough N), and the cut has sparsity:

E(S, S̄)

|S||S̄|
≥

2hM
N
· |S̄|

|S||S̄|
≥

2hM
N

4kMN
=

k2+ k+ 1
4

2N 2 .

This contradicts the optimality of the cut, by recalling that G has a cut with
sparsity (4.3). �

By the above claim we can assume that the cliques C` and Cr are placed
on different sides of the cut. We continue by proving that the bit-vertices are
partitioned into two sets of almost equal size. The following claim completes
the proof of Lemma 4.3.3.

Claim 4.3.6 Given an optimal cut (S, S̄), let L and R be the number of bit-vertices
in S and S̄, respectively. Then

|L− R| ≤
�

β −α
10d

�2

N M .

Proof of Claim. Since the cliques are placed on different sides of the cut, each bit-
vertex has at least hM

N
incident edges that cross the cut. It follows that E(S, S̄)≥

hM
N
· MN = hM2. Suppose toward contradiction that L = 1+p

2
N M and R =

1−p
2

N M with |p| >
�

β−α
10d

�2
. Then the calculations below show that the sparsity

of such a cut is greater than (4.3), which contradicts its optimality.
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E(S, S̄)

|S||S̄|
≥

hM2

�

kMN + 1+p
2

MN +M
��

kMN + 1−p
2

MN +M
�

=
h

N 2
�

k2+ k+ 1−p2

4
+O( 1

N
)
�

≥
1

N 2

 

h+ d

k2+ k+ 1
4

!

(for a big enough N)

=
1

N 2

 

k+
d

k2+ k+ 1
4

!

(recall h= k(k2+ k+ 1/4))

The last inequality holds because we assumed |p|>
�

β−α
10d

�2
and we have

h ·
�

k2+ k+
1

4

�

≥ (h+ d) ·
�

k2+ k+
1− p2

4
+O(1/N)

�

⇔

h ·
�

p2

4
−O(1/N)

�

≥ d ·
�

k2+ k+
1− p2

4
+O(1/N)

�

,

which can easily be seen to be true by recalling that h = k(k2 + k + 1/4) and

k =
�

10d
β−α

�8
. �

The proof of the above claim concludes the proof of Lemma 4.3.3. �

4.3.3 Completeness

We will see that there is a cut with sparsity at most

1

N 2

 

k+
d
2
− β β−α

5d

k2+ k+ 1
4

!

. (4.4)

By Theorem 4.1.4, half the bits in the proof, namely the 0-bits in a correct
proof, are such that a fraction β of the tests access only these bits in their queries.
Let Γ denote the set of all such tests with |Γ| = βM . We now partition the
vertices of G as follows: S contain the vertices of C`, the vertices of the clusters
corresponding to the 0-bits, and the test-vertices of Γ (S̄ contains the remaining
vertices).
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C! Cr

clusters corresponding to 0-bits clusters corresponding to 1-bits

tests that only query 0-bits (βM many) remaining test-vertices

S S̄

Figure 4.7: The cut (S, S̄) in the completeness case. For simplicity, no edges are
depicted.

Since the cliques are on different sides of the cut and the solution is “bal-
anced”, i.e., the bit-vertices are partitioned into two sets of equal size, we have
that |S||S̄| ≥

�

kMN + MN
2

��

kMN + MN
2

�

= M2N 2(k2+ k+ 1
4
).

We continue by calculating E(S, S̄). Since all vertices of C` are in S and all
vertices of Cr are in S̄, we have that the number of edges between bit-vertices
and the cliques that cross the cut is MN ·hM

N
= hM2. Consider the edges incident

to test-vertices. Note that, as each test queries d bits and G has a cluster of M
bits for each bit of the proof, the total number of edges incident to test and
bit-vertices is dM2. By Theorem 4.1.4, the queries are uniformly distributed
and thus the total number of edges between the test-vertices and the bit-vertices
corresponding to the 0-bits is dM2

2
. By observing that the test-vertices of Γ have

βdM2 edges to those bit-vertices and β
�

d − β−α
5d

�

M2 edges to Cr , the total
number of edges incident to test-vertices that cross the cut is

dM2

2
− βdM2+ β

�

d −
β −α

5d

�

M2 = M2

�

d

2
− β

β −α
5d

�

.

Summing up the above observations, we get E(S, S̄) = M2
�

h+ d
2
− β β−α

5d

�

and
it follows that the sparsity of the cut is at most

M2
�

h+ d
2
− β β−α

5d

�

M2N 2(k2+ k+ 1
4
)

,
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which, by recalling that h= k
�

k2+ k+ 1
4

�

, can be written as

1

N 2

 

k+
d
2
− β β−α

5d

k2+ k+ 1
4

!

= (4.4).

4.3.4 Soundness

We will see that all cuts have sparsity at least

1

N 2

 

k+
d
2
− α+β

2
β−α
5d

k2+ k+ 1
4

!

. (4.5)

We start by proving a useful property, which is later used to bound the num-
ber of “good” test-vertices. Since the construction of G does not necessarily
enforce that all bit-vertices of a bit-cluster are placed on the same side of the
cut, we cannot apply Theorem 4.1.4 in a straightforward way. The following
lemma is a property of graph Gb (the same bipartite construction and property
will be used for OLA in Section 4.4).

Lemma 4.3.7 Consider the bipartite graph Gb, let B be a set of bit-vertices with
|B| ≤ 1+q

2
N M, where q =

�

β−α
10d

�2
, and let T be the set of test-vertices that each

have at least
�

d − β−α
10d

�

M edges to the bit-vertices of B. Then for a NO-instance

we have that |T |< 2α+β
3

M.

Proof. Note that all bits that are accessed by the test-vertices of T must have at
least (1− β−α

10d
)M bit-vertices in B. Since |B| ≤ (1+ q)N M/2, we have that the

number of bits in the proof accessed by the tests in T is at most

1+ q

1− β−α
10d

·
N

2
≤
�

1+ q+
β −α

5d

�

·
N

2
.

The inequality holds because

1+ q ≤
�

1−
β −α
10d

��

1+ q+
β −α

5d

�

⇔

β −α
10d

�

1+ q+
β −α

5d

�

≤
β −α

5d
,

which is true since q+ β−α
5d

is less than one.



82 4.3 Sparsest Cut

The soundness of Theorem 4.1.4 says that, for any given set of a fraction
(1+ q + β−α

5d
)/2 of the bits, at most a fraction α+

�

q+ β−α
5d

�

· d/2 of the tests
only query those bits. It follows that

|T | ≤
�

α+
�

q+
β −α

5d

�

·
d

2

�

M ,

which is less than 2α+β
3

M , because

α+
�

q+
β −α

5d

�

·
d

2
<

2α+ β
3

⇔

�

q+
β −α

5d

�

·
3d

2
< β −α,

which can be seen to be true by recalling that q =
�

β−α
10d

�2
. �

By Lemma 4.3.3 we only need to consider quasi-balanced cuts. (For an
overview of the structure of an optimal cut in the soundness case see Figure 4.8).
We continue by proving that for quasi-balanced cuts the value of E(S, S̄)/(|V |/2)2,
which is a lower bound on the sparsity of a cut (S, S̄), is bounded from below
by (4.5).

This is achieved by bounding E(S, S̄) as follows. Consider a quasi-balanced
cut (S, S̄). Let L and R be the bit-vertices in S and S̄, respectively. Let Γ be the set
of test-vertices that each have at least

�

d − β−α
10d

�

M edges to the bit-vertices of L.

By the fact that the cut is quasi-balanced we have that 1−q
2

N M ≤ |L| ≤ 1+q
2

N M ,

where q =
�

β−α
10d

�2
, which is sufficient for applying Lemma 4.3.7 and we get that

|Γ| ≤ 2α+β
3

M . Since, by Theorem 4.1.4, the queries are uniformly distributed,
the total number of edges between the test-vertices and the bit-vertices of L is at
least (1−q)dM2

2
. If all test-vertices are placed in S̄, all of these edges would cross

the cut. The only way to decrease their number is to move test-vertices to S. But
since every test-vertex has

�

d − β−α
5d

�

M edges to Cr , this is only profitable for

test-vertices which have less than β−α
10d

M edges to the bit-vertices of R, i.e., test-
vertices that are in Γ. By the above argument we can assume, when calculating
a lower bound of E(S, S̄), that the only test-vertices placed in S are those in Γ
and it is easy to see that assuming they are not adjacent to any bit-vertices of R
might only decrease E(S, S̄).

As in the completeness case, we have that the number of edges between
bit-vertices and the cliques that cross the cut is MN · hM

N
= hM2.

To summarize we have the following:



83 4.3 Sparsest Cut

• The number of edges, incident to test-vertices that cross the cut, is at least
(1−q)dM2

2
−|Γ|dM+ |Γ|

�

d − β−α
5d

�

M = (1−q)dM2

2
−|Γ|β−α

5d
M , which, by using

that |Γ| ≤ 2α+β
3

M , can be bounded from below by M2
�

(1−q)d
2
− 2α+β

3
β−α
5d

�

.

• The number of edges, between bit-vertices and the cliques that cross the
cut, is hM2.

Since |S||S̄| ≤ (|V |/2)2 we have that the sparsity of any cut of G is

E(S, S̄)

|S||S̄|
≥

M2
�

h+ (1−q)d
2
− 2α+β

3
β−α
5d

�

�

kMN + MN
2
+M

�2

=
1

N 2





h+ (1−q)d
2
− 2α+β

3
β−α
5d

k2+ k+ 1
4
+O( 1

N
)





≥
1

N 2

 

k+
d
2
− α+β

2
β−α
5d

k2+ k+ 1
4

!

= (4.5).

The last inequality holds because h= k(k2+ k+ 1/4) and

(1− q)d
2

−
2α+ β

3

β −α
5d

>
d

2
−
α+ β

2

β −α
5d

⇔

�

α+ β
2
−

2α+ β
3

�

β −α
5d

>
qd

2
⇔

β −α
6

β −α
5d

>
qd

2
,

which is true since q =
�

β−α
10d

�2
.

4.3.5 Inapproximability Gap

By using Theorem 4.1.4, we have provided a probabilistic reduction Γ from SAT
to (uniform) sparsest cut. For any fixed ε > 0, given an instance φ of SAT of
size n, Γ produces a sparsest cut instance G in time 2O(nε) satisfying with high
probability:

• (Completeness) If φ is satisfiable then G has a cut of sparsity at most

1

N 2

 

k+
d
2
− β β−α

5d

k2+ k+ 1
4

!

.
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C! Cr

≈ half the bit-vertices

test-vertices that are adjacent to
at most β−α

10d · M bit-vertices in S̄

(at most 2α+β
3 M many test-vertices) remaining test-vertices

S S̄

≈ half the bit-vertices

Figure 4.8: Structure of an optimal (S, S̄) cut in the soundness case. (The edges
are not depicted).

• (Soundness) If φ is not satisfiable then all cuts have sparsity at least

1

N 2

 

k+
d
2
− α+β

2
β−α
5d

k2+ k+ 1
4

!

.

The claimed hardness of approximation result now follows by recalling that (i)
α,β , and k are all functions of parameter d of Theorem 4.1.4, which in turn is a
function of ε and (ii) α < β .
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4.4 Optimal Linear Arrangement
For simplicity, we first consider the weighted version of OLA. That is, an edge
{u, v} ∈ E has weight wuv and the objective is to find a permutation π of the
vertices that minimizes

∑

{u,v}∈E wuv|π(u)−π(v)|. We present a reduction from
the Quasi-random PCP construction given by Theorem 4.1.4 to weighted OLA so
that in the completeness case the constructed graph has a linear arrangement
with “small” cost, whereas in the soundness case all linear arrangements have
“large” cost (see Section 4.4.5 for details on the achieved gap). We first present
the construction (Section 4.4.1) followed by an important property of the con-
structed graph (Section 4.4.2). We then present the completeness and soundness
analyses (Section 4.4.3 and Section 4.4.4). Finally, we note in Section 4.4.6 that
the arguments generalize in a straightforward manner to the unweighted case.

4.4.1 Construction

Let N be the proof size and M be the total number of tests of the PCP verifier
in Theorem 4.1.4. Both N and M are bounded by 2O(nε), where n is the size of
the original SAT formula. Let d be the number of bits each test queries in the

Quasi-random PCP construction. Select k to be
�

10d
β−α

�8
, where α := 1

2d +
1

220d and

β := (1−O(1/d)) 1
2d−1 are the bounds given by the completeness and soundness

of Theorem 4.1.4. Note that k >> 1. We now describe the construction (for an
overview see Figure 4.9). The final graph G consists of the graphs Gb, G`, and
Gr and is constructed as follows.

• The graph Gb is a bipartite graph where the left-hand side (LHS) consists
of M test-vertices corresponding to the tests of the PCP verifier. The right-
hand side (RHS) consists of N clusters, one for each bit in the PCP proof,
where each cluster consists of M bit-vertices. Place edges, weighted by
1, between a test-vertex to all vertices of a cluster if and only if the bit,
corresponding to that cluster, is queried by the test. (Note that Gb is the
same bipartite graph as in Section 4.3.)

• The graph G` consists of a vertex C` and 2kMN additional slack-vertices
We place an edge from each slack vertex to C` and weight these edges by
k4 M

N
.

• The graph Gr is constructed as G`, where instead of C` we have Cr .

Finally, we construct the graph G by connecting the bipartite graph Gb to G` and
Gr as follows. Each test-vertex has edges to C` and Cr , weighted by β−α

10d
M and

(d − β−α
10d
)M , respectively. Each bit-vertex has an edge to Cr of weight k2 M

N
.
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M test-vertices

C!

N bit-clusters
with M vertices each

A test-vertex is adjacent to all vertices
of a cluster if the corresponding
bit is queried by the test.

Cr

kMN slack-verticeskMN slack-vertices kMN slack-verticeskMN slack-vertices

A test-vertex has edges to C!

and Cr of weights β−α
10d M

and
(
d− β−α

10d

)
M , respectively

A bit-vertex has an edge
to Cr of weight k2 M

N

Edges between slack-
vertices and C! or Cr

have weight k4 M
N

Figure 4.9: The graph G for OLA. Slack-vertices, bit-vertices, and test-vertices
are depicted by diamonds, squares, and circles, respectively. For simplicity only
some edges are depicted and the thickness of an edge is relative to its weight.

The intuition behind the construction is the following. As slack-vertices and
bit-vertices have edges to C` and Cr of very large weight, any good optimal lin-
ear arrangement will locate these vertices evenly before and after the vertices
of C` and Cr (see Figure 4.10). With this intuition in mind, we prove the im-
portant property that any good linear arrangement will partition the bit-vertices
into two sets of approximately the same size (see Section 4.4.2). We then use
Theorem 4.1.4 to analyze the completeness and soundness (see Sections 4.4.3
and 4.4.4 respectively).

Throughout the analyses, we restrict ourselves without loss of generality to
linear arrangements where C` is placed to the left of Cr . The case when Cl is
to the right of Cr is symmetric. Moreover, we use the following convention to
simplify notation. Let π be a linear arrangement of G. For sets A, B of vertices
we write A<π B (subscript omitted when π is clear from the context) whenever
∀u ∈ A,∀v ∈ B : π(u)< π(v).

4.4.2 An Optimal Linear Arrangement is Quasi-Balanced

Select q :=
�

β−α
10d

�2
, i.e., a “small” number. We say that a linear arrangement π

of G is quasi-balanced if (see also Figure 4.10)

• the slack-vertices of Gi can be partitioned into two sets S i
L, S i

R with ||S i
L| −
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|S i
R|| ≤ qkN M , for i ∈ {l, r}; and

• the bit-vertices can be partitioned into two sets BL and BR with ||BL| −
|BR|| ≤ qN M so that

S`L < {C`}< S`R < BL < S r
L < {Cr}< S r

R < BR.

