
W
O

R
K

IN
G

 P
A

P
E

R
S

 S
E

S

 

F A C U L T É  D E S  S C I E N C E S  E C O N O M I Q U E S  E T  S O C I A L E S

W I R T S C H A F T S -  U N D  S O Z I A L W I S S E N S C H A F T L I C H E  F A K U L T Ä T

U N I V E R S I T É  D E  F R I B O U R G      |      U N I V E R S I T Ä T  F R E I B U R G

8.2012
N° 427

Smile in Motion: 
An Intraday Analysis of 
Asymmetric Implied Volatility

Martin Wallmeier



Smile in Motion: An Intraday Analysis

of Asymmetric Implied Volatility

Martin Wallmeier∗

August 2012

Abstract

We present a new method to measure the intraday relationship between move-

ments of implied volatility smiles and stock returns. It is based on an enhanced smile

regression model which captures patterns in the intraday data which have not yet been

reported in the literature. Using transaction data for exchange-traded EuroStoxx 50

options from 2000 to 2011 and DAX options from 1995 to 2011, we show that, on

average, about 99% of the intraday variation of implied volatility can be explained

by moneyness and changes in the index level. Compared to the typical smile regres-

sion with moneyness alone, about 50% of the remaining errors can be attributed to

movements in the underlying index. We find that the intraday evolution of volatility

smiles is generally not consistent with traders’ rules of thumb such as the sticky strike

or sticky delta rule. On average, the impact of index return on implied volatility is

1.3 to 1.5 times stronger than the sticky strike rule predicts. The main factor driving

variations of this adjustment factor is the index return. Our results have implications

for option valuation, hedging and the understanding of the leverage effect.
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1 Introduction

When studying options with different strike prices, it is common practice to translate

option prices into implied volatilities. The strike price structure of implied volatilities

directly reveals deviations from the flat line prediction of the Black-Scholes model. The

patterns typically found in option markets are subsumed under the term “smile”, because

they often show an increase in implied volatility for high and low strike prices. For stock

index options, implied volatility tends to decrease monotonically with strike price, which

is why the pattern is better known as a “skew”. In line with a part of the literature, we

use “smile” as a general term for the strike price profile of implied volatility, which also

includes a skew pattern.

Figure 1A (p. 3) shows a typical scatterplot of implied volatility against moneyness,

where moneyness is defined as a scaled ratio of strike price and underlying index value.

Each point represents a transaction on 21st January 2009 in DAX options with a time to

maturity of 30 days. Clearly, there is a pronounced skew, with moneyness explaining much

of the variation of implied volatility, which is consistent with the findings of many previous

studies. But to the best of our knowledge, the literature so far has not paid attention to

a secondary pattern which is apparent from the same graph when plotting neighboring

strike prices in different grey shades (see Fig. 1B). Contrary to the overall downward

sloping skew profile, when the strike price is fixed, implied volatilities tend to increase

with moneyness. Since the strike price is held constant, the corresponding moneyness

variation is caused by index changes alone. When the index falls (moneyness goes up),

implied volatility typically increases, and vice versa. The whole smile structure appears to

move systematically in relation to index changes. The main idea of this paper is to exploit

these intraday movements to construct daily measures of the index-volatility relationship.

We apply these measures to options on the EuroStoxx 50 and the German DAX index,

which both belong to the most actively traded stock index options in the world.1 Our

1 See the Trading Volume Statistics of the Futures Industry Association

(http://www.futuresindustry.org).
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Figure 1: Smile profile of the DAX option with a time to maturity of 30 calendar days on

21st September 2009. Left: all trades in black. Right: different grey shades for neighboring

strikes.

study includes 4.6 million transactions of EuroStoxx 50 options over the period from 2000

to 2011 and 9.3 million transactions of DAX options between 1995 and 2011.

The first objective of our study is to model the smile more precisely than has previously

been achieved. Using simulations, Hentschel (2003) shows that the impact of estimation

errors is potentially large. Our approach is to reduce estimation errors to such an extent

that they are no longer practically relevant. To this end, we perfectly synchronize index

levels and option prices and make use of put call parity to obtain an implicit market

estimate of expected dividends including tax effects.2 In a simple smile regression, we

obtain an average daily 2 of about 96%, which is considerably higher than reported in

other studies (see, e.g., Goncalves and Guidolin (2006), p. 1600; Kim (2009), p. 1010).

Violations of arbitrage relations (upper and lower bounds, butterfly spread) are practically

non-existent. We conclude that it is important and possible to avoid errors in estimating

implied volatilities. Results based on imperfectly matched closing prices might not be

reliable.