C! Cr

≈ kMN
slack-vertices

≈ kMN
slack-vertices

≈ kMN
slack-vertices

≈ kMN
slack-vertices

≈MN/2
bit-vertices

≈MN/2
bit-vertices

S!
L S!

R Sr
RSr

LBL BR

Figure 4.10: A quasi-balanced linear arrangement. (The test-vertices are not
depicted).

The goal of this section is to prove that any optimal linear arrangement is
quasi-balanced. Indeed, if we consider the subgraph induced on all but the test-
vertices then it is easy to see that any optimal linear arrangement is balanced,
that is, quasi-balanced with |S i

L|−|S
i
R|= 0, for i ∈ {`, r}, and |BL|−|BR|= 0. The

intuition is that the test-vertices have a relatively small impact on the cost and,
hence, any optimal linear arrangement must be close to being balanced, i.e.,
quasi-balanced. For the formal proof, we will need the following upper bound
on the cost of an optimal linear arrangement.

Lemma 4.4.1 The graph G has a linear arrangement with cost at most

M3N

�

2k6+ k3+
k2

4
+ 2dk

�

. (4.6)

Proof. Partition the slack-vertices of Gi into two sets S i
L and S i

R with |S i
L|= |S

i
R|=

kN M , for i ∈ {`, r}. Let BL be the set of bit-vertices corresponding to a set of
half the bits and let BR be the remaining bit-vertices. Note that |BL| = |BR| =
N M/2. We also let Γ with |Γ|= M be all the test-vertices. Now consider a linear
arrangement π of G so that (see Figure 4.10)

S`L < {C`}< S`R < BL < S r
L < Γ< {Cr}< S r

R < BR.

We proceed by bounding the cost of π by considering the different edges.
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• The edges incident to slack-vertices have cost at most

4 · k4 M

N

kN M
∑

i=1

(i+M) = 4 · k4 M

N

�

kN M(kN M + 1)
2

+ kN M2)
�

,

which is bounded from above by 2k6M3N + o(M3N).

• The edges between the bit-vertices and Cr have cost at most

2 · k2 M

N

N M/2
∑

i=1

(i+ kN M +M).

Since

(i)
∑N M/2

i=1 i = (N M/2)(N M/2+ 1)/2= (N M)2

8
+ o
�

(N M)2
�

,

(ii)
∑N M/2

i=1 kN M = k(N M)2/2, and

(iii)
∑N M/2

i=1 M = o
�

(MN)2
�

the cost of the edges between bit-vertices and Cr is bounded from above
by M3N( k2

4
+ k3) + o(M3N).

• Now consider the edges incident to test-vertices. As an edge from a test-
vertex to Cr has weight

�

d − β−α
10d

�

M and the length of such an edge is at

most M in π, the cost of such an edge is at most
�

d − β−α
10d

�

M2. As there
are M test-vertices, the cost of all edges from test-vertices to Cr is at most
�

d − β−α
10d

�

M3 = o(M3N). Each test-vertex also has an edge of weight
β−α
10d

M to C` and such an edge has length at most (2kMN + MN/2+ M)
in π. Hence, the cost of all edges from the M test-vertices to C` is at most
M3N β−α

10d

�

2k+ 1
2

�

+ o(M3N) ≤ M3Nk + o(M3N). Finally, a test-vertex
has at most dM edges to the bit-vertices, each of length at most (kMN +
MN/2+ M) in π. Thus the cost of all edges from the M test-vertices to
bit-vertices is at most M3N

�

dk+ d
2

�

+o(M3N)≤ M3N(d+1)k+o(M3N).

In summary, the total cost of the edges incident to test-vertices is at most
M3Nk+M3N(d + 1)k+ o(M3N) = M3N(d + 2)k+ o(M3N).

Summing up the above observations gives us that the cost of π is at most

M3N

�

2k6+ k3+
k2

4
+ (d + 2)k

�

+ o(M3N),
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which is (for large enough N and M) less than

M3N

�

2k6+ k3+
k2

4
+ 2dk

�

= (4.6).

�

We are now ready to prove the main result of this section.

Lemma 4.4.2 Any optimal linear arrangement of G is quasi-balanced.

Proof. We first prove (Claim 4.4.3) that in any optimal linear arrangement of
G, Gi ’s slack-vertices can be partitioned into two sets S i

L, S i
R , for i ∈ {l, r}; and

bit-vertices can be partitioned into two sets BL and BR so that

S`L < {C`}< S`R < BL < S r
L < {Cr}< S r

R < BR. (4.7)

Secondly (Claim 4.4.4), we will see that the sets must be almost “balanced”
in an optimal linear arrangement that is, ||S i

L| − |S
i
R|| ≤ qkN M for i ∈ {l, r} and

||BL| − |BR|| ≤ qN M .

Claim 4.4.3 In any optimal linear arrangement π of G, vertices must be ordered
as in (4.7).

Proof of Claim. Since we only consider linear arrangements with C` to the left
of Cr it is easy to see that

S`L <π {C`}<π S`R <π S r
L <π {Cr}<π S r

R.

Let vb be a bit-vertex and vs a slack-vertex of Gr . Suppose, toward contradiction,
that vb are placed between vs and Cr , for example π(vs) < π(vb) < π(Cr) (the
remaining cases are symmetric and omitted). Consider what happens with the
cost if we swap places of vb and vs:

• Vertex vs is only adjacent to Cr , and this edge has weight k4 M
N

.

• Vertex vb has one edge to Cr of weight k2 M
N

. Since queries are uniformly
distributed (see Theorem 4.1.4) vb has d M

N
edges to test-vertices, each of

weight 1. Thus, the total weight of the edges incident to vb is d M
N
+ k2 M

N
.
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It follows that by swapping vb and vs we decrease the cost by at least (π(vb)−
π(vs))

�

k4 M
N
−
�

d M
N
+ k2 M

N

��

> 0, contradicting the optimality of π.
By the above arguments there are no bit-vertices placed in between slack-

vertices and the corresponding vertex Cr (or C`). We can thus partition the
bit-vertices into three sets B1, BL, BR so that

B1 < S`L < {C`}< S`R < BL < S r
L < {Cr}< S r

R < BR.

We complete the proof of this claim by proving that B1 = ; in an optimal linear
arrangement π of G. Suppose, toward contradiction, that B1 6= ; in π. Recall
that a bit-vertex has an edge of weight k2 M

N
to Cr and the total weight of its

remaining edges (to test-vertices) is d M
N

. Furthermore, the total weight of the
edges incident to test-vertices are 2dM2 (the cost of the edges, that are incident
to test-vertices and not to the bit-vertices in B1, might also increase, since their
length can increase when the bit-vertices in B1 are moved) . Let π′ be the linear
arrangement

S`L < {C`}< S`R < B1 < BL < S r
L < {Cr}< S r

R < BR.

As |S`L|+ |S
`
R|= 2kN M , the cost of π′ is smaller than the cost of π by at least

|B1|
�

2kMN
�

k2 M

N
− d

M

N

�

− 2dM2

�

,

which is positive whenever B1 6= ;. �

The following claim completes the proof of Lemma 4.4.2.

Claim 4.4.4 In any optimal linear arrangement π of G we have

• ||S i
L| − |S

i
R|| ≤ qkN M for i ∈ {l, r}; and

• ||BL| − |BR|| ≤ qN M.

Proof of Claim. Let |S`L|= (1+ s`)kMN , |S`R|= (1− s`)kMN , |S r
L|= (1+ sr)kMN ,

|S r
R|= (1− sr)kMN , |BL|= (1+ b)MN/2, and |BR|= (1− b)MN/2, where s`, sr ,

and b may assume negative values.
We proceed by calculating a lower bound on the cost of π by considering the

different types of edges.

• The cost of the edges incident to slack-vertices is at least

k4 M

N

 

(1+s`)kMN
∑

i=1

i+
(1−s`)kMN
∑

i=1

i+
(1+sr )kMN
∑

i=1

i+
(1−sr )kMN
∑

i=1

i

!

≥

k6M3N
�

(1+ s`)
2/2+ (1− s`)

2/2+ (1+ sr)
2/2+ (1− sr)

2/2
�

,

which is equal to k6M3N(2+ s2
` + s2

r ).
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• The cost of the edges incident to bit-vertices is at least

k2 M

N

 

(1+b)MN/2
∑

i=1

(i+ (1+ sr)kN M) +
(1−b)MN/2
∑

i=1

(i+ (1− sr)kN M)

!

.

Since

(i)
∑(1+b)N M/2

i=1 i+
∑(1−b)N M/2

i=1 i ≥ (N M)2

4

�

(1+b)2

2
+ (1−b)2

2

�

= (N M)2 1+b2

4
,

(ii)
∑(1+b)N M/2

i=1 (1+sr)kN M+
∑(1−b)N M/2

i=1 (1−sr)kN M ≥ (N M)2(1−|sr |)k

the cost of the edges incident to bit-vertices is bounded from below by
M3N((1− |sr |)k3+ 1+b2

4
k2).

Summing up the above observations we have that the cost of π is at least

M3N

�

(2+ s2
` + s2

r )k
6+ (1− |sr |)k3+

1+ b2

4
k2

�

.

As k =
�

10d
β−α

�8
(a huge number) and q =

�

β−α
10d

�2
=
�

1
k

�1/4
, the cost of π is

greater than the upper bound on an optimal linear arrangement (4.6) whenever
|s`|> q/2, |sr |> q/2, or |b|> q and the statement follows.

�

The proof of Claim 4.4.4 concludes the proof of Lemma 4.4.2. �

4.4.3 Completeness

We will see that there is a linear arrangement with value at most

M3N

�

2k6+ k3+
k2

4
+
�

d +
�

1−
2β +α

3

�

β −α
5d

�

k

�

. (4.8)

This will be achieved by constructing a “balanced” linear arrangement. Partition
the slack-vertices of Gi into two sets S i

L and S i
R with |S i

L| = |S
i
R| = kN M , for

i ∈ {`, r}. Let BL be the bit-vertices corresponding to the 0-bits in a correct proof
and let BR be the remaining bit-vertices. Note that |BL| = |BR| = N M/2. By the
completeness of Theorem 4.1.4, half the bits in the proof, namely the 0-bits in a
correct proof, are such that a fraction β of tests only access them in their queries.
Let Γ denote the set of all such test-vertices with |Γ| = βM and let Γ̄ be the set
of the remaining test-vertices.
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C! Cr

kMN
slack-vertices

kMN
slack-vertices

kMN
slack-vertices

kMN
slack-vertices

MN/2
bit-vertices

MN/2
bit-vertices

bit-vertices
corresponding
to 0-bits

tests that only
query 0-bits remaining tests

Figure 4.11: The linear arrangement π in the completeness case.

Now consider the balanced linear arrangement π of G:

S`L<{C`}<S`R<BL<Γ<S r
L<Γ̄<{Cr}<S r

R<BR

The following lemma concludes the completeness analysis.

Lemma 4.4.5 The cost of π is at most (4.8) (for big enough M and N).

Proof. We need to bound the cost of each edge in the linear arrangement π.

1. As in the proof of Lemma 4.4.1, both the cost of edges incident to slack-
vertices and the cost of edges between the bit-vertices and Cr can be seen
to be at most M3N(2k6+ k3+ k2

4
) + o(M3N).

2. Consider a test-vertex t ∈ Γ. As the weight of the edge {t, Cr} is
�

d − β−α
10d

�

M
and its length in π is at most kMN +M , the cost of edge {t, Cr} is at most
�

d − β−α
10d

�

kM2N + o(M2N). Similarly, as edge {t, C`} has weight β−α
10d

M
and its length in π is at most (kMN +MN/2+M), the cost of {t, C`} is at
most M2N β−α

10d
(k+ 1/2)+ o(M2N). Finally t has dM edges of weight 1 to

bit-vertices in BL. Since these edges have length at most (MN/2+ M) in
π, their cost is at most M2Nd/2+ o(M2N).

By the above arguments, the cost of the edges incident to the test-vertices
in Γ is at most

|Γ|M2N
��

d −
β −α
10d

�

k+
β −α
10d

(k+ 1/2) + d/2
�

+ |Γ|o(M2N),

which is less than |Γ|M2N (dk+ d) + |Γ|o(M2N). Using |Γ| = βM , we
have that the edges incident to the test-vertices in Γ have cost at most
βM3N (dk+ d) + o(M3N).
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3. Similarly to the above calculations for test-vertices in Γ, the cost of edges
incident to test-vertices in Γ̄ can be seen to be at most

(1−β)M













β −α
10d

M(2kMN +MN/2)
︸ ︷︷ ︸

edges to C`

+ dM(kMN +MN/2)
︸ ︷︷ ︸

edges to bit-vertices













+o(M3N) =

(1− β)M
��

d +
β −α

5d

�

kM2N +
�

β −α
20d

+ d/2
�

M2N
�

+ o(M3N),

which is less than (1− β)M3N
��

d + β−α
5d

�

k+ d
�

+ o(M3N).

We have considered all types of edges of G and by summing up the above costs
we get that the total cost of π is at most

M3N

�

2k6+ k3+
k2

4
+
�

d + (1− β)
β −α

5d

�

k+ d

�

+ o(M3N)<

M3N

�

2k6+ k3+
k2

4
+
�

d +
�

1−
2β +α

3

�

β −α
5d

�

k

�

= (4.8).

The last inequality holds because
�

d + (1− β)
β −α

5d

�

k+ d <
�

d +
�

1−
2β +α

3

�

β −α
5d

�

k⇔

d <
�

β −
2β +α

3

�

β −α
5d

k⇔

d <
β −α

3
·
β −α

5d
k,

which is easily seen to be true by recalling that k =
�

10d
β−α

�8
. �

4.4.4 Soundness

We will see that all linear arrangements of G have value at least

M3N

�

2k6+ k3+
k2

4
+
�

d +
�

1−
α+ β

2

�

β −α
5d

�

k

�

. (4.9)

By Lemma 4.4.2 we only need to consider quasi-balanced linear arrange-
ments. We proceed by bounding the cost of such linear arrangements from
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C! Cr

≈ kMN
slack-vertices

≈ kMN
slack-vertices

≈ kMN
slack-vertices

≈ kMN
slack-vertices

≈MN/2
bit-vertices

≈MN/2
bit-vertices

bit-vertices
in BL

test-vertices that are adjacent
to at least

(
d− β−α

10d

)
M bit-vertices

in BL (at most 2α+β
3 M many)

remaining tests

Figure 4.12: The structure of an optimal linear arrangement π in the soundness
case.

below by (4.9). Given a quasi-balanced linear arrangement π of G, let Γ be
the set of test-vertices that have at least

�

d − β−α
10d

�

M edges to BL in π. Since

|BL| ≤
1+q

2
N M , we can apply Lemma 4.3.7 and get |Γ|< 2α+β

3
M .

The following lemma follows from an easy case analysis and its proof is given
in the next subsection.

Lemma 4.4.6 In any quasi-balanced linear arrangement π of G, the cost of the
edges incident to a test-vertex t is at least

¨

(1− q)M2Ndk if t ∈ Γ,
(1− q)M2N

�

d + β−α
5d

�

k if t 6∈ Γ .