The second objective is to extend the commonly applied smile model to capture the

2 This is not standard practice in the literature. For instance, Christoffersen et al. (2009) use only call

options, rely on closing prices and adjust the underlying index level for ex post realized dividends

instead of expected dividends. For the 1997—2006 period, Constantinides et al. (2009) also use call

options only.
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secondary pattern related to intraday index changes. The inclusion of the index level

as an explanatory variable in our enhanced smile model raises the average daily 2 to

about 99%. Thus, almost all of the variation of implied volatility across transactions

in one option series on one day can be explained by moneyness and index return. This

means that option pricing follows a strict rule established as a market standard. The high

explanatory power of the smile model seems to be a new result.

The third objective of our study is to provide empirical estimates of the relation between

index returns and implied volatilities based on our enhanced smile model. The regression

analysis allows us to study the arising of the well-known leverage or asymmetric volatility

effect based on high-frequency data. One advantage of our approach is that high-frequency

changes of implied volatilities can be measured with greater precision than high-frequency

changes of realized volatility. Another advantage is that our estimate is based on all option

trades on one day which allows us to accurately disentangle the effects of moneyness and

index level on implied volatilities. In line with studies based on daily changes, we find that,

during the day, the smile moves upwards when the index falls and vice versa. However,

in contrast to previous literature, we find none of the three commonly proposed traders’

rules of thumb (sticky moneyness, sticky strike, sticky implied tree) to be valid in any

extended time period. One main result is that the intraday movements are, on average,

about 13 times as strong as the sticky strike rule predicts. However, the adjustment factor

is strongly associated with the index return on the same day. During days when the index

gains more than 3% between open and close, the shifts of the smile are approximately

consistent with the sticky strike rule (factor 10), while on days with negative returns of

less than −3%, the changes of the smile tend to be 18 times stronger. These findings are
remarkably stable over time and across time to maturity classes. They are relevant for

hedging index options, testing option pricing models and modeling and trading volatility

(see Gatheral and Kamal (2010), 930).

Our study is related to three streams of literature. The first deals with the dynamics of

the surface of implied volatilities. The surface is typically estimated on a daily basis using
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parametric or non-parametric methods. In the parametric approach, which goes back to

Shimko (1993), implied volatilities are modeled by polynomial functions of moneyness and

time to maturity. Non-parametric methods include kernel regressions (e.g. Fengler (2005))

and grouping techniques (e.g. Pena et al. (1999)). The dynamics of implied volatilities

is then analyzed by Prinicpal Components Analysis (PCA) or related methods.3 Several

studies show that a small number of two to four factors explains much of the daily variation

of the smile surface. These factors are related to shocks to (1) the overall level of the

smile, (2) its steepness, (3) curvature and (4) the term structure of implied volatilities

(see Skiadopoulos et al. (1999), Cont and Fonseca (2002), Hafner (2004), Fengler et al.

(2003), Fengler et al. (2007)). The studies also find that the level-related factor has a

strongly negative correlation to the return of the underlying index. Goncalves and Guidolin

(2006) take a more direct approach than PCA by using VAR models for the parameters

of polynomial smile regressions. They find that the movements of the surface are highly

predictable, but it remains an open question if this predictability can be exploited by

profitable trading strategies.

The negative return-volatility correlation, which is at the heart of the second stream of

literature, is as strong as about −06 to −08 in daily data, which is why it is regarded
as an important stylized fact (see, e.g., Christoffersen (2012), p. 11). It is often called

asymmetric volatility or leverage effect, because a decrease of stock prices brings about

higher leverage ratios and therefore higher equity risk. However, this leverage argument

is insufficient to explain the size of the observed correlation (see Figlewski and Wang

(2000)). Recent evidence from high-frequency data suggests that the relation is initiated

by index return followed by a volatility reaction (see Masset and Wallmeier (2010)), but

the economic causes of the effect are still questionable. In line with other studies, we still

use the term “leverage effect” although the leverage argument cannot fully account for the

effect.

3 Schönbucher (1999) and Ledoit et al. (2002) derive conditions for the dynamics of implied volatilities

to be consistent with arbitrage-free markets.
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The third stream of literature considers the asymmetric volatility reaction from a trader’s

point of view. Traders need to know the return-volatility relation for hedging plain-vanilla

options and pricing and hedging exotic options. They often rely on rules of thumb instead

of sophisticated but possibly less robust theoretical models.4 Derman (1999) analyzes three

rules of thumb known as “sticky moneyness”, “sticky strike” and “sticky implied tree”.

The first two rules suggest that implied volatility remains constant for given moneyness

or given strike. The third rule assumes that there is a deterministic relation between asset

price and local volatility, so that volatility is not a risk factor of its own. This is why

the familiar binomial and trinomial trees can be modified to reflect the node-dependent

local volatility. However, empirical studies do not support the deterministic volatility

approach (see Dumas et al. (1998)). It implies exaggerated shifts of the smile profile when

the asset price changes. Ultimately, the return-volatility relation is overstrained if it is

considered as the sole cause of the observed skew. Nevertheless, Crépey (2004) concludes

from numerical and empirical tests that, in negatively skewed equity index markets, the

mean hedging performance of the model is better than the Black-Scholes implied delta.

Thus, the local volatility model might be useful in practice despite its known weaknesses.

The results for the other rules of thumb are mixed. For a one year time period, Derman

(1999) identifies seven different regimes in which different rules prevail. Daglish et al.

(2007) analyze monthly S&P500 option data from 1998 to 2002 and find support for the

sticky moneyness rule in a relative form, which means that the excess of implied volatility

over the ATM level is a function of moneyness. Gatheral and Kamal (2010) report that

the ATM implied volatility of S&P500 options reacts 1.5 times stronger than expected

according to the sticky strike rule. This estimate reflects the average relationship from

daily data over a time period of eight years.

Compared to these studies, our main contribution is to propose a new estimation method

for the index-implied volatility relationship based on intraday data. In this way, the time

4 Kim (2009) provides empirical support for the superiority of traders’ rules over sophisticated models in

forecasting the smile structure.
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variation of the asymmetric volatility effect can be studied. All daily option trades are

included in the estimation, which allows us to accurately separate movements along the

smile from shifts of the smile pattern. The rest of the paper is structured as follows.

Section 2 describes our data and the matching of index and option prices. Section 3

presents our enhanced smile model and Section 4 the results of its empirical estimation.

Section 5 concludes.

2 Data

We analyze options on the European stock index EuroStoxx 50 (OESX) and on the German

stock index DAX (ODAX). They are traded at the Eurex and belong to the most liquid

index options in the world.5 The options are European style. At any point in time during

the sample period, at least eight option maturities were available. However, trading is

heavily concentrated on the nearby maturities. Trading hours changed several times during

our sample period, but both products were traded at least from 09:30 to 16:00. Our sample

period extends from 1995 to 2011 for DAX options and from 2000 to 2011 for ESX options

(which were launched in 2000).

For this study of intraday smile movements, it is crucially important to measure implied

volatilities with great precision. Hentschel (2003, p. 788) describes the main sources of

measurement error as follows: “For the index level, a large error typically comes from using

closing prices for the options and index that are measured 15 minutes apart. This time

difference can be reduced by using transaction prices, but such careful alignment of prices is

not typical. Even when option prices and published index levels are perfectly synchronous,

large indexes often contain stale component prices.” We address these concerns in the

following ways. To overcome stale prices in the index, we derive the appropriate index

level from transaction prices of the corresponding index future, which is the most common

index trading instrument. We match each option trade with the previous future trade and

5 We are very grateful to the Eurex for providing the data.
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require that the time difference does not exceed 30 seconds. In fact, the median time span

between matched future and option trades in 2011 is 240 milliseconds. Even with perfect

matching, the index level might still be flawed since it is not adjusted for dividends during

the option’s lifetime. This is particularly relevant for the ESX which is a price index, while

the DAX is a performance index.6 The necessary adjustment is not straightforward since

dividend expectations of option traders are not directly observable. Instead, following

Han (2008) and, for the German market, Hafner and Wallmeier (2001), we use put-call

parity to derive a market estimate of the appropriate index adjustment. Put-call parity is

directly applicable because our index options are of European type and transaction costs

are small.

Our procedure to measure implied volatilities can be summarized as follows. To obtain

the index level  corresponding to an observed futures market price  at time  on

day , we solve the futures pricing model  = 
(−) for , where  is the risk-free

rate of return and  the futures contract maturity date. We only consider the contract

most actively traded on that day, which is normally the nearest available. The futures

implied index level  is then adjusted such that transaction prices of pairs of at-the-

money (ATM) puts and calls traded within 30 seconds are consistent with put-call-parity.

The adjusted index level is 

 = +, where  is the same adjustment value for all

index levels observed intraday. Empirically, the adjustment is usually negligible with the

exception of short-term ESX options traded in March (after the third Friday) and April.

The reason is that for these options, the maturity months (April and May) are different

from the next maturity date of the future (June). Between the two maturity dates, most

ESX firms pay out dividends, which are therefore considered differently in options and

futures prices.