The above lemma, together with |Γ| < 2α+β
3

M , implies that the total cost of the
edges incident to the M test-vertices is at least

(1− q)M3N
�

d +
�

1−
2α+ β

3

�

β −α
5d

�

k. (4.10)

As noted in Section 4.4.2, the cost of the edges not incident to test-vertices
is minimized by a balanced linear arrangement (see Figure 4.10) and is thus
bounded from below by

4k4 M

N

kMN
∑

i=1

i+ 2k2 M

N

MN/2
∑

i=1

(i+ kMN), (4.11)

which is greater than M3N(2k6+ k3+ k2

4
).
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Summing up (4.10) and (4.11), we have that the total cost of a quasi-
balanced linear arrangement is at least

M3N

�

2k6+ k3+
k2

4
+ (1− q)

�

d +
�

1−
2α+ β

3

�

β −α
5d

�

k

�

>

M3N

�

2k6+ k3+
k2

4
+
�

d +
�

1−
α+ β

2

�

β −α
5d

�

k

�

= (4.9).

The last inequality holds because

(1− q)
�

d +
�

1−
2α+ β

3

�

β −α
5d

�

>

�

d +
�

1−
α+ β

2

�

β −α
5d

�

⇔

�

α+ β
2
−

2α+ β
3

�

β −α
5d

> q
�

d +
�

1−
2α+ β

3

�

β −α
5d

�

⇔

β −α
6
·
β −α

5d
> q
�

d +
�

1−
2α+ β

3

�

β −α
5d

�

,

which is true since
�

1− 2α+β
3

�

β−α
5d
< 1 and q =

�

β−α
10d

�2
.

Proof of Lemma 4.4.6

We will repeatedly use the fact that, in any quasi-balanced linear arrangement,

S`L, S`R, S r
L, and S r

R have all size at least (1− q)kN M , where q =
�

β−α
10d

�2
.

C! Cr

≥ (1− q)kMN
slack-vertices

≥ (1− q)kMN
slack-vertices

≥ (1− q)kMN
slack-vertices

≥ (1− q)kMN
slack-vertices

Case 1. test-vertex is
placed to the right of Cr

Case 2. test-vertex with at
least β−α

10d M edges to BR is
placed to the left of Cr

Case 3. test-vertex with
no edges to BR is
placed to the left of Cr

S!
L S!

R Sr
RSr

LBL BR

Figure 4.13: Overview of the cases considered in the proof of Lemma 4.4.6

We start by proving that any test-vertex that is placed to the right of Cr (Case
1 in Figure 4.13) will have edges of total value at least (1−q)M2N

�

d + β−α
5d

�

k.
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Let p > 0 and suppose that test-vertex t is placed to the right of p(1− q)kMN
slack-vertices of Cr . Since t is placed to the right of Cr , we might only decrease
the cost by assuming that all bit-vertices adjacent to t are in BR. Then the cost
of the edges incident to t is at least

dM(1− p)(1− q)kN M
︸ ︷︷ ︸

edges to bit-vertices

+
�

d −
β −α
10d

�

M p(1− q)kN M
︸ ︷︷ ︸

edge to Cr

+

β −α
10d

M(2+ p)(1− q)kN M
︸ ︷︷ ︸

edge to C`

=

M2N(1− q)k
�

d(1− p) +
�

d −
β −α
10d

�

p+
β −α
10d

(2+ p)
�

=

M2N(1− q)k
�

d +
β −α

5d

�

.

Recall that Γ is the set of test-vertices with at least
�

d − β−α
10d

�

M edges to
BL. Now let p > 0 and suppose that t is placed to the left of p(1 − q)kMN
slack-vertices that are to the left of Cr . On the one hand, if t is not in Γ then it
has at least β−α

10d
M edges to BR (Case 2 in Figure 4.13) and the cost of the edges

incident to t are at least
�

d −
β −α
10d

�

M max[1− p, 0](1− q)kN M
︸ ︷︷ ︸

edges to BL

+
�

β −α
10d

�

M(1+ p)(1− q)kN M
︸ ︷︷ ︸

edges to BR

+

(d −
β −α
10d

)M p(1− q)kN M
︸ ︷︷ ︸

edge to Cr

+
β −α
10d

M(2− p)(1− q)kN M
︸ ︷︷ ︸

edge to C`

,

which can be written as

M2N(1− q)k
��

d −
β −α
10d

�

max[1− p, 0] +
β −α
10d

(1+ p)
�

+

M2N(1− q)k
��

d −
β −α
10d

�

p+
β −α
10d

(2− p)
�

,

which is easily seen to be at least

M2N(1− q)k
�

d +
β −α

5d

�

.
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On the other hand, if t is in Γ (Case 3 in Figure 4.13) the cost of the edges
incident to t is at least

�

d −
β −α
10d

�

M max[1− p, 0](1− q)kN M
︸ ︷︷ ︸

edges to BL

+
�

d −
β −α
10d

�

M p(1− q)kN M
︸ ︷︷ ︸

edge to Cr

+

β −α
10d

M(2− p)(1− q)kN M
︸ ︷︷ ︸

edge to C`

,

which can be written as

M2N(1−q)k
��

d −
β −α
10d

�

max[1− p, 0] +
�

d −
β −α
10d

�

p+
β −α
10d

(2− p)
�

,

and this is easily seen to be at least (bound tight when p = 1)

M2N(1− q)kd.

The above case distinction concludes the proof of Lemma 4.4.6.

4.4.5 Inapproximability Gap

By using Theorem 4.1.4, we have provided a probabilistic reduction Γ from SAT
to weighted optimal linear arrangement. For any fixed ε > 0, given an instance
φ of SAT of size n, Γ produces a weighted optimal linear arrangement instance
G in time 2O(nε) satisfying with high probability:

• (Completeness) If φ is satisfiable then G has a linear arrangement with cost
at most

M3N

�

2k6+ k3+
k2

4
+
�

d +
�

1−
2β +α

3

�

β −α
5d

�

k

�

.

• (Soundness) If φ is not satisfiable then all linear arrangements have cost
at least

M3N

�

2k6+ k3+
k2

4
+
�

d +
�

1−
α+ β

2

�

β −α
5d

�

k

�

.

The hardness of approximation result now follows by recalling that (i) α,β , and
k are all functions of parameter d of Theorem 4.1.4, which in turn is a function
of ε and (ii) α < β .
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4.4.6 Unweighted OLA

In this section we will show that the analysis for weighted OLA can also be used
in the unweighted case. Let the graph G be defined as in the construction of
weighted OLA (see Section 4.4.1). Note that the edges with weight different

than 1 are incident to either Cr or C`. Recall that k =
�

10d
β−α

�8
. Now consider the

graph GU obtained from G, where we

1. replace vertices Cr and C` by two “huge” cliques of size k6M , called C ′r and
C ′` respectively;

2. each edge from a vertex v to Ci with weight w is replaced by w edges from
v to w different vertices of C ′i , for i ∈ {c, l}; and

3. we distribute the edges to a clique C ′i so that the difference in the degree
of two vertices of a clique is no bigger than one.

With this construction, there are at most 2kMN · k4 M
N
+MN · k2 M

N
+ dM2 =

M2(2k5+ k2+ d) edges adjacent to C ′i for i = {c, l}. Since the edges adjacent to
a clique are evenly distributed among its vertices, we have that a vertex of C ′r or
C ′` has less than M edges to vertices not belonging to the cliques.

We will now see that the soundness and completeness analyses for GU do not
differ much from the analyses done for G.

Completeness Let π′ be the linear arrangement of GU obtained from the lin-
ear arrangement π of G as defined in the completeness analysis of OLA (Sec-
tion 4.4.3), where the vertices of C ′` and C ′r are placed on the location of C`
and Cr , respectively. By noting that the number of vertices of the cliques is rel-
atively small (of order M) and that the total number of edges is 4kMN · k4 M

N
+

N M ·k2 M
N
+M2dM = O(M2), it follows that the value of π′ of GU is only o(M3N)

greater than the value of π of G and the same bound (4.8) holds (for big enough
M and N).

Soundness We say that a clique is divided in a linear arrangement π if there
exists a bit-, slack-, or test-vertex w and two vertices of the clique u and v such
that π(u) < π(w) < π(v). Note that if neither C ′` nor C ′r is divided in an op-
timal solution of GU , it follows, by treating the cliques as the vertices C` and
Cr respectively, that the value of an optimal linear arrangement of GU must be
at least as big as the value of an optimal linear arrangement of G. Thus, the
following lemma is enough to complete the soundness analysis of GU .
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Lemma 4.4.7 In any optimal linear arrangement π of GU , the cliques C ′r and C ′`
are not divided.

Proof. We will present our arguments for the clique C ′r . Since the arguments
are the same for C ′`, we leave this case to the reader. Given an optimal linear
arrangement π of GU , let l and r denote the left-most and right-most vertices
of C ′r in π, respectively, and let S = {v is a slack-, test-, or bit-vertex : π(l) <
π(v)< π(r)}. Suppose, toward contradiction, that S is non-empty. Select

vL = arg min
v∈S
(π(v)) and vR = arg max

v∈S
(π(v))

(the left-most vertex and right-most vertex of S, respectively). Let A denote the
set of vertices of C ′r that are placed between l and vL, i.e., A= {v is a vertex of C ′r :
π(l) < π(v) < π(vL)}. Similarly, let B denote the set of vertices of C ′r that are
placed between vR and r.

Note that the selection of vL and vR implies that either |A| or |B| is less than
k6M/2. Suppose |A| ≤ k6M/2 and consider what happens with the cost if we
swap places of l and vL.

1. Edges leaving l. The number of edges from l to vertices outside the clique
is at most M . The cost of these edges will thus increase by at most (π(vL)−
π(l))M . The cost of the edges from l to vertices in A will increase by
∑

i∈A

(π(vL)−π(i))
︸ ︷︷ ︸

new cost

− (π(i)−π(l))
︸ ︷︷ ︸

old cost

≤
∑

i∈A

(π(vL)−π(l)) +π(l)−π(i),

which is bounded from above by
|A|
∑

i=1

(π(vL)−π(l))− i ≤ (π(vL)−π(l))|A| − |A|2/2.

Finally, the cost of the edges from l to the vertices of C ′r that are not in A
will decrease by (π(vL)−π(l))(k6M − |A|)≥ (π(vL)−π(l))k6M/2.

2. Edges leaving vL. Note that slack-, bit-, and test-vertices have degree at
most 2dM (for large enough N). The cost of the edges incident to vL will
thus increase by at most (π(vL)−π(l))2dM .

Summing up the above observations we have that the increase of cost will be at
most

(π(vL)−π(l))(M + 2dM + |A| − k6M/2)− |A|2/2< 0,

i.e, the cost will decrease which contradicts the optimality of the linear arrange-
ment. The last inequality follows easily by recalling that (i) π(vL)−π(l)≤ 2k6M
(since by the definition of vL there can only be vertices belonging to the cliques
that are placed between l and vL) and (ii) |A| ≤ k6M/2 (by assumption).

The remaining case when |B| ≤ k6M/2 is symmetric and omitted. �
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4.5 Boosting the Hardness Factor for Maximum Edge
Biclique

In this section we prove Theorem 4.1.2. The techniques used here have previ-
ously been used by Khot [Kho06] for the balanced bipartite clique problem and
by Berman & Schnitger [BS92a] for the clique problem, and are included for the
sake of completeness.

The following lemma shows that with high probability we can boost the hard-
ness factor for maximum edge biclique without increasing the instance size too
much.

Lemma 4.5.1 Let G(V, W, E) be a bipartite graph with |V |= |W |= n. Then for an
integer k and a constant δ > 0, we can construct a bipartite graph H(V∗, W∗, E∗)
in randomized time O(n2/δk), with |V∗| = |W∗| = O(n2/δk), so that with high
probability:

• (Completeness) For β ≥ δ, if G has an edge biclique of size β |V ||W | then H
has an edge biclique of size 1

4
· β k|V∗||W∗|.

• (Soundness) For α≥ δ, if G has no edge biclique of size α|V ||W | then H has
no edge biclique of size 4αk|V∗||W∗|.

Proof. Let Gk(V ′, W ′, E′) denote the product graph defined as follows:

• V ′ = V k, W ′ =W k. Thus |V ′|= |W ′|= nk.

•
�

(v1, v2, . . . , vk), (w1, w2, . . . , wk)
	

∈ E′⇔∀i, j, 1≤ i, j ≤ k, {vi, w j} ∈ E.

Observe that if V1 ⊆ V, W1 ⊆W form an edge biclique of G then V k
1 , W k

1 form an
edge biclique of Gk. Moreover, it is easy to see that any maximal edge biclique
of Gk must be of the form V k

1 , W k
1 where V1, W1 is an edge biclique of G.

Let V∗ be O(n2/δk) vertices of V k that are picked independently uniformly
at random. Similarly, let W∗ be O(n2/δk) vertices of W k that are picked inde-
pendently uniformly at random. Graph H(V∗, W∗, E∗) is now the subgraph of Gk

induced on the vertices V∗, W∗. Note that we do not need to actually create graph
Gk to obtain H. Indeed we can construct the sets V∗ and W∗ by randomly picking
k vertices O(n2/δk) times from V and W , respectively. Given V∗, W∗ it is easy to
complete the edge set E∗. It follows that we can create graph H in randomized
time O(n2/δk).

We now proceed by analyzing the completeness case. Assume that G has an
edge biclique V1 ⊆ V, W1 ⊆W with |V1|= β1n, |W1|= β2n so that β1 ·β2n2 = βn2,
where β ≥ δ. Note that both β1 and β2 are at most 1 and at least β ≥ δ.
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For every vertex in V∗ the probability that it belongs to V k
1 is β k

1 . Thus the
expected size of |V∗∩V k

1 | is β
k
1 |V∗|. As the vertices in V∗ are picked randomly and

independently from V k, we can use Chernoff bounds3

Pr
�

|V∗ ∩ V k
1 | ≤

1

2
β k

1 |V∗|
�

≤ 2−Ω(β
k
1 |V∗|) ≤ 2−Ω(δ

k|V∗|) = 2−Ω(n
2).

Similarly, w.h.p., |W∗ ∩W k
1 | ≥

1
2
β k

2 |W∗|. Clearly, V∗ ∩ V k
1 , W∗ ∩W k

1 form an edge
biclique of H and with high probability it has size at least 1

2
β k

1 |V∗| ·
1
2
β k

2 |W∗| =
1
4
β k|V∗||W∗|. Hence we have proved the completeness case.

We now consider the soundness case. For some α ≥ δ, assume that graph
G has no edge biclique of size α|V ||W | and thus Gk has no edge biclique of
size αk|V k||W k|. It suffices to prove that w.h.p., for every maximal edge biclique
V k

1 , W k
1 of Gk, we have that |V∗ ∩ V k

1 | · |W∗ ∩W k
1 | < 4αk|V∗||W∗|. Note that the

number of maximal edge bicliques of Gk is bounded by 22n.
Fix any maximal edge biclique V k

1 , W k
1 of Gk. Then there exists α1 and α2

with α1 ·α2 = α so that |V k
1 | ≤ α

k
1|V

k| and |W k
1 | ≤ α

k
2|W

k|. Note that both α1 and
α2 are at most 1 and at least α≥ δ. For every vertex in V∗ the probability that it
belongs to V k

1 is at most αk
1. Thus the expected size of |V∗∩ V k

1 | is at most αk
1|V∗|.

Again using Chernoff bounds,

Pr
�

|V∗ ∩ V k
1 | ≥ 2αk

1|V∗|
�

≤ 2−Ω(α
k
1|V∗|) ≤ 2−Ω(δ

k|V∗|) = 2−Ω(n
2).

Similarly, the size of |W∗ ∩W k
1 | is greater than 2αk

2|V∗| with probability at most
2−Ω(n

2). Now taking the union bound over all possible (at most 22n many) maxi-
mal edge bicliques of Gk proves the soundness case. �

Proof of Theorem 4.1.2

Fix ε > 0 to be an arbitrarily small constant. Let G(V, W, E) be the bipartite
graph given by the reduction in Section 4.2.1. Let N = |V | = |W |. If the size
of the original SAT instance is n then note that N = 2O(nε). By the completeness
and soundness (see Section 4.2.5) there exist constants β ,α > 0 that depend on
ε with β > α so that (with high probability)

• (Completeness) If the SAT instance is satisfiable, then G has an edge bi-
clique of size β |V ||W |.

3Let random variables X1, X2, . . . , Xn be independent random variables taking on values 0 or
1. Then if we let X =

∑

i X i and µ be the expectation of X , for any ε > 0 Pr[X > (1+ ε)µ] ≤
�

eε

(1+ε)1+ε

�µ

and Pr[X < (1− ε)µ]≤ e−ε
2µ/2 .
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• (Soundness) If the SAT instance is not satisfiable, then G has no edge bi-
clique of size α|V ||W |.

We now apply Lemma 4.5.1 with k = log(2·16)
log(β/α)

log N and δ = α to obtain a graph

H(V∗, W∗, E∗) of size S = O(N 2/δk) that with high probability satisfies:

• (Completeness) If the SAT instance is satisfiable, then H has an edge bi-
clique of size 1

4
β k|V∗||W∗|.

• (Soundness) If the SAT instance is not satisfiable, then H has no edge bi-
clique of size 4αk|V∗||W∗|.

Thus the hardness factor is

16(α/β)k =
1

1
16
(β/α)k

=
1

1
16
(β/α)

log(2·16)
log(β/α) log N

≤
1

2log N
=

1

N
.

On the other hand,

S = O(N 2/δk) = O(N 2/αk) = O(N 22k log(1/α))

= O(N 22
log(2·16)
log(β/α) log N log(1/α)) = O(N 2+ log(2·16)

log(β/α) log(1/α)).

As α and β only depend on ε, the hardness factor can be expressed as 1/Sε
′
,

where ε′ is a function of ε. We conclude by noting that, assuming SAT 6∈
BPT I M E(2nε), it is hard to approximate maximum edge biclique on a graph
of size S within a factor 1/Sε

′
, for some ε′ that only depends on ε.
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4.6 Conclusions
In this chapter we have proved the first hardness of approximation results for
the classical optimal linear arrangement and (uniform) sparsest cut graph prob-
lems. We also improved previous hardness results for the maximum edge bi-
clique problem by using a more standard assumption.

All our results are obtained by using the Quasi-random PCP construction by
Khot [Kho06]. Hence, our results are under the assumption that SAT is not
solvable in probabilistic time 2nε , where n is the instance size and ε > 0 can be
made arbitrarily close to 0. Moreover, the hardness factors obtained for optimal
linear arrangement and sparsest cut by using our reductions from the Quasi-
random PCP are tiny. This raises two prominent open problems:

1. Show that it is hard to approximate the addressed problems, by using a
weaker assumption (ideally P 6= N P).

2. Provide a constant factor approximation algorithm for optimal linear ar-
rangement and uniform sparsest cut, or rule out this possibility.

A natural approach for proving that uniform sparsest cut has no constant approx-
imation algorithm would be to assume the unique games conjecture [Kho02]
and to do a similar reduction as done for non-uniform sparsest cut [KV05;
CKK+06]. In [AKK+08], Arora et al. pointed out that such an approach only
seems to work if the unique games conjecture would be true on expander graphs,
which they disproved. This makes it unlikely to obtain a hardness result for (uni-
form) sparsest cut with the above described approach.
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Chapter 5

Job and Flow Shops

5.1 Introduction

We consider the classical job shop scheduling problem together with the more
restricted flow shop problem. In the job shop problem we have a set of n jobs that
must be processed on a given set M of m machines. Each job j consists of a chain
of µ j operations O1 j, O2 j, . . . , Oµ j j. Operation Oi j must be processed during pi j

time units without interruption on machine mi j ∈ M . A feasible schedule is one
in which each operation is scheduled only after all its preceding operations have
been completed, and each machine processes at most one operation at a time.
For any given schedule, let C j be the completion time of the last operation of job
j. We consider the natural and typically considered objectives of minimizing the
makespan Cmax = max j C j and minimizing the sum of weighted completion times
∑

w jC j. The goal is to find a feasible schedule which minimizes the considered
objective function. In the notation of Graham et al. [GLLK79] this problem is
denoted as J ||γ, where γ denotes the objective function to be minimized.

In the flow shop scheduling problem (F ||γ) each job has exactly one operation
per machine, and all jobs go through all the machines in the same order. A
natural generalization of the flow shop problem is to not require jobs to be
processed on all machines, i.e., a job still requests the machines in compliance
with some fixed order but may skip some of them. We will refer to this more
general version as generalized flow shops or flow shops with jumps (F | jumps|γ).
Generalized flow shop scheduling (and thus flow shop) is a special case of acyclic
job shop scheduling, which only requires that within each job all operations are
performed on different machines, which in turn is a special case of job shop
scheduling. See Figure 5.1 for example instances of the addressed problems.

105
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m1

m2

m3

m1

m2

m3

m1

m2

m3

m1

m2

m3

(a) (b)

(c) (d)

Figure 5.1: Example of scheduling instances with three machines and two jobs
depicted in light and dark gray. a) Job shop instance – jobs may have several
operations on each machine. b) Acyclic job shop instance – a job has at most
one operation per machine. c) Flow shop instance – each job has exactly one
operation per machine and all the jobs are processed on the machines in the
same order. d) Generalized flow shop instance – jobs have at most one operation
per machine and jobs process the machines in the same order.
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5.1.1 Literature Review

Job and flow shops have long been identified as having a number of impor-
tant practical applications and have been widely studied since the late 50’s (the
reader is referred to the survey papers of Lawler et al. [LLKS93] and of Chen,
Potts & Woeginger [CPW98]). To find a schedule that minimizes the makespan,
or one that minimizes the sum of completion times, was proved to be strongly
NP-hard for flow shops (and thus job shops) in the 70’s, even for severely re-
stricted instances (see e.g. [CPW98]).

From then, many approximation methods have been proposed. Since the
quality of an approximation algorithm is measured by comparing the returned
solution value with a polynomial time computable lower bound on the optimal
value, the latter is very important. For a given instance, let C∗max denote the
minimum makespan taken over all possible feasible schedules. If D denotes the
length of the longest job (the dilation), and C denotes the time units requested
by all jobs on the most loaded machine (the congestion), then lb =max[C , D] is
a known trivial lower bound on C∗max . There is no known significantly stronger
lower bound on C∗max , and all the proposed approximation algorithms for flow
shops, acyclic job shops, job shops, and the more constrained case of permuta-
tion flow shops have been analyzed with respect to this lower bound (see, e.g.,
[LMR94; SSW94; LMR99; GPSS01; FS02; NS08]).

Even though the trivial lower bound might seem weak, a surprising result by
Leighton, Maggs & Rao [LMR94] says that for acyclic job shops, if all operations
are of unit length, then C∗max =Θ(lb). If we allow operations of any length, then
Feige & Scheideler [FS02] showed that C∗max = O(lb · log lb log log lb) for acyclic
job shops. They also showed their analysis to be nearly tight by providing acyclic
job shop instances with C∗max = Ω(lb · log lb/ log log lb). The proofs of the upper
bounds in [LMR94; FS02] are nonconstructive and make repeated use of (a gen-
eral version) of the Lovàsz local lemma. Algorithmic versions of the Lovàsz local
lemma [Bec91] and the general version [CS00], have later been used to obtain
constructive upper bounds yielding a constant approximation algorithm for unit
time acyclic job shops [LMR99] and an O(log lb1+ε)-approximation algorithm
for acyclic job shops [CS00], where ε > 0 is any constant.

Feige & Scheideler’s upper bound for acyclic job shops [FS02] is also the best
upper bound for the special case of flow shops. As flow shops have more struc-
ture than acyclic job shops and no flow shop instances with C∗max = ω(lb) were
known, one could hope for a significantly better upper bound for flow shops.
The existence of such a bound was raised as an open question in [FS02]. The
strength of the lower bound lb is better understood for the related permutation
flow shop problem, that is a flow shop problem with the additional constraint
that each machine processes all the jobs in the same order. Potts, Shmoys &
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Williamson [PSW91] gave a family of permutation flow shop instances with
C∗max = Ω(lb ·

p

min[m, n]). This lower bound was recently shown to be tight,
by Nagarajan & Sviridenko [NS08], who gave an approximation algorithm that
returns a permutation schedule with makespan O(lb ·

p

min[m, n]).
The best approximation algorithms known for general J ||Cmax are an approx-

imation algorithm by Shmoys, Stein & Wein [SSW94] with performance guar-
antee O((log lb)2/ log log lb); later improved by a log log lb factor by Goldberg,
Paterson, Srinivasan and Sweedyk [GPSS01].

When preemption is allowed, every operation can be temporarily interrupted
and resumed later without any penalty. For any ε > 0, it is well-known that
with only ε loss in the approximation factor, the preemptive job shop schedul-
ing problem is equivalent to the nonpreemptive job shop scheduling problem
with unit processing times (see e.g. [BKS06]). For acyclic job shop and flow
shop scheduling with preemption, the best known result is due to Feige & Schei-
deler [FS02] who showed that there always exists a preemptive schedule within
a O(log log lb) factor of lb. For the general preemptive job shop problem, Bansal
et al. [BKS06] showed an O(log m/ log log m)-randomized approximation algo-
rithm, and a (2+ ε)-approximation for a constant number of machines.

Whether the above algorithms for J ||Cmax and F ||Cmax are tight or even nearly
tight, is a long standing open problem (see “Open problems 6 and 7” in [SW99]).
The only known inapproximability result is due to Williamson et al. [WHH+97],
and states that when the number of machines and jobs are part of the input, it
is NP-hard to approximate F ||Cmax with unit time operations, and at most three
operations per job, within a ratio better than 5/4.

The situation is similar for the weighted sum of completions times objec-
tive. Queyranne & Sviridenko [QS02] showed that an approximation algorithm
for the above mentioned problems that produces a schedule with makespan a
factor O(ρ) away from the lower bound lb can be used to obtain an O(ρ)-
approximation algorithms for other objectives, including the sum of weighted
completion times. As a result, the above mentioned approximation guarantees
for the makespan criteria also hold for the the sum of weighted completion times
objective. The only known inapproximability result is by Hoogeveen, Schuurman
& Woeginger[HSW01], who showed that F ||

∑

C j is NP-hard to approximate
within a ratio better than 1+ ε for some small ε > 0.

Another open problem [SW99] is to understand whether there is a PTAS
for the general job shop problem with a constant number of machines. For
those instances where the number of machines and the number of operations
per job are constant, Jansen, Solis-Oba & Sviridenko [JSOS03] gave a PTAS for
the makespan criteria. A similar result was later obtained by Fishkin, Jansen &
Mastrolilli [FJM08] for the weighted sum of completion times objective.
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5.1.2 Results and Overview of Techniques

Feige & Scheideler [FS02] showed their analysis to be essentially tight for acyclic
job shops. As flow shops are more structured than acyclic job shops, they raised
as an open question whether the upper bound for flow shop scheduling can be
improved significantly. Our first result resolves this question negatively.

Theorem 5.1.1 There exist flow shop instances with optimal makespan Ω(lb ·
log lb/ log log lb).

Proof overview. The construction of job shop instances with “large” makespan
is presented in Section 5.2.1 and serves as a good starting point for reading
Section 5.2.2 where the more complex construction of flow shop instances with
“large” makespan is presented.

The job shop construction closely follows the construction in [FS02] with
the main difference being that we do not require all operations of a job to be
of the same length, which leads to a slightly better analysis. The main idea is
to introduce jobs of different “frequencies”, with the property that two jobs of
different frequencies essentially cannot be processed at the same time in any
feasible schedule. Hence, a job shop instance with d jobs of different frequen-
cies, all of them of length D, has optimal makespan Ω(d · D). Moreover, the
construction satisfies lb = C = D = 3d and it follows that the job shop instance
has optimal makespan Ω(d · 3d), which can be written as Ω(lb · log lb).

The construction of flow shop instances with “large” makespan is more com-
plicated, as each job is required to have exactly one operation for every machine,
and all jobs are required to go through all the machines in the same order. The
main idea is to start with the aforementioned job shop construction, which has
“very cyclic” jobs, i.e., jobs have many operations on a single machine. The flow
shop instance is then obtained by “copying” the job shop instance several times
and instead of having cyclic jobs we let the i-th “long-operation” of a job to be
processed by a machine in the i-th copy of the original job shop instance. Finally,
we insert additional zero-length operations to obtain a flow shop instance. By
carefully choosing the different frequencies we can show that the constructed
flow shop instance will have essentially the same optimal makespan as the job
shop instance we started with. The slightly worse bound, Ω(lb · log lb/ log log lb)
instead of Ω(lb · log lb), arises from additional constraints on the design of fre-
quencies. �

If we do not require a job to be processed on all machines, i.e. generalized
flow shops, we prove that it is hard to improve the approximation guarantee.
Theorem 5.1.2 shows that generalized flow shops, with the objective to either
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minimize makespan or sum of completion times 1, have no constant approxima-
tion algorithm unless P = N P.

Theorem 5.1.2 For all sufficiently large constants K, it is NP-hard to distinguish
between generalized flow shop instances that have a schedule with makespan 2K ·lb
and those that have no solution that schedules more than half of the jobs within
(1/8)K

1
25
(log K) · lb time units. Moreover this hardness result holds for generalized

flow shop instances with bounded number of operations per job, that only depends
on K.

Proof overview. The reduction is from the NP-hard problem of deciding whether
a graph G with degree bounded by a constant ∆ can be colored using “few” col-
ors or has no “large” independent set (see Theorem 5.1.5). In Section 5.3.1
we present a relatively easy reduction to the job shop problem which serves as
a good starting point for reading the more complex reduction for the general-
ized flow shop problem presented in Section 5.3.2. The main idea is as follows.
Given a graph G with bounded degree ∆, we construct a generalized flow shop
instance S, where all jobs have the same length D and all machines the same
load C = D. Hence, lb= C = D. Instance S has a set of jobs for each vertex in G.
By using jobs of different frequencies, as done in the gap construction, we have
the property that “many” of the jobs corresponding to adjacent vertices cannot
be scheduled in parallel in any feasible schedule. On the other hand, by letting
jobs skip the machines corresponding to non-adjacent vertices, jobs correspond-
ing to an independent set in G can be scheduled in parallel (their operations
can overlap in time) in a feasible schedule. For the reduction to be polynomial
it is crucial that the number of frequencies is relatively small. However, to en-
sure the desired properties, jobs corresponding to adjacent vertices must be of
different frequencies. We resolve this by using the fact that G has bounded de-
gree. Since the graph G has degree of at most ∆ we can in polynomial time
partition its vertices into ∆+ 1 independent sets. As two jobs only need to be
assigned different frequencies if they correspond to adjacent vertices, we only
need a constant (∆+ 1) number of frequencies.