6 An ajdustment might still be relevant for DAX options, because the assumption about taxation of

dividends underlying computation of the index does not necessarily correspond to the actual taxation

of marginal investors; see Hafner and Wallmeier (2001).
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3 Estimation method

In line with Natenberg (1994) and Goncalves and Guidolin (2006), among others, we define

time to maturity adjusted moneyness as:

(  ) =

ln

µ
−(−)





¶
√
 − 



where  is the intraday time (down to the level of seconds),  denotes the trading day, 

is the option’s maturity date and  the exercise price. The typical smile regression based

on transaction data considers all trades on one day in options with different strike prices

but the same time to maturity. Figure 2 shows typical scatterplots of implied volatility

across moneyness for different times to maturity (trading date 14th December 2011).

– Insert Figure 2 (p. 25) about here. –

A common way to model these patterns is to use the cubic regression function:

 () = 0 + 1 + 2
2 + 3 ·3 +  (1)

where  is the implied volatility,   = 0 1 2 3 are regression coefficients,  is a random

error, and  a dummy variable defined as:

 =

⎧⎪⎨⎪⎩ 0   ≤ 0
1    0



The dummy variable accounts for an asymmetry of the pattern of implied volatilities

around the ATM strike ( = 0). The cubic smile function is twice differentiable so that

the corresponding risk-neutral probability density is smooth.

A weakness of regression model (1) is the underlying assumption that the smile pattern is

constant during each trading day. By contrast, empirical observations suggest that implied
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volatilities change in accordance with intraday index returns (see Fig. 1). Therefore, we

propose an enhanced regression model which considers the index level as an additional

determinant of implied volatilities. The new regression function is:

 () = 0 + 1 + 2
2 + 3 ·3 +  ln +  ln +  (2)

where  is the short-form of 

 . For  = 0, this model implies parallel shifts of the smile

pattern in response to changes in the index level. The interaction term with moneyness

is included to also allow for twists of the smile pattern ( 6= 0). Figure 3B shows the

fitted regression function for the previous example of Figure 1. On this day (21st January

2009), the index varied between 4140 and 4310. For a given strike price, index changes are

directly reflected in inverse moneyness changes. These, in turn, are systematically related

to changes in implied volatilities, as can be seen from the positive relation of implied

volatilities and moneyness for constant  (Fig. 3A). This structure overlying the general

smile pattern is well captured in the enhanced smile model (Fig. 3B).

– Insert Figure 3 (p. 26) about here. –

Based on Eq. (2), an “average” daily smile can be defined as:

 ∗() =  () = ∗0 + ∗1 + 2
2 + 3 ·3 +  (3)

where  denotes the average of maximal and minimal intraday index level, and ∗0 and

∗1 are defined as 
∗
0 = 0 +  ln and ∗1 = 1 +  ln. We expect function  ∗()

according to Eq. (3) to be almost identical to  () according to Eq. (1).

Based on the enhanced regression model (2), we propose two simple measures for the

index dependency of the smile. The first measure is defined as the partial derivative of

ATM implied volatility with respect to the log index level and is therefore equal to the
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coefficient :

 =
 (0 )

 ln
 (4)

A -coefficient of 1 means that ATM volatility decreases by one percentage point when

the log index rises by one percent. The second measure is closely related to well known

traders’ rules of thumb for the smile dynamics. Following Gatheral and Kamal (2010),

this measure is the parameter  so that the following relation holds:




(0 ) · 1

()
= (1− )

 (0 )


 (5)

The left hand side of Eq. (5) describes the total change of the implied volatility of an

ATM option per unit of change in moneyness, where the changes in moneyness and implied

volatility are induced by index return. The right hand side relates this change in implied

volatility to the change we would observe with a constant smile pattern. Under the

assumption of a constant smile, we would just have to update moneyness in accordance

with index changes and read off the new implied volatility from the initial smile function

(“sticky moneyness”). The smile dynamics corresponds to this sticky moneyness rule if

 = 0. In case of  = 1, the index-induced change in implied volatility of an option is zero,

which corresponds to the “sticky strike” rule. As a third rule of thumb, Derman (1999)

introduced the “sticky implied tree” rule which is characterized by an inverse movement

of implied volatilities compared to “sticky moneyness”. In our formulation, the sticky

implied tree rule approximately corresponds to  = 2.

Inserting the derivatives

 (0 )


=

1



µ
 − 1 +  ln√

 − 

¶
()


= − 1


√
 − 

 (0 )


= 1 +  ln
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into Eq. (5) and solving for  we obtain:

 =


1 +  ln

√
 −  (6)

Thus, the second measure of the intraday leverage effect,  expresses the coefficient  as a

multiple of the slope of the smile function. In case of  = 1, the parallel shift of the smile

function just offsets the effect of “riding” on the initial smile function (sticky strike). The

sticky implied tree rule postulates that the parallel shift more than offsets the effect of

a movement along the smile, while sticky moneyness implies that shifts of the smile are

non-existent. Therefore, our enhanced smile regression model provides the opportunity to

test these rules of thumb on a daily basis.