The analysis follows naturally: a set of jobs corresponding to an independent
set can be scheduled in parallel. Hence, if the graph G can be colored with few,
say F , colors then there is a schedule of S with makespan O(F · lb). Finally, if
there is a schedule where at least half the jobs finish within L · lb time units then
jobs corresponding to at least a fraction Ω(1/L) of the vertices overlap at some
point in the schedule. As the jobs overlap, they correspond to a fraction Ω(1/L)

1Note that Theorem 5.1.2 implies that for sufficiently large constants K , it is NP-hard to
distinguish whether

∑

C j ≤ n · 2K · lb or
∑

C j ≥
n
2
· (1/8) · K

1
25
(log K) · lb, where n is the number

of jobs.
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of vertices that form an independent set. It follows that if the graph has no large
independent set, then the generalized flow shop instance has no short schedule.

�

By making a stronger assumption, we give a hardness result that essentially
shows that the current approximation algorithms for generalized flow shops
(and acyclic job shops), with both makespan and sum of weighted completion
times objectives, are tight.

Theorem 5.1.3 Let ε > 0 be an arbitrarily small constant. There is no
O
�

(log lb)1−ε
�

-approximation algorithm for F | jumps|Cmax or F | jumps|
∑

C j, un-
less N P ⊆ Z T I M E(2log nO(1/ε)

).

Proof overview. The construction of the generalized flow shop instance is the
same as in the proof of Theorem 5.1.2. To obtain the stronger result we use
a stronger hardness result for graph coloring (see Theorem 5.1.6). The tricky
part is that the graph no longer has a small bounded degree. We overcome this
difficulty by a randomized process that preserves the desired properties of the
graph with an overwhelming probability (see Lemma 5.3.1). �

For flow shops, the consequences of Theorem 5.1.1 and Theorem 5.1.3 are
among others that in order to improve the approximation guarantee, it is neces-
sary to (i) improve the used lower bound on the optimal makespan and (ii) use
the fact that a job needs to be processed on all machines.

In [JSOS03], a PTAS was given for the job shop problem, where both the
number of machines and the number of operations per job are assumed to be
constant. Our second result shows that both these restrictions are necessary to
obtain a PTAS (that one needs to restrict the number of machines follows from
the work in [WHH+97]).

Theorem 5.1.4 Problem J2||Cmax has no PTAS unless N P ⊆ DT I M E(nO(log n)).

Proof overview. In Section 5.4, we prove the result by presenting a gap-preser-
ving reduction from the independent set problem in cubic graphs, i.e., graphs
where all vertices have degree three (see Theorem 5.1.7).

Given a cubic graph G we construct an instance S of J2||Cmax as follows. The
instance has a “big” job, called jb, whose length will equal the makespan in the
completeness case. Its operations are divided into four parts, called the edge-,
tail-, slack-, and remaining-part. There is also a vertex job for each vertex. We
again use the technique of introducing different frequencies of jobs; this time to
ensure that, without delaying job jb, two jobs corresponding to adjacent vertices
cannot both complete before the end of the tail-part of job jb.
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The analysis now follows from selecting the lengths of the different parts of
jb such that in the completeness case we can schedule all jobs, corresponding
to a “big” independent set of G, in parallel with the edge- and tail-part of job jb
and the remaining jobs are scheduled in parallel with the slack- and remaining-
part of job jb. In contrast, in the soundness case, as G has no “big” independent
set, we can, without delaying the schedule, only schedule relatively few jobs in
parallel with the edge- and tail-part of job jb. The remaining jobs, relatively
many, will then require more time units than the total length of the slack- and
remaining-part of job jb and it follows that the schedule will have makespan
larger than the length of jb.

The reduction runs in time nO( f ), where f is the number of frequencies. With
our current techniques we need O(log n) frequencies and hence the assumption
used in the statement of Theorem 5.1.4.

�

5.1.3 Preliminaries

When considering a schedule we shall say that two jobs (or operations) overlap
or are scheduled in parallel for t time units if t time units of them are processed
at the same time on different machines. For a given graph G, we let χ(G) and
α(G) denote the chromatic number of G and the size of a maximum independent
set of G, respectively. We shall also denote the maximum degree of graph G by
∆(G), where we sometimes drop G when it is clear from the context.

Our reductions to the job shop problem with unbounded number of machines
use results by Khot [Kho01], who proved that even though we know that the
graph is colorable using K colors it is NP-hard to find a coloring that uses less
than K

1
25
(log K) colors, for sufficiently large constants K . The result was obtained

by presenting a polynomial time reduction that takes as input a SAT formula φ
together with a sufficiently large constant K and outputs an n-vertex graph G
with degree at most 2KO(log K)

such that (completeness) if φ is satisfiable then G
can be colored using at most K colors and (soundness) if φ is not satisfiable
then G has no independent set containing n/K

1
25
(log K) vertices (see Section 6

in [Kho01]). Note that the soundness case implies that any feasible coloring of
the graph uses at least K

1
25
(log K) colors. We let G [c, f ] be the family of graphs

that either can be colored using c colors or have no independent set containing
a fraction f of the vertices. The following theorem (not stated in this form
in [Kho01]) summarizes the result obtained.

Theorem 5.1.5 ([Kho01]) For all sufficiently large constants K, it is NP-hard to
decide if a graph in G [K , 1/K

1
25
(log K)] can be colored using K colors or has no
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independent set containing a fraction 1/K
1
25
(log K) of the vertices. Moreover this

hardness result holds for graphs with degree at most 2KO(log K)
.

By using a stronger assumption, we can let K be a function of the number of
vertices. Again, the stronger statement (not explicitly stated in [Kho01]) follows
from the soundness analysis.

Theorem 5.1.6 ([Kho01]) There exists an absolute constant γ > 0 such that for
all K ≤ 2(log n)γ , there is no polynomial time algorithm that decides if an n-vertex
graph in G [K , 1/KΩ(log K)] can be colored using K colors or has no independent set
containing a fraction 1/KΩ(log K) of the vertices, unless N P ⊆ DT I M E(2O(log n)O(1)).

Our reduction to J2||Cmax uses the following result by Alimonti and Kann [AK00].
A cubic graph is a graph where all vertices have degree three.

Theorem 5.1.7 ([AK00]) There exist positive constants β ,α with β > α, so that
it is N P-hard to distinguish between n-vertex cubic graphs that have an independent
set of size β · n and those that have no independent set of size α · n.

5.2 Job and Flow Shop Instances with Large Makespan
We first exhibit a family of instances of general job shop scheduling for which it
is relatively simple to show that any optimal schedule is of length Ω(lb · log lb).
This complements2 and builds on the bound by Feige & Scheideler [FS02],
who showed the existence of job shop instances with optimal makespan Ω(lb ·
log lb/ log log lb). We then use this construction as a building block in the more
complicated flow shop construction.

5.2.1 Job Shops with Large Makespan

Construction

For any integer d ≥ 1 consider the job shop instance with d machines m1, . . . , md

and d jobs j1, . . . , jd . We say that job ji has frequency i, which means that it has
3i so-called long-operations on machine mi, each one of them requires 3d−i time
units. Between any two consecutive long-operations, job ji has short-operations
that require 0 time units on the machines m1, . . . , mi−1. Note that the length
of all jobs and the load on all machines are 3d , which we denote by lb. See
Figure 5.2 for an example of the construction.

2In their construction all operations of a job have the same length which is not the case for
our construction.
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m1

m2

m3

Figure 5.2: An example of the construction with d = 3. The jobs of frequency
1,2 and 3 are depicted in light, medium, and dark gray, respectively.

Analysis

Fix an arbitrary feasible schedule of the jobs. We shall show that the length of
the schedule must be Ω(lb · log lb).

Lemma 5.2.1 For i, j : 1≤ i < j ≤ d, the number of time units during which both
ji and j j perform operations is at most lb

3 j−i .

Proof. During the execution of a long-operation of ji (that requires 3d−i time
units), job j j can complete at most one long-operation that requires 3d− j time
units (since its short-operation on machine mi has to wait). As ji has 3i long-
operations, the two jobs can perform operations at the same time during at most
3i · 3d− j = 3d

3 j−i =
lb

3 j−i time units. �

It follows that, for each i = 1, . . . , d, at most a fraction 1/3+ 1/32 + · · ·+
1/3i ≤ 1/3+1/32+ · · ·+1/3d ≤ 1

3−1
= 1/2 of the time spent for long-operations

of a job ji is performed at the same time as long-operations of jobs with lower
frequency. Hence a feasible schedule has makespan at least d · lb/2. As d =
Ω(log lb) (recall that lb= 3d), the optimal makespan of the constructed job shop
instance is Ω(lb · log lb).

5.2.2 Flow Shops with Large Makespan

Construction

For sufficiently large integers d and r, consider the flow shop instance defined
as follows (see also Figure 5.3 for an example of the construction):

• There are r2d groups of machines3, denoted by M1, M2, . . . , Mr2d . Each
group Mg consists of d machines mg,1, mg,2, . . . , mg,d (one for each fre-
quency). Finally the machines are ordered in such a way that mg,i is be-
fore mh, j if either (i) g < h or (ii) g = h and i > j. The latter case will
ensure that, within each group of machines, long-operations of jobs with
high frequency will be scheduled before long-operations of jobs with low
frequency, a fact that will be used in the proof of Lemma 5.2.3.

3These groups of machines “correspond” to copies of the job shop instance in subsection 5.2.1.
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• For each frequency f = 1, . . . , d, there are r2(d− f ) groups of jobs, denoted
by J f

1 , J f
2 , . . . , J f

r2(d− f ) . Each group J f
g consists of r2 f copies, referred to as

j f
g,1, j f

g,2, . . . , j f
g,r2 f , of the job that must be processed during r2(d− f ) time

units on the machines

ma+1, f , ma+2, f , . . . , ma+r2 f , f where a = (g − 1) · r2 f

and during 0 time units on all the other machines that are required to
create a flow shop instance. Let J f be the set of jobs that correspond to
frequency f , i.e., J f = { j f

g,a : 1≤ g ≤ r2(d− f ), 1≤ a ≤ r2 f }.

Note that the length of all jobs and the load on all machines are r2d , which
equals lb. Moreover, the total number of machines and the total number of jobs
are both r2d · d. In the subsequent we will call the operations that require more
than 0 time units long-operations and the operations that only require 0 time
units short-operations.

m1,2
m1,1
m2,2
m2,1

m16,2
m16,1

Figure 5.3: An example of the construction for flow shop scheduling with r =
d = 2. Only long-operations on the first 4 and last 4 groups of machines are
depicted. The long-operations of one job of each frequency are highlighted in
dark gray.

Analysis

We shall show that the length of any feasible schedule must be Ω(lb ·min[r, d]).
As lb = r2d , instances constructed with r = d have optimal makespan Ω(lb ·
log lb/ log log lb).

Fix an arbitrarily feasible schedule for the jobs. We start by showing a useful
property. For a job j, let d j(i) denote the delay between its i-th and (i + 1)-th



116 5.2 Job and Flow Shop Instances with Large Makespan

long-operations, i.e., the time units between the end of job j’s i-th long-operation
and the start of its (i + 1)-th long-operation (let d j(i) = ∞ for the last long-
operation). We say that the i-th long-operation of a job j of frequency f is good
if d j(i)≤

r2

4
· r2(d− f ).

Lemma 5.2.2 If the schedule has makespan less than r · lb then the fraction of
good long-operations of each job is at least

�

1− 4
r

�

.

Proof. Assume that the considered schedule has makespan less than r · lb. Sup-
pose toward contradiction that there exists a job j of frequency f so that j has
at least 4

r
r2 f long-operations that are not good. But then the length of j is at

least 4
r
r2 f · r2

4
· r2(d− f ) = r · r2d = r · lb, which contradicts that the makespan of

the considered schedule is less than r · lb. �

We continue by analyzing the schedule with the assumption that its makespan
is less than r · lb (otherwise we are done). In each group Mg of machines we
will associate a set Tg, f of time intervals with each frequency f = 1, . . . , d. The
set Tg, f contains the time intervals corresponding to the first half of all good
long-operations scheduled on the machine mg, f . For intuition of the following
lemma see Figure 5.4.

Lemma 5.2.3 Let k,` : 1 ≤ k < ` ≤ d be two different frequencies. Then the sets
Tg,k and Tg,` , for all g : 1≤ g ≤ r2d , contain disjoint time intervals.

Proof. Suppose toward contradiction that there exist time intervals tk ∈ Tg,k

and t` ∈ Tg,` that overlap, i.e., tk ∩ t` 6= ;. Note that tk and t` correspond to
good long-operations of jobs of frequencies k and `, respectively. Let us say that
the good long-operation corresponding to t` is the a-th operation of some job j.
Note that, since j has a long-operation on machine mg,`, job j has frequency `.
As t` and tk overlap, the a-th long-operation of j must overlap the first half of the
long-operation corresponding to tk. As job j has a short operation on machine
mg,k after its long-operation on machine mg,` (recall that machines are ordered
mg,d , mg,d−1, . . . , mg,1 and ` > k), job j’s (a + 1)-th operation must be delayed
by at least r2(d−k)/2− r2(d−`) time units and thus d j(a) > r2(d−k)/2− r2(d−`) >
r2

4
r2(d−`) (using ` > k), which contradicts that the a-th long-operation of job j is

good. �

Let L(Tg, f ) denote the total time units covered by the time intervals in Tg, f .

We continue by showing that there exists a g such that
∑d

f=1 L(Tg, f ) ≥
lb
4
· d.

With this in place, it is easy to see that any schedule has makespan Ω(d · lb)
since all the time intervals {Tg, f : f = 1, . . . , d} are disjoint (Lemma 5.2.3).
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a+1

a

delay contradicts that
a-th operation is good

mg,!

mg,k

mg+1,!

Figure 5.4: The intuition behind the proof of Lemma 5.2.3.

Lemma 5.2.4 There exists a g ∈ {1, . . . , r2d} such that

d
∑

f=1

L(Tg, f )≥
lb

4
· d

Proof. As
∑d

f=1 L(Tg, f ) adds up the time units required by the first half of each
good long-operation scheduled on a machine in Mg , the claim follows by show-
ing that there exists a group of machines Mg from {M1, M2, . . . , Mr2d} so that the
total time units required by the good long-operations on the machines in Mg is
at least lb·d

2
.

By lemma 5.2.2 we have that the good long-operations of each job require at
least lb ·

�

1− 4
r

�

time units. Since the total number of jobs is r2d d the total time

units required by all good long-operations is at least lb ·
�

1− 4
r

�

· r2d d. As there
are r2d many groups of machines, a simple averaging argument guarantees that
in at least one group of machines, say Mg , the total time units required by the
good long-operations on the machines in Mg is at least lb ·

�

1− 4
r

�

d > lb · d/2
for a sufficiently large r. �

5.3 Hardness of Job Shops and Generalized Flow Shops
Theorem 5.1.2 and Theorem 5.1.3 are proved by presenting a gap-preserving
reduction, Γ, from the graph coloring problem to the generalized flow shop
problem, that has two parameters, r and d. Given an n-vertex graph G whose
vertices are partitioned into d independent sets, it computes in time polynomial
in n and rd , a generalized flow shop instance S(r, d)where all jobs have the same
length r2d and all machines the same load r2d . Hence, lb= r2d . Instance S(r, d)
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has a set of r2d jobs and a set of r2d machines for each vertex in G. The total
number of jobs and the total number of machines are thus both r2d n. Moreover,
each job has at most (∆+ 1)r2d operations.