The error terms in Eq. (1) and (2) are supposed to be heteroscedastic, because the

sensitivity of the implied volatility estimates with respect to the index level is larger for

deep in-the-money options. Therefore, we apply a weighted least squares (WLS) estimation

assuming that the error variance is proportional to the (positive) ratio of the option’s delta

and vega.7 This ratio indicates how a small increase in the index level affects the implied

volatility. We note that the impact of theWLS estimation (as opposed to OLS) is negligible

in all but very few cases. We exclude an observation as outlier if the absolute value of the

regression residual exceeds five standard deviations of the residuals. Such outliers can be

due to mistrades which are unwound but still contained in the database. Less than 0.3%

of all observations are identified as outliers according to the 5-sigma rule.

7 The delta and vega are computed using the implied volatility of the corresponding option. The delta

of puts is multiplied by −1 to obtain a positive ratio.
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4 Empirical results

4.1 Smile pattern over time

We classify options into three maturity groups. The last two weeks before the maturity

date (which is a third Friday) are excluded to leave out expiration-day effects. The weeks

3 to 6, 7 to 10, and 11 to 14 before maturity each constitute one group, so that the time

to maturity ranges from 14 to 39 days (TtM1), 42 to 67 days (TtM2), and 70 to 95 days

(TtM3). The days in-between these intervals are Saturdays and Sundays. Options with

longer maturities are not considered due to thin trading. Table 1 shows summary statistics

for the estimated parameters of simple smile regressions (1) in Panel A and the enhanced

regressions (3) in Panel B over the time period from January 2000 to December 2011.

Results for ESX and DAX options are almost identical. The ATM implied volatility (0)

is about 24% on average. The negative 1- and positive 2-coefficients reflect the typical

skew pattern. The smile function is curved for the shortest maturity and almost linear for

longer maturities. Note that differences of smile profiles across maturity classes depend

on the definition of moneyness. The differences would be stronger when using a simple

moneyness measure without maturity adjustment. The estimated coefficient 3 is mostly

positive, because implied volatility often increases near the upper boundary of available

moneyness. In most cases, the highest moneyness actively traded lies between 05 and 10.

Of course, the estimated regression function cannot necessarily be extrapolated beyond

the range of traded moneyness. Panel B reveals that the -parameters of the extended

regression model are almost identical to those in Panel A. This is not surprising, because

the inclusion of the index level as an additional explanatory variable does not modify the

average moneyness profile of implied volatilities.

– Insert Table 1 (p. 30) about here. –

Figure 4 illustrates the evolution of the daily estimates of smile characteristics for ODAX
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over the time period from January 1995 to December 2011. Graph 4A shows the ATM

implied volatility, which corresponds to ∗0 in Eq. (2). Figures 4B and 4C show spreads

between implied volatilities at different moneyness levels. The spreads are defined as:

1 =  ∗(1 = −03)−  ∗(0 = 0)

2 =  ∗(2 = 0139)−  ∗(0 = 0)

Levels1 = −03 and2 = 0139 are chosen such that an option with a time to maturity

of 45 days has a strike price of 90% or 105% of the index level.

– Insert Figure 4 (p. 27) about here. –

ATM in Graph 4A basically replicates the volatility index VDAX. The largest peaks

are related to the Russian crisis in 1998, the September 2001 attack on the World Trade

Center, the market turmoil of 2002, the Iraq war in 2003 and the subprime crisis with the

bankruptcy of Lehman Brothers in September 2008. 1 in Graph B is always positive

and varies mostly between 2 and 8 percentage points. The fluctuations are significant and

do not seem to be related to the overall level of the smile as measured by ATM. The

spread appears to follow an upward trend during the sample period. 2 (Graph C)

is negative over the whole period, which means that the negatively sloped skew extends

well beyond a moneyness of 0.

Figure 5 shows the same graphs for OESX over the shorter period since 2000. The main

observations are the same as for ODAX.