By using jobs of different frequencies, as done in the gap construction, we
have the property that “many” of the jobs corresponding to adjacent vertices
cannot be scheduled in parallel in any feasible schedule. On the other hand,
by letting jobs skip those machines corresponding to non-adjacent vertices, jobs
corresponding to an independent set in G can be scheduled in parallel (their
operations can overlap in time) in a feasible schedule. This ensures that the
following completeness and soundness hold for the resulting generalized flow
shop instance S(r, d).

• (Completeness) If G can be colored using L colors then C∗max ≤ lb · 2L.

• (Soundness) For any L ≤ r. Given a schedule where at least half the jobs
finish within lb · L time units, we can find an independent set of G of size
n/(8L), in time polynomial in n and rd .

In Section 5.3.1, we present a reduction with somewhat stronger properties
for the job shop problem. As the reduction is relatively simple, it serves as a good
starting point before reading the similar but more complex reduction Γ for the
generalized flow shop problem. Before continuing, let us see how the reduction
Γ, with the aforementioned properties, is sufficient for proving Theorem 5.1.2
and Theorem 5.1.3.

Proof of Theorem 5.1.2

By Theorem 5.1.5, for sufficiently large K and ∆ = 2KO(log K)
, it is NP-hard to

decide if an n-vertex graph G in G [K , 1/K
1

25
(log K)] with bounded degree ∆ has

χ(G)≤ K or α(G)≤
n

K
1
25
(log K)

.

As the vertices of a graph with bounded degree ∆ can, in polynomial time, be
partitioned into∆+1 independent sets, we can use Γ with parameters d =∆+1
and r = K

1
25
(log K) (r is chosen such that the condition L ≤ r in the soundness

case of Γ is satisfied for L = K
1
25
(log K)/8). It follows by the completeness case and

soundness case of Γ that it is NP-hard to distinguish if the obtained scheduling
instance has a schedule with makespan at most lb · 2K or no solution schedules
more than half of the jobs within lb · K

1
25
(log K)/8 time units. Moreover, each job

has at most (∆+ 1)r2d operations, which is a constant that only depends on K .
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Proof of Theorem 5.1.3

The proof is similar to the proof of Theorem 5.1.2 with the exception that the
graphs have no longer bounded degree. To this end the lemma below will be
useful. When using probabilistic arguments for graphs with n vertices, we shall
use the term overwhelming (negligible, respectively) to denote probability that
tends to 1 (to 0, respectively) as n tends to infinity.

Lemma 5.3.1 For any constant δ ≥ 1, given an n-vertex graph G = (V, E), we can
construct in randomized polynomial time a subgraph G′ = (V, E′) of G with E′ ⊆ E
such that

1. The vertices are partitioned into (log n)δ sets, each set forms an independent
set in G′.

2. χ(G′)≤ χ(G).
3. With overwhelming probability the following holds: given an independent set

of G′, with n
(log n)δ−1 vertices, we can find an independent set of G with n

(log n)δ

vertices, in polynomial time.

Proof. Given an n-vertex graph G = (V, E), we give a probabilistic construc-
tion of G′ = (V, E′). Each vertex v ∈ V is assigned independently, uniformly at
random to one of the sets I1, I2, . . . , I(log n)δ . Let E′ ⊆ E be those edges that are
incident to vertices placed in different sets, i.e., an edge is deleted from E to
yield E′ if and only if it is adjacent to two vertices u ∈ Ii and v ∈ Ii for some
i : 1≤ i ≤ (log n)δ.

The graph G′ obviously satisfies the first two properties in the lemma. We
continue by showing that G′ satisfies property 3. In fact, we show that the
following stronger property holds with overwhelming probability: any indepen-
dent set I ′ of G′, with |I ′|= n

(log n)δ−1 , induces a subgraph of G with at least n
(log n)δ

maximal connected components. This is done by proving that if a subset V ′ of
n/(log n)δ−1 vertices induces a subgraph of G with less than n

(log n)δ
maximal con-

nected components, then the probability that V ′ is an independent set of G′ is
negligible.

Fix a set V ′ ⊆ V of n/(log n)δ−1 vertices and let H be the subgraph of G
induced by V ′. Assuming that H can be partitioned into s maximal connected
components, with s < n

(log n)δ
, we calculate the probability that V ′ forms an inde-

pendent set in G′. Let H1, H2, . . . , Hs denote the maximal connected components
of H. We use |H`|, for ` : 1 ≤ ` ≤ s, to denote the number of vertices of H`. If
the vertices of H form an independent set in G′ then all vertices of a connected
component must be placed in the same set Ii, for some i : 1 ≤ i ≤ (log n)δ. The
probability that this happens, for a connected component with k vertices, is at
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most
�

1
log n

�δ(k−1)
. As the different maximal connected components are indepen-

dent, the probability that V ′ forms an independent set in G′ is at most

�

1

log n

�δ(|H1|−1)� 1

log n

�δ(|H2|−1)

. . .
�

1

log n

�δ(|Hs|−1)

=
�

1

log n

�δ(
∑s

i=1 |Hi |−s)
.

As
∑s

i=1 |Hi| = |V ′| = n/(log n)δ−1 and s < n
(log n)δ

, the probability that V ′ forms
an independent set in G′ is at most

�

1

log n

�δ·n/(log n)δ−1·(1−1/ log n)

.

The number of ways to fix the set V ′ is at most
�

n

n/(log n)δ−1

�

≤
�

e · log n
�(δ−1)n/(log n)δ−1

.

Hence, the union bound implies that the probability that graph G′ fails to satisfy
property 3 is at most

�

1

log n

�δ·n/(log n)δ−1·(1−1/ log n)

·
�

e · log n
�(δ−1)n/(log n)δ−1

which tends to 0 as n tends to infinity.
�

Assuming N P 6⊆ DT I M E(2O(log n)O(1)), Theorem 5.1.6 with K = log n says
that there is no polynomial algorithm that decides if an n-vertex graph G in
G [log n, 1/(log n)Ω(log log n)] has

χ(G)≤ log n or α(G)≤
n

(log n)Ω(log log n)
.

Given an n-vertex graph G in G [log n, 1/(log n)Ω(log log n)], we construct graph G′

from G by applying Lemma 5.3.1 with δ = 3/ε, where ε > 0 is an arbitrarily
small constant. We then obtain a generalized flow shop instance S from G′

by using Γ with parameters r = (log n)δ−1 and d = (log n)δ. The size of S is
O(r2d n · ∆r2d) = O(2O(log n)O(1/ε)) and lb = r2d = (log n)2(δ−1)(log n)δ and hence
log lb≤ (log n)δ+1 (for large enough n).

The analysis is straightforward:

• (Completeness) If χ(G) ≤ log n then χ(G′) ≤ log n and, by the complete-
ness case of Γ, there is a schedule of S with makespan lb · 2 log n.
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• (Soundness) Assuming that the probabilistic construction of G′ succeeded,
we have α(G) ≤ n

nΩ(log log n)
⇒ α(G′) ≤ n

(log n)δ−1 , which in turn implies by the
soundness case of Γ that no solution schedules more than half the jobs
within lb · (log n)δ−1/8 time units (recall that r was chosen to be greater
than (log n)δ−1/8).

The probabilistic construction of G′ succeeds with overwhelming probabil-
ity. Furthermore, given a schedule, we can detect such a failure in polyno-
mial time and repeat the reduction. It follows that an approximation algo-
rithm for F | jumps|Cmax with performance guarantee (log n)δ−1/8

2 log n
= (log n)δ−2/16

or an approximation algorithm for F | jumps|
∑

C j with performance guarantee
(n/2)·(log n)δ−1/8

2n·log n
= (log n)δ−2/32 would imply that N P ⊆ Z T I M E(2O(log n)O(1/ε)). Fi-

nally we note that δ was chosen so that for large enough n we have

(log lb)1−ε ≤ (log n)(1−ε)(δ+1) = (log n)3/ε+1−3−ε =

(log n)δ−2−ε < 1/32 · (log n)δ−2.

5.3.1 Job Shops

In this section we give and analyze a somewhat stronger reduction than Γ for the
general job shop problem. The number of operations per job is at most (∆+1)rd ,
the number of jobs and the number of machines are n, and the soundness case
says that, given a schedule with makespan lb · L, we can, in time polynomial in
n and rd , find an independent set of G of size (1− ∆

r
)n/L.4 As the reduction is

relatively simple, it serves as a good starting point for reading the more complex
reduction to the generalized flow shop problem.

Construction

Given an n-vertex graph G = (V, E) whose vertices are partitioned into d in-
dependent sets, we create a job shop instance S(r, d), where r and d are the
parameters of the reduction. Instance S(r, d) has a machine mv and a job jv
for each vertex v ∈ V . We continue by describing the operations of the jobs.
Let I1, I2, . . . Id denote the independent sets that form a partition of V . A job jv
that corresponds to a vertex v ∈ Ii, for some i : 1 ≤ i ≤ d, has a chain of r i

long-operations O1, jv , O2, jv , . . . , Or i , jv , each of them requiring rd−i time units, that

4The condition that r needs to be greater than ∆ can be removed as done in the analysis of
generalized flow shops. In this section we have chosen to provide a simpler analysis, which still
describes most of the ideas used in the flow shop analysis.
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must be processed on the machine mv. Between two consecutive long-operations
Op, jv , Op+1, jv , for p : 1 ≤ p < r i, we have a set of short-operations placed on the
machines {mu : {u, v} ∈ E} (the machines corresponding to adjacent vertices) in
some order. A short-operation requires time 0. For an example of the construc-
tion see Figure 5.5.

Remark. The construction has n machines and n jobs. Each job has length
rd and each machine has load rd . Hence, lb = rd . Moreover, the number of
operations per job is at most (∆+ 1)rd . �

A

B C mA

mB

mC

Figure 5.5: An example of the reduction with r = 4, d = 2, I1 = {A}, and I2 =
{B, C}. Note that jobs only have short-operations on machines corresponding to
adjacent vertices. (The jobs corresponding to A, B, and C are depicted to the left,
center, and right respectively.)

Completeness

We prove that if the graph G can be colored with L colors then there is a “rela-
tively short” solution to the job shop instance (see Figure 5.6).

Lemma 5.3.2 If χ(G) = L then there is a schedule of S(r, d) with makespan lb · L.

Proof. Let V1, V2, . . . , VL be a partition of V into L independent sets. Consider
one of these sets, say Vi. As the vertices of Vi form an independent set, no short-
operations of the jobs { jv}v∈Vi

, are scheduled on the machines {mv}v∈Vi
. Since

short-operations require time 0 we can schedule the jobs { jv}v∈Vi
within lb time

units. We can thus schedule the jobs in L-”blocks” in the order { jv}v∈V1
, { jv}v∈V2

,
. . . , { jv}v∈VL

. The total length of this schedule is lb · L. �

Soundness

We prove that, given a schedule where many jobs are completed “early”, we can,
in polynomial time, find a “big” independent set of G.

Lemma 5.3.3 Given a schedule of S(r, d) where at least half the jobs finish within
lb · L time units, we can, in time polynomial in n and rd , find an independent set
of G of size at least (1− ∆

r
)n/(2L).
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A

B C mA

mB

mC

Figure 5.6: An example of how the jobs are scheduled in the completeness case.
Here V1 = {A} and V2 = {B, C}.

Proof. First we show that two jobs corresponding to adjacent vertices cannot be
scheduled in parallel. (The proof of the following claim is similar to the proof of
Lemma 5.2.1 in the gap construction).

Claim 5.3.4 Let u ∈ Ii and v ∈ I j be two adjacent vertices in G with i < j. Then at
most a fraction 1

r
of the long-operations of jv can overlap the long-operations of ju.

Proof of Claim. There are r i and r j long-operations of ju and jv, respectively. As
the vertices u and v are adjacent, job jv has a small-operation on machine mu

between any two long-operations. Hence, at most one long-operation of jv can
be scheduled in parallel with a long-operation of ju and the total number of such
operations in any schedule is at most r i ≤ r j

r
(using i < j). �

Now consider a schedule where at least half the jobs finish within lb · L
time units. For each i : 1 < i ≤ d and for each v ∈ Ii, we disregard those
long-operations of job jv that overlap long-operations of the jobs { ju : {u, v} ∈
E and u ∈ I j for some j < i}. After disregarding operations, no two long-operati-
ons corresponding to adjacent vertices will overlap in time. Furthermore, by
applying Claim 5.3.4 and using that the maximum degree of G is ∆, we know
that at most a fraction ∆

r
of a job’s long-operations have been disregarded. Thus

the remaining long-operations of a job require at least (1− ∆
r
) · lb time units. As

at least half the jobs (n/2 many) finish within L · lb time units, we have that at
least (1− ∆

r
) · lb ·n/2 time units are scheduled on the machines within L · lb time

units. By a simple averaging argument we have that at least (1−∆
r
)n/(2L) of the

remaining long-operations must overlap at some point within the first L · lb time
units in the schedule. As the remaining long-operations that overlap correspond
to different vertices that are non-adjacent, the graph has an independent set of
size (1− ∆

r
)n/(2L). Moreover, we can find such a point (corresponding to an

independent set) in the schedule , e.g. by considering the start and end points
of all long-operations that were not disregarded. �
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5.3.2 Generalized Flow Shops

Here, we present the reduction Γ for the general flow shop problem where jobs
are allowed to skip machines. The idea is similar to the reduction presented
in Section 5.3.1 for the job shop problem. The main difference is to ensure,
without using cyclic jobs, that jobs corresponding to adjacent vertices cannot be
scheduled in parallel.

Construction

Given an n-vertex graph G = (V, E) whose vertices are partitioned into d inde-
pendent sets, we create a generalized flow shop instance S(r, d), where r and d
are the parameters of the reduction. Let I1, I2, . . . Id denote the independent sets
that form a partition of V .

The instance S(r, d) is very similar to the gap instance described in Sec-
tion 5.2.2. The main difference is that in S(r, d) distinct jobs can be scheduled in
parallel if their corresponding vertices in G are not adjacent. This is obtained by
letting a job skip those machines corresponding to non-adjacent vertices. (The
gap instance of Section 5.2.2 can be seen as the result of the following reduction
when the graph G is a complete graph with d nodes). For convenience, we give
the complete description with the necessary changes.

• There are r2d groups of machines, denoted by M1, M2, . . . , Mr2d . Each
group Mg consists of n machines {mg,v : v ∈ V} (one for each vertex in
G). Finally the machines are ordered in such a way that mg,u is before mh,v

if either (i) g < h or (ii) g = h and u ∈ Ik, v ∈ I` with k > `. The latter case
will ensure that, within each group of machines, long-operations of jobs
with high frequency will be scheduled before long-operations of jobs with
low frequency, a fact that is used to prove Lemma 5.3.9.

• For each f : 1 ≤ f ≤ d and for each vertex v ∈ I f there are r2(d− f ) groups
of jobs, denoted by J v

1 , J v
2 , . . . , J v

r2(d− f ) . Each group J v
g consists of r2 f copies,

referred to as jv
g,1, jv

g,2, . . . , jv
g,r2 f , of the job that must be processed during

r2(d− f ) time units on the machines

ma+1,v, ma+2,v, . . . , ma+r2 f ,v where a = (g − 1) · r2 f

and during 0 time units on machines corresponding to adjacent vertices,
i.e., {ma,u : 1 ≤ a ≤ r2d , {u, v} ∈ E} (in an order so that it results in a
generalized flow shop instance).

Let J v be the jobs that correspond to the vertex v, i.e., J v = { jv
g,i : 1 ≤ g ≤

r2(d− f ), 1≤ i ≤ r2 f }.
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Remark. The construction has r2d n machines and r2d n jobs. Each job has length
r2d and each machine has load r2d . Hence, lb = r2d . Moreover, the number of
operations per job is at most (∆+ 1)r2d . �

In the subsequent we will call the operations that require more than 0 time
units long-operations and the operations that only require 0 time units short-
operations. For an example of the construction see Figure 5.7.