– Insert Figure 5 (p. 28) about here. –
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4.2 Intraday movements of the smile

We now turn to the empirical results on intraday movements of the smile in relation to

intraday index changes. Our first measure of the index-smile relation, which is the -

coefficient of the enhanced smile regression (2), is on average significantly negative (see

Table 1, Panel B). Thus, the intraday index level turns out to be an important explanatory

variable. For instance, the average  for OESX options in the first maturity group is

−07938 with a standard error of 04878√2694 = 00094 which corresponds to a -value
of 845. The negative sign means that the smile shifts upwards when the index value

decreases. The shift tends to be stronger the shorter the time to maturity. The estimated

-coefficient for the interaction of moneyness and index level is negative on average, but

in 5 of 6 cases (two options, three maturity classes) it is not significant. The adjusted 2-

coefficients of the extended smile model are significantly higher than those of the simple

smile model. On average, the adjusted 2 is about 98% in the first moneyness class and

99% in the second and third classes. Therefore, the intraday index level explains about

50% of the variation of the remaining errors of the simple smile regression.

The -coefficient as our second measure of the relation between index level and smile

profile is about 13 on average (Table 1, Panel B). The mean value is significantly larger

than 1 for ODAX and OESX in all maturity classes.

For a more detailed analysis, we split our sample into years and compute yearly averages

of the - and -coefficients. The results in Table 2 indicate that  is always negative and

 always greater than 1. Coefficient  varies more strongly than . One reason is that

 is positively related to the slope of the skew. Such a relation does not exist for the

-coefficient. Thus, the steeper the smile, the larger is the parallel shift of the smile with

respect to changes in the index level. In a world with a constant smile, when the index

level decreases, implied volatility falls along the initial smile pattern. To exactly offset

this decrease of implied volatility, the shift in the smile pattern would need to be directly

related to the slope of the skew. We find that the actual shift is typically about 1.3
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times bigger. The yearly averages of the -coefficients are remarkably stable across time

to maturity classes and for the two options (ODAX, OESX).

– Insert Table 2 (p. 31) about here. –

Graphs D and F in Figures 4 and 5 show the daily estimates of  and . The estimates

are noisy, which is not surprising given the fact that an accurate estimation is only possible

if considerable index changes occur during the day. For the -coefficient, trends or cyclical

patterns do not seem to exist. The graphs confirm the finding that the mean value of 

remains rather stable at a level of about 1.3. Thus, we conclude that none of the three

traders’ rules of thumb is consistent with empirical evidence for ESX and DAX options.

The sticky moneyness rule is rejected by clear evidence of systematic, index related shifts

of the smile pattern. The sticky strike rule, postulating a -coefficient of 1 correctly

captures the direction of index-related smile movements, but the empirically observed

shifts are more pronounced. Conversely, the predictions of the implied tree rule are too

extreme. As Dumas et al. (1998) and others have shown, the reason is that implied tree

models assume a deterministic relation between volatility changes and asset returns. This

negative relation is regarded as the sole cause of the skew in option prices. However, to

explain the strong skew observed in index option markets in this way, the relation between

volatility and return would have to be even stronger than it actually is.

4.3 Determinants of intraday movements

The last section revealed that the -coefficient does not appear to follow a trend or cyclical

pattern. Yet, it might be systematically related to other economic variables. One obvious

candidate is the index return, because negative index returns are often found to have a

stronger impact on volatility than positive returns.

We define daily log return as  = ln(), where  and  denote

the index levels at closing and opening of option trading on day . Days are grouped into
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eight daily return (DR) groups. Group 1 includes all days with  ≤ −3%, Group 8 all
days with   3%. The groups in-between cover a return interval of one percentage point

each, in ascending order. For example, Groups 4 and 5 are characterized by −1%   ≤ 0
and 0   ≤ 1%, respectively. As a second return variable, we define previous overnight
return (OR) as  = ln(−1). We build four OR classes in ascending order

with thresholds for  of -0.5%, 0%, and 0.5%. Thus, Group OR1 includes all days  with

 ≤ −05%, Group MR4 all days  with   05%. Sorting is done in one dimension,

either by DR or OR, based on all days of the sample period (1995 to 2011 for ODAX and

2000 to 2011 for OESX).

– Insert Table 3 (p. 32) about here. –

For each DR and OR group, Table 3 shows the number of days,  in this group and

the average  and  coefficients. We focus on coefficient  as it takes the slope of the

smile into account. The results show a strongly negative relationship between  and the

daily return DR. In line with expectations,  is generally higher for negative compared to

positive returns. In the DR8 group (  3%), smile movements are consistent with the

sticky strike rule ( close to 1) For small absolute returns (DR4 and DR5),  corresponds

to the sample average of about 13. In the DR1 and DR2 groups, the smile movements

are stronger, with -coefficients clearly above 15. The -values tend to be larger for

shorter times to maturity, but the differences between the maturity classes are small. The

overnight return OR appears to be related to the -coefficient in a similar way as DR, but

with a smaller impact. The mean  value for OR1 ( ≤ −05%) is about 15, while it is
about 12 in the OR4 group (  05%).