A

B C

m1,C
m1,B
m1,A

m2,A
m2,B

m2,C

Figure 5.7: An example of the reduction with r = 2, d = 2, I1 = {A} and I2 =
{B, C}. Only the first two out of r2d = 16 groups of machines are depicted with
the jobs corresponding to A,B, and C to the left, center, and right respectively.

Completeness

We prove that if the graph G can be colored with L colors then there is a rela-
tively “short” solution to the general flow shop instance.

Lemma 5.3.5 If χ(G) = L then there is a schedule of S(r, d) with makespan lb·2L.

Proof. We start by showing that all jobs corresponding to non-adjacent vertices
can be scheduled within 2 · lb time units.

Claim 5.3.6 Let IS be an independent set of G. Then all the jobs
⋃

v∈IS J v can be
scheduled within 2 · lb time units.

Proof of Claim. Consider the schedule defined by scheduling the jobs correspond-
ing to each vertex v ∈ IS as follows. Let I f be the independent set with v ∈ I f . A
job jv

g,i corresponding to vertex v is then scheduled without interruption starting
at time r2(d− f ) · (i− 1).

The schedule has makespan at most 2 · lb since a job is started at latest at
time r2(d− f ) · (r2 f − 1)< lb and requires lb time units in total.

To see that the schedule is feasible, observe that no short-operations of
the jobs in

⋃

v∈IS J v need to be processed on the same machines as the long-
operations of the jobs in

⋃

v∈IS J v (this follows from the construction and from
the fact that the jobs correspond to non-adjacent vertices). Moreover, two jobs
jv
g,i, jv′

g ′,i′ with either g 6= g ′ or v 6= v′ have no two long-operations that must be
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processed on the same machine. Hence, the only jobs that might delay each
other are jobs belonging to the same vertex v and the same group g, but these
jobs are started with appropriate delays (depending on the frequency of the job).
�

Assuming χ(G) = L we partition V into L independent sets V1, V2, . . . , VL.
By the above claim, the jobs corresponding to each of these independent sets
can be scheduled within 2 · lb time units. We can thus schedule the jobs in L-
”blocks”, one block of length 2 · lb for each independent set. The total length of
this schedule is lb · 2L. �

Soundness

We prove that, given a schedule where many jobs are completed “early”, we can
find a “big” independent set of G, in polynomial time.

Lemma 5.3.7 For any L ≤ r, given a schedule of S(r, d) where at least half the
jobs finish within lb · L time units, we can, in time polynomial in n and rd , find an
independent set of G of size at least n/(8L).

Proof. Fix an arbitrarily schedule of S(r, d) where at least half the jobs finish
within lb · L time units. In the subsequent we will disregard the jobs that do not
finish within lb · L time units. Note that the remaining jobs are at least r2d n/2
many. As for the gap construction (see Section 5.2.2), we say that the i-th long-
operation of a job j of frequency f is good if the delay d j(i) between job j’s

i-th and (i + 1)-th long-operations is at most r2

4
· r2(d− f ). In each group Mg of

machines we will associate a set Tg,v of time intervals with each vertex v ∈ V .
The set Tg,v contains the time intervals corresponding to the first half of all
good long-operations scheduled on the machine mg,v. We also let L(Tg,v) denote
the total time units covered by the time intervals in Tg,v. Scheduling instance
S(r, d) has similar structure and similar properties as the gap instances created
in Section 5.2.2. By using the fact that all jobs (that were not disregarded) have
completion time at most L ·lb, which is by assumption at most r ·lb, Lemma 5.3.8
follows from the same arguments as Lemma 5.2.2.

Lemma 5.3.8 The fraction of good long-operations of each job is at least
�

1− 4
r

�

.

Consider a group Mg of machines and two jobs corresponding to adjacent
vertices that have long-operations on machines in Mg . Recall that jobs corre-
sponding to adjacent vertices have different frequencies. By the ordering of the
machines, we are guaranteed that the job of higher frequency has, after its long-
operation on a machine in Mg , a short-operation on the machine in Mg where
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the job of lower frequency has its long-operation. The following lemma now
follows by observing, as in the proof of Lemma 5.2.3, that the long-operation of
the high frequency job can only be good if it is not scheduled in parallel with the
first half of the long-operation of the low frequency job.

Lemma 5.3.9 Let u ∈ Ik and v ∈ Il be two adjacent vertices in G with k > l. Then
the sets Tg,u and Tg,v , for all g : 1≤ g ≤ r2d , contain disjoint time intervals.

Finally, Lemma 5.3.10 is proved in the very same way as Lemma 5.2.4. Their
different inequalities arise because in the gap instance we had d · r2d jobs and
here we are considering at least r2d n/2 jobs that were not disregarded.

Lemma 5.3.10 There exists a g ∈ {1, . . . , r2d} such that

∑

v∈V

L(Tg,v)≥
lb · n

8
.

We conclude by a simple averaging argument. Consider a g, such that
∑

v∈V L(Tg,v) is at least lb·n
8

. This is guaranteed to exist by the lemma above.
As all jobs that were not disregarded finish within L · lb time units, at least
lb·n

8
/(L · lb) = n

8L
time intervals must overlap at some point during the first L · lb

time units of the schedule, and, since they overlap, they correspond to different
vertices that form an independent set in G (Lemma 5.3.9). Moreover, we can
find such a point in the schedule, for example, by considering all different blocks
and in each block verify the start and end points of the time intervals. �

5.4 Hardness of Job Shops with Two Machines

In this section we prove Theorem 5.1.4. We show that J2||Cmax has no PTAS
by presenting a gap-preserving reduction from the NP-hard problem to distin-
guish between n-vertex cubic graphs that have an independent set of size β · n
and those that have no independent set of size α · n, for some β > α (see The-
orem 5.1.7). More specifically, given a cubic graph G(V, E), we construct an
instance S of J2||Cmax so that, for some L defined later, we have the following
completeness and soundness analyses.

• (Completeness) If G has an independent set of size βn then S has a schedule
with makespan L.

• (Soundness) If G has no independent set of size αn then all schedules of S
have makespan at least (1+Ω(1))L.
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Throughout this section we will use the following notation to define jobs (see
Figure 5.8 for an example). An operation is defined by a pair [mi, p], where
p is the processing time required on machine mi. Let s1, . . . , sy be sequences of
operations, and let (s1, . . . , sy) stand for the sequence resulting by their concate-
nation in the given order. We use (s1, . . . , sy)x to denote the sequence obtained
by repeating (s1, . . . , sy) x times.

m1

m2

Figure 5.8: An example of the representation. The light gray job is defined by
([m1, 2], [m2, 2]) and the dark gray job is defined by ([m2, 1], [m1, 1])2.

Before presenting the reduction (Section 5.4.1) and the analysis (Section 5.4.2),
we have the following lemma (whose standard proof is included for the sake of
completeness), which will be useful in our construction.

Lemma 5.4.1 For any sufficiently small fixed ε > 0, we can, in time polynomial
in n, construct a family of sets C = {C1, C2, . . . , Cn2} with the following properties:

1. Each set Ci ∈ C is a subset of {1,2, . . . , (1/ε)1/ε log n} and has size log n.

2. Two sets Ci ∈ C and C j ∈ C , with i 6= j, satisfy |Ci ∩ C j| ≤ ε log n.

Proof. Consider the following procedure to obtain such a family C .

1: Initiate S with all binary strings of length (1/ε)1/ε log n with log n many 1’s
2: Let C = ;
3: repeat
4: Pick a binary string x ∈ S, and add the set {i : x i = 1} to C
5: Remove all the binary strings from S that share at least ε log n many 1’s

(elements) with x
6: until S is empty

It is clear that the family C returned by the above procedure satisfies prop-
erties (1) and (2). We continue by analyzing the size of the returned C . We will

use that
�a

b

�

is bounded from above by both
� a
da/2e

�

and
�

a·e
b

�b
. For simplicity
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we assume all numbers to be integral. At each iteration, the number of sets of S
that we remove is at most

log n
∑

i=ε log n

�

log n

i

�

︸ ︷︷ ︸

#choices for 1’s

·
�

((1/ε)1/ε− 1) log n

log n− i

�

︸ ︷︷ ︸

#choices for 0’s

≤

(1− ε) log n
�

log n
log n

2

�

·
�

(1/ε)1/ε · log n

(1− ε) log n

�

≤

(1− ε) log n
�

(2e)
log n

2 ·
�

(1/ε)1/ε ·
e

1− ε

�(1−ε) log n�

≤

(1− ε) log n
�

4e2 · (1/ε)1/ε
�(1−ε) log n

.

As the number of elements in S at the beginning is
�(1/ε)1/ε log n

log n

�

≥ (1/ε)1/ε·log n,
the number of iterations and thus the size of C at the end of the process is at
least

(1/ε)1/ε·log n

(1− ε) log n
�

4e2 · (1/ε)1/ε
�(1−ε) log n

=

1

(1− ε) log n
�

(4e2)1−ε
�log n

·
(1/ε)1/ε·log n

(1/ε)1/ε log n(1−ε) =

(1/ε)log n

(1− ε) log n
�

(4e2)1−ε
�log n

,

which is greater than n2 for sufficiently small ε.
�

5.4.1 Construction

The construction will be presented together with some useful properties that
will later be used in the analysis. Before defining the jobs we will define “types”
and “blocks” of operations. The jobs will later be defined as concatenations of
blocks, which in turn will be defined as concatenations of types.
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Types

Let d = O(log n). For each frequency f : 1 ≤ f ≤ d we define type Tf and type
T̄f as

Tf :=
�

[m1, n4(d− f )], [m2, 0]
�n4 f

T̄f :=
�

[m2, n4(d− f )], [m1, 0]
�n4 f

.

We will call the operations of Tf and T̄f that require n4(d− f ) time units long-
operations and the operations that require 0 time units short-operations. Note
that a type requires time n4 f n4(d− f ) = n4d . We say that the two types Tf and
T̄f are compatible, for f : 1 ≤ f ≤ d. Note that two compatible types can
be scheduled in parallel, i.e., both can be scheduled within n4d time units (see
Figure (5.9-a)). Moreover, we have the following lemma (for intuition see Fig-
ure (5.9-b)).

m1

m2

Tf T̄f

(a)

(b)

m1

m2

Ti T̄j

Figure 5.9: a) An example of two compatible types Tf and T̄f that can be sched-
uled in parallel. b) Two types Ti, T̄ j with i > j, for which there are “many” time
units during which they cannot be scheduled in parallel.

Lemma 5.4.2 Two types Ti and T̄ j with i 6= j can be scheduled in parallel during
at most n4d/n4 time units in any feasible schedule.

Proof. If i > j then, as Ti has a short-operation on machine m2 between any
two consecutive long-operations on machine m1 at most one long-operation of
Ti is scheduled in parallel with any long-operation of T̄ j. Since T̄ j has n4 j long-
operations and each long-operation of Ti requires n4(d−i) time units, it follows,
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by using i > j, that the operations of T̄ j and Ti overlap at most n4(d−1) time units.
The same result can be obtained when i < j by using symmetric arguments. �

Configurations

For i = 1, . . . , |E|, a configuration Ci = (Tπi,1
, . . . , Tπi,log n

) is an ordered sequence
of log n types, where πi, j ∈ {1, . . . , d} denotes the frequency of the j-th type of
configuration Ci. Lemma 5.4.1 shows that we can define a set of configurations
C = {Ci : i = 1, . . . , |E|} such that any two configurations Ci ∈ C and C j ∈ C
with i 6= j have at most ε log n types in common, for ε > 0 arbitrarily small. The
set C̄ = {C̄i : i = 1, . . . , |E|} is defined in a similar way by using the types T̄i,
i.e., for i = 1, . . . , |E| we have C̄i = (T̄πi,1

, . . . , T̄πi,log n
). Note that a configuration

requires n4d log n time units.

Blocks

We are now ready to define the different blocks. For i = 1, . . . , |E|, block Bi

is obtained by concatenating Ci for n2-times, i.e. Bi := (Ci)n
2
; similarly B̄i :=

(C̄i)n
2
. Let D = n4d+2 log n be the length of a block. As in the case of compatible

types, it is easy to see that two blocks Bi and B̄i can be scheduled in parallel.
However, only a tiny fraction of the operations of a configuration C̄i can overlap
the operations of a block B j, if i 6= j.

Lemma 5.4.3 The operations of a configuration C̄i and a block B j, with i 6= j,
can be scheduled in parallel during at most εn4d log n time units in any feasible
schedule, where ε > 0 can be made an arbitrarily small constant.

Proof. The block B j is composed of n2 repetitions of C j. Note that configuration
C̄i has at most ε log n compatible types with configuration C j, where ε > 0 can be
made an arbitrarily small constant. By Lemma 5.4.2 together with the fact that
B j is a sequence of n2 log n types, we have that the remaining (1− ε) log n types
of C̄i can be scheduled in parallel with B j during at most (1− ε) log n · n2 log n ·
n4d/n4 = o(n4d log n) time units. Hence, the operations of C̄i and block B j can be
scheduled in parallel during at most εn4d log n+ o(n4d log n) < ε′n4d log n time
units, for some ε′ > 0 that can be made an arbitrarily small constant. �

Jobs

The blocks are now used as building blocks for defining the jobs. We will define
two kinds of jobs: a big job and vertex jobs. The big job jb is composed of
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an edge-part PE(b), followed by a tail-part PT (b), a slack-part PS(b), and finally a
remaining-part PR(b), defined as follows:

PE(b) := (B1, B2, . . . , B|E|)
PT (b) := [m2, D · βn]

PS(b) := ([m1, 1])D·3(1−β)n

PR(b) := [m2, D · (1− β)n]

Note that the length of job jb is L := D(|E|+ n+ 3(1− β)n) = O(nD). A high
level representation of the long job jb is given in Figure (5.10) (for simplicity the
structure of the edge-part is omitted; the building blocks of this part have been
previously described).

m1

m2

PE(b) PT (b) PS(b) PR(b)

Figure 5.10: An overview of jb.

We have a vertex job jv for each vertex v ∈ V . Let ei, e j, ek be the 3 edges
incident to v with i < j < k. Job jv is composed of an edge-part PE(v) followed by
a tail-part PT (v) defined as follows:

PE(v) := (B̄i, B̄ j, B̄k)
PT (b) := [m1, D]

The length of a vertex job is 4D.
The following fundamental lemma motivates our construction. It shows that

for any pair {u, v} ∈ E of adjacent vertices, either ju or jv cannot be completed
before the end of jb’s tail-part without delaying job jb Ω(D) time units. It follows
that, without delaying job jb, only jobs corresponding to vertices that form an
independent set can be completed before the end of jb’s tail-part.