To examine determinants of the -coefficient in more detail, we estimate the following

regression model in each year:

 = 0 +

7X
=1

 + 
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where  is the value of determinant  on day  of the respective year,  is the estimated

-coefficient according to Eq. (6) on day ,  are regression coefficients and  is an error

term. Based on the time series of coefficients from these yearly regressions, we compute

the Fama and MacBeth (1973) -statistic to examine if an overall significant influence

over the sample period exists. Our explanatory variables are the daily return (DR) and

the overnight return (OR) as defined before, the ATM implied volatility (variable ATM),

the slope of the smile function (Skew), and two variables related to net buying pressure

of OTM puts (see Bollen and Whaley (2004)) and thin trading. Following Masset and

Wallmeier (2010), we use trading volume (in Euro per day) as liquidity measure and the

ratio of trading volume of puts to the trading volume of calls (per day) as a measure of

net buying pressure (Put-Call Ratio). We also include the time to maturity in calendar

days (variable TtM).

– Insert Table 4 (p. 33) about here. –

The regression results in Table 4 confirm that  is strongly related to DR. In each year,

the slope coefficient of DR is significantly negative. The results for OR are mixed. In

most years, the OR-coefficient is negative, but the Fama/MacBeth -statistic suggests

that the mean of the yearly coefficients is not significantly different from 0. The positive

coefficients of ATM and Skew show that the characteristics of the smile function contribute

to explaining the intraday smile movements. The higher the ATM implied volatility and

the slope of the smile function, the stronger the shift in implied volatilities for a given

index return. The results for net buying pressure are mixed. The ratio of put and call

trading volume is positively related to  only for DAX options. Trading volume as such

does not seem to be a determinant of smile movements. The adjusted 2 coefficients are

about 85% on average and significantly different from zero in each year. This degree of

explanatory power is in line with our previous observation that the -coefficient is relatively

stable and does not follow clearly discernable patterns over time.
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4.4 Day-to-day movements

The -measure of our intraday analysis is based on a marginal analysis. In particular,

the slope coefficient in the denominator of Eq. (6) is the differential change of implied

volatility. For significant index moves, however, the discrete change in volatility also

depends on the curvature of the smile function. Therefore, in this section, we examine

day-to-day movements of implied volatilities.8 The enhanced smile regression model is

particularly suitable for this analysis, because it provides a mapping from index level to

smile profile, so that smile changes can be accurately matched to index returns. According

to Eq. (2), the index level dependent smile is given by:

 (() ) = 0 + 1() + 2()2 + 3 ·()3

+ ln +  ln ·() + 

where moneyness is a function of discounted strike price  and index level . Let  = 

denote the index level equal to the mean of the highest and lowest index level observed on

day . If the smile function remains constant from day  − 1 to , the stock price change
from −1 to  induces a change  of the implied volatility of an ATM option of

 = −1((−1 ) )− −1(0 −1) (7)

The additional change  due to a shift of the smile function is equal to

 = −1((−1 ) −1)− ((−1 ) ) (8)

The variables  and  in Eq. (7) and (8) are defined in such a way that a positive ratio

 indicates that the effect of moving along the initial smile is partly (0    1)

or fully ( ≥ 1) offset by shifts of the smile. For a stock price decrease, both  and 

are typically negative, and vice versa.

8 I am grateful to Michael Kamal for suggesting the comparison of intraday and daily results.

19



To analyze the net effect of the change in volatility, we run the time-series regression:

 = +  +  (9)

where  and  are regression coefficients and  is an error term. We expect coefficient  to

be 0 (no drift). Coefficient  has a similar interpretation as before in the intraday analysis,

i.e.  = 0 characterizes sticky moneyness and  = 1 corresponds to the sticky strike rule.

We additionally run the quadratic regression:

 = 0 + 1 + 2
2
 +  (10)

where 0 1 and 2 are regression coefficients. The intraday analysis in Section 4.3 revealed

that the ratio  depends on the daily return and therefore on . Thus, we expect 

to be higher the smaller , which means that coefficient 2 is supposed to be negative.

To be consistent with our previous intraday analysis, we also compute the mean of the

ratio . The mean is equal to the estimated 0 coefficient in a regression of  on a

constant:

 = 0 +  (11)

We can interpret 0 in Eq. (11) as an unconditional estimate of the ratio −, while
− in Eq. (9) is conditional on . The regression results of Eq. (9) and Eq. (11)

are shown in Table 5. The sample mean value 0 lies between 120 and 134 while the

median is always higher with values of 133 to 143 Regression (9) provides even higher

estimated -coefficients between 136 and 157 The latter values are similar to results

found by Gatheral and Kamal (2010) for daily S&P500 options data.

– Insert Table 5 (p. 34) about here. –
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– Insert Figure 6 (p. 29) about here. –

The difference between the estimated 0 and  coefficients are only observed for daily

data. In the intraday analysis, the mean values for  reported in Tables 1 to 3 are always

close to the median as well as the slope coefficient of a regression analogous to (9).9

The main reason for this difference between daily and intraday results seems to be that

the relation between  and  is nonlinear, as the significantly negative estimates of 2

indicate. This can also be seen from the scatterplots in Figure 6 which include linear and

quadratic regression lines. Thus, whether the best overall point estimate is about 13 or

rather 15, depends on the time horizon and the loss function of an agent.

5 Conclusion

Using a high-quality database of high-frequency transactions in EuroStoxx 50 and DAX

options, we show that the intraday relationship between index return and changes of

implied volatilities is highly predictable. On average, about 96% of the variation of implied

volatilities across all trades during one day can be explained by moneyness alone. When

including index return as an additional explanatory variable in an enhanced smile model,

the average adjusted 2 rises to about 99%. Therefore, the regression model enables us

to accurately measure the return-implied volatility relationship. We find that the three

commonly proposed traders’ rules of thumb (sticky moneyness, sticky strike, sticky implied

tree) are not compatible with the empirical data over any extended time period. The

intraday reaction of the smile profile is typically about 1.3 times stronger than the sticky

strike rule predicts. Day-to-day movements of the smile are consistent with a higher overall

adjustment factor of about 1.5, depending on the specific assumptions underlying the

estimation. More important than the average parameter is the finding that the adjustment

9 In this regression, 
√
 −  is the independent variable and (1 +  ln) the dependent variable; see

Eq. (6).
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factor is strongly associated with the index return on the same day. A decrease of the

index return by one percentage point tends to increase the factor by about 0.1. These

results turn out to be stable over time and time to maturity classes.

Our findings can be used to test option pricing models by comparing the model implied

leverage coefficient with the empirical estimates. They are also relevant for hedging,

because the delta hedge ratio has to be adapted to predictable index-dependent shifts in

the smile structure (see Rosenberg (2000)). According to our results, explanations for the

leverage effect should be consistent with the fact that it has existed on the intraday level

almost constantly for more than ten years. In general, this study shows that index-related

changes of the smile in option prices are highly predictable, and the relationship between

index and option markets is closer than previous literature suggests.
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Figure 2: Implied volatilities of ODAX trades on 14th December 2011. Times to matu-

rity: 2 (A), 37 (B), 65 (C), 93 (D), 184 (E), 373 (F) calendar days.
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Figure 3: Smile profile and regression function of the ODAX option with time to maturity

of 30 calendar days on 21st September 2009. Graph A: all trades; different grey shades for

neighboring strikes (distance 50). Graph B: regression function for minimum, maximum

and mean index level. In addition, for each strike between 3050 to 6000 (at intervals of

50), the regression function is shown for index levels between the maximum and minimum

on this day.
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Figure 4: Estimated smile characteristics of ODAX options with a time to maturity

between 42 and 67 calendar days from 1995 to 2011. ATM is the ATM implied volatility

according to the enhanced smile model of Eq. (2). Spread1 (Spread2) is the difference

between the implied volatility of OTM puts (calls) and ATM implied volatility. Measure1

is coefficient  in the enhanced smile model. Cov_m_lnS is coefficient  of the interaction

term of moneyness and index level. Measure2 is coefficient  according to Eq. (6).
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Figure 5: Estimated smile characteristics of OESX options with a time to maturity

between 42 and 67 calendar days from 2000 to 2011. ATM is the ATM implied volatility

according to the enhanced smile model of Eq. (2). Spread1 (Spread2) is the difference

between the implied volatility of OTM puts (calls) and ATM implied volatility. Measure1

is coefficient  in the enhanced smile model. Cov_m_lnS is coefficient  of the interaction

term of moneyness and index level. Measure2 is coefficient  according to Eq. (6).
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Figure 6: Scatterplots of day-to-day movements of the smile.  is the change of the

implied volatility from day  − 1 to day  along the initial smile function (for an option

which is at-the-money on day −1).  is the additional change in the implied volatility due
to a shift in the implied volatility. The sticky moneyness rule predicts a slope coefficient

of 0, the sticky strike rule a slope coefficient of 1 The lines show the estimated linear and

quadratic regression functions. The estimated slope coefficients of the linear regressions

are 1.52 (DAX) and 1.55 (ESX) with adjusted 2 coefficients of 72% and 71% (see Table