Lemma 5.4.4 For any i ∈ {1, . . . , |E|}, if there are two copies of block B̄i to be
scheduled, then at least γ · D time units of these two blocks cannot be scheduled in
parallel with the edge-part of job jb, for some γ < 1 that can be made arbitrarily
close to 1.
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Proof. Recall that B̄i is composed of n2 repetitions of the configuration C̄i.
Hence, the two copies contain 2n2 copies of configuration C̄i. At most n2 of
these configurations, that in total require D time units, can be scheduled in
parallel with block Bi of job jb’s edge-part. Let R denote the remaining configu-
rations that may only be scheduled in parallel with the blocks {B j : j 6= i} of job
jb’s edge-part. Note that |R| ≥ n2. By Lemma 5.4.3, we have that a configura-
tion C̄i can be scheduled in parallel with a block B j, with i 6= j, during at most
εn4d log n time units, for an arbitrarily small constant ε > 0. As the edge-part of
jb consists of |E|= 3n/2 blocks, |R| ≥ n2, and configurations belonging to a job
must be scheduled in a fixed order, almost all configurations in R are scheduled
in parallel with at most one block of job jb’s edge-part. It follows that at most
D + n2 · n4d log nε = D(1+ ε) time units of the two copies (requiring 2D time
units in total) can be scheduled in parallel with job jb’s edge-part, where ε > 0
can be made an arbitrarily small constant. �

5.4.2 Analysis

Completeness

We will see that if graph G has an independent set of size βn then all vertex
jobs can be scheduled in parallel with the big job jb. Thus the makespan of the
schedule will equal L (the length of job jb).

Let V ′ ⊆ V denote an independent set of G with |V ′| = βn. Since V ′ forms
an independent set, no two vertices are incident to the same edge. Recall that a
block B̄i can be scheduled in parallel with a block Bi, the tail-part of a vertex job
requires time D on machine m1 and the tail-part PT (b) of jb requires time Dβn on
machine m2. It follows that the vertex jobs corresponding to the vertices in V ′

can all be scheduled in parallel with the edge-part PT (b) = (B1, B2, . . . , B|E|) and
the tail-part PT (b) of jb. As (i) the slack-part of job jb consists of D · 3(1− β)n
unit time operations on m1, (ii) a block B̄i can be scheduled in parallel with D
slack-operations, and (iii) the remaining-part of job jb consists of one operation
on machine m2 that requires time D(1− β)n, the (1− β)n jobs corresponding
to the vertices of V \ V ′ can be scheduled in parallel with the slack-part and
remaining-part of jb.

Soundness

As the makespan equals L — the length of job jb — in the completeness case,
we will analyze the soundness case by showing that there is a fraction of the
operations belonging to the vertex jobs that are not scheduled in parallel with
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jb. Then it follows that if graph G has no independent set of size αn then the
length of any schedule is at least (1+Ω(1))L.

For any given schedule, let t1 be the time at which the tail-part PT (b) of jb
is completed, and t2 the time at which the remaining-part PR(b) of jb starts. Let
T := n ·D denote the sum of the lengths of tail-parts of the vertex jobs. Let τ1,τ2

and τ3 be the fraction of T spent to schedule tail-operations of the vertex jobs
during time interval [0, t1), [t1, t2) and [t2,∞), respectively.

It is easy to observe that any positive value of τ2 implies that τ2 · T time
units are not scheduled in parallel with job jb. Similarly a positive value of τ3

implies that max{0, (τ3 − (1 − β))T} time units are not scheduled in parallel
with jb. Finally, note that there are at least τ1 · n vertex jobs that complete
their edge-part before time t1. Since G has no independent set of size αn, it
follows that there are at least max{0, (τ1 − α)n} conflicting pairs of vertex jobs
(i.e., corresponding to adjacent pairs of vertices). There are thus two “conflict-
ing” copies of max{0, (τ1 − α)n} different blocks from {B̄i : i = 1, . . . , |E|} to be
scheduled before time t1. By using Lemma 5.4.4, we can easily check that at
least (τ1 −α)n · γ · D time units of these conflicting blocks cannot be scheduled
in parallel with job jb.

By the above arguments, it follows that the makespan of the schedule is at
least the length of job jb plus (β−α)γ ·n ·D, where γ < 1 can be made arbitrarily
close to 1. Hence, as L = O(nD), the length of any schedule in the soundness
case is at least (1+Ω(1))L.

5.5 Conclusions

Woeginger & Schuurman [SW99] highlighted the poor understanding of the
approximability of job shop and flow shop scheduling as two of the ten most
prominent open problems in the area of approximation algorithms for NP-hard
machine scheduling problems.

In this chapter we have resolved many of these questions by using strong
hardness results for coloring by Khot [Kho01] together with novel “gap” con-
structions that build upon previous work by Feige & Scheideler [FS02]. The
main results of our work can be summarized as follows.

1. The O((log lb)1+ε)-approximation algorithm [CS00; FS02], where ε > 0
can be made arbitrarily close to 0, for acyclic job shops and generalized
flow shops is essentially the best possible.

2. To improve the approximation guarantee for flow shops, one needs to
(i) improve the polynomial time computable lower bound on the opti-
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mal makespan and (ii) use the fact that all jobs are processed on every
machine.

3. It is necessary to restrict both the machines and the number of operations
per job to obtain a PTAS for the job shop problem with makespan objec-
tive. That it is sufficient follows from the work by Jansen, Solis-Oba &
Sviridenko [JSOS03].

With our current techniques we have been unable to address some shop
scheduling problems, whose approximability remains poorly understood. Below
we list three prominent problems, all of them with a significant “gap” between
the best known approximation guarantees and inapproximability results.

1. The job shop problem admits an O((log lb)2/(log log lb)2)-approximation
algorithm [GPSS01]. Our results imply that it is unlikely to approximate
job shops within a factor O((log lb)1−ε), for any ε > 0. To the best of our
knowledge no instances of the job shop problem are known with optimal
makespan a ω(log lb) factor away from the lower bound lb. This leaves
open the possibility that job shop scheduling might have an O(log lb)-
approximation algorithm.

2. Job shop scheduling with preemption admits an O(log m/ log log m)-approx-
imation algorithm [BKS06] and preemptive acyclic job shops admits an
O(log log lb)-approximation algorithm [FS02], which is currently also the
algorithm of choice for flow shops with preemption. The only negative
result [WHH+97], says that it is NP-hard to approximate these problems
within a factor less than 5/4.

3. The flow shop problem has an O((log lb)1+ε)-approximation algorithm,
where ε > 0 can be made arbitrarily close to 0 [CS00; FS02]. On the
other hand it is only known that it is NP-hard to approximate flow shops
within a factor less than 5/4 [WHH+97]. This leaves open the possibility
that one can use the fact that all jobs have to be processed on every ma-
chine to even obtain a constant factor approximation algorithm for flow
shop scheduling.
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Chapter 6

Conclusions

In this thesis we addressed the approximability of several classical scheduling
problems where there is a large “gap” in our understanding. Our hypothesis was
that stronger hardness of approximation results were needed to close this gap.
This was motivated by the fact that for these problems there were few negative
results that took advantage of new methods, such as probabilistic checkable
proofs. We showed our hypothesis to be valid and the main negative results that
we obtained are the following:

• For precedence-constrained scheduling (1|prec|
∑

w jC j), (uniform) spars-
est cut, and optimal linear arrangement we gave the first negative results
that rule out a PTAS for each of those problems.

• For the general version of flow shops, where jobs are allowed to skip ma-
chines, we gave a negative result that matches the best known approxima-
tion algorithm [FS02]. Our result is also tight for the more general acyclic
job shop problem and gives the first non-constant inapproximability result
for the job shop problem.

• We showed that restricting the number of machines and the number of
operations per job is necessary to obtain a PTAS for the job shop problem.
That it is sufficient follows from the work in [JSOS03].

Apart from the negative results, we also gave positive results for the precedence-
constrained single machine scheduling problem with the weighted sum of com-
pletion times objective. More precisely, we derived a framework that guaran-
tees a better approximation ratio as soon as precedence constraints have low
complexity, where the complexity of the precedence constraints is measured by
their dimension. Perhaps the most interesting part of this framework is not the
improved approximation guarantees, but rather the concrete connection estab-
lished between the scheduling problem and dimension theory of partial orders.
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Indeed, in [CS05; AM09] it was proved that this classical scheduling problem is
a special case of the fundamental weighted vertex cover problem and, here, we
pointed out that the graph obtained is in fact the graph of incomparable pairs
previously studied in the dimension theory of partial orders.

6.1 Future Directions

In what follows, we briefly describe some interesting future research directions
that are related to this thesis.

Tailor-Made PCPs for Ordering/Scheduling Problems

A successful approach for proving strong inapproximability results has been to
design tailor-made PCPs for the specific problems. An interesting continua-
tion of our work would be to do the same for scheduling and ordering prob-
lems. The first result in this direction was the recent so-called Quasi-random
PCP by Khot [Kho06], which we used to obtain inapproximability results for
precedence-constrained scheduling on a single machine to minimize the sum of
weighted completion times.

The current Quasi-random PCP construction assumes that NP-complete prob-
lems are not solvable in randomized subexponential time (a stronger assump-
tion than the standard P 6= NP) and the lower bounds obtained are weak (no
(1+ ε)-approximation algorithms exist). A long term goal would be to obtain
special tailored PCP constructions for precedence-constrained scheduling that
either achieve stronger lower bounds or use more standard assumptions like
P6=NP.

Stronger Inapproximability Results Assuming the Unique Games Conjecture

Today’s techniques seem insufficient to analyze the approximability for several
NP-hard optimization problems. A possible way to overcome this difficulty is to
adopt a stronger assumption. The unique games conjecture (UGC) is such an as-
sumption asserting that a certain optimization problem is NP-hard [Kho02]. The
unique games conjecture has fueled a lot of development in hardness of approx-
imation, and whether the conjecture is true or false has become a central open
problem. Assuming the UGC, researchers have been able to obtain hardness of
approximation results that match the best known positive results for several op-
timization problems for which no tight or nearly tight results were previously
known (see e.g. [KKMO04; Aus07; KR08; Rag08]).
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It would be interesting to investigate if the UGC can be used to obtain sim-
ilar results for basic scheduling problems, such as the ones listed in [SW99].
In an exiting recent development, Bansal & Khot [BK09] showed that a new
stronger version of the unique games conjecture implies the tight negative result
that 1|prec|

∑

w jC j (the scheduling problem addressed in Chapter 3) is NP-hard
to approximate within a factor 2 − ε, for any ε > 0. Following their work, it
would be interesting to understand (i) if their assumption is equivalent to the
unique games conjecture and (ii) if similar techniques can be extended to other
fundamental scheduling problems.

Semidefinite Programming for Scheduling Problems

A large fraction of the current approximation algorithms are built around linear
programming. A powerful generalization of linear programming (that still can
be solved in polynomial time) is semidefinite programming.

In the seminal paper [GW95], Goemans & Williamson introduced the use
of semidefinite programming in the design of approximation algorithms. They
considered the max cut problem and gave a 0.87856-approximation algorithm;
a big improvement over the previous best approximation ratio of 1/2. Since then
semidefinite programming has found numerous applications and is today one of
the most powerful tools in the design of approximation algorithms.

To the best of our knowledge, the only approximation algorithm for schedul-
ing problems that uses semidefinite programming is Skutella’s 1.5-approximation
algorithm for the problem of scheduling unrelated parallel machines so as to
minimize the total weighted completion time [Sku01]. As semidefinite pro-
gramming is a generalization of linear programming, we believe that a natural
and fruitful research direction would be to extend the use of semidefinite pro-
gramming in the design of approximation algorithms for scheduling problems.
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Appendix A

Basic Definitions

In this appendix, we give some basic definitions that are used throughout this
thesis. We start with common graph terminology, followed by the definitions of
essential classical decision and optimization problems. Finally, we review the
definitions of some complexity classes.

For a more comprehensive discussion of these topics, we refer the interested
reader to the textbooks [GJ79; Hoc95; ACG+99; Vaz01].

A.1 Graph Terminology

While reading the definitions, we also recommend the reader to see Figure A.1.
We denote a graph G with vertex set V and edge set E, by G(V, E) or G = (V, E).
Graph G is bipartite if its vertex set can be partitioned into two sets V ′ and W ′

so that each edge is incident to one vertex in V ′ and one vertex in W ′, i.e.,
E ⊆ {{v, w} : v ∈ V ′, w ∈W ′}. We will sometimes refer to such a bipartite graph
as G(V ′, W ′, E) and it is said to be m by n bipartite if |V ′|= m and |W ′|= n.

We say that a vertex v has degree d(v), if v is adjacent to d(v) other vertices.
The degree of a graph G(V, E), denoted by d(G) or ∆(G), is then maxv∈V d(v). If
all vertices of a graph have degree 3, then the graph is said to be a cubic graph.

A complete graph G(V, E) (also called clique) is the graph where any two
vertices u and v are adjacent. Similarly, a bipartite graph G(V, W, E) is said to
be complete (or a bipartite clique) if any two vertices v ∈ V and w ∈ W are
adjacent.

Given a graph G(V, E), let V ′ ⊆ V be a subset of the vertices. We say that
graph H(V ′, E′) is the subgraph of G induced by V ′, if E′ = {{u, v} ⊆ V ′ : {u, v} ∈
E}. Finally, two graphs G(V, E) and H(W, E′) are isomorphic if there exists a
bijection f : V →W such that {u, v} ∈ E⇔{ f (u), f (v)} ∈ E′.
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G H

Figure A.1: Graph G is a cubic graph, i.e., all vertices have degree 3. Graph
H is the subgraph of G induced by the gray vertices, which in turn is a 2 by 2
complete bipartite graph.

A.2 Some Decision and Optimization Problems

Arguably, the most basic NP-complete decision problems are satisfiability and its
restriction 3SAT.

• Satisfiability (SAT): Given a Boolean formula φ, decide if there is some
truth assignment to the variables in φ such that φ is true.

• 3SAT: Given a Boolean 3CNF formula φ (a formula that is a conjunction
of clauses where each clause is a disjunction of at most 3 literals), decide
if there is some truth assignment to the variables in φ such that φ is true.

Below, we list some of the more fundamental optimization problems that
appear in this thesis.

• MAX-3SAT: Given a Boolean 3CNF formula φ, find an assignment to the
variables in φ that satisfies the largest number of clauses.

• Weighted vertex cover: Given a graph G(V, E) where each vertex v has a
nonnegative weight wv, find a vertex cover V ′ ⊆ V — a subset of the
vertices so that for each {u, v} ∈ E, {u, v} ∩ V ′ 6= ; — that minimizes
∑

v∈V ′ wv. (In the unweighted version all vertices have weight one.)
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• Weighted independent set: Given a graph G(V, E) where each vertex v has a
nonnegative weight wv, find an independent set V ′ ⊆ V — a subset of the
vertices so that for any two vertices u ∈ V ′ and v ∈ V ′, {u, v} 6∈ E — that
maximizes

∑

v∈V ′ wv. (In the unweighted version all vertices have weight
one.)

• Graph coloring: Given a graph G(V, E) assign a color to each vertex such
that two adjacent vertices receive different colors and the number of used
colors is minimized.

A.3 Complexity Classes
Here, we list the definitions of some complexity classes that appear in the plau-
sible assumptions we use when proving hardness of approximation results.

• P — class of decision problems that can be solved in polynomial time.

• N P — class of decision problems whose solutions can be verified in poly-
nomial time.

• DT I M E( f (n)) — class of decision problems that can be solved using a
deterministic algorithm that runs in time O( f (n)) on an instance of size n.

• Z T I M E( f (n))— class of decision problems that can be solved using a ran-
domized algorithm that always gives the correct answer and has expected
running time O( f (n)) on an instance of size n.

• BPT I M E( f (n)) — class of decision problems that can be solved using a
randomized algorithm that gives the correct answer with probability at
least 2/3 and runs in time O( f (n)) on an instance of size n.

An example of an assumption used in this thesis is N P 6⊆ DT I M E
�

nlog n
�

,
i.e., that there are problems in NP that cannot be solved using an algorithm that
runs in time O

�

nlog n
�

on an instance of size n.
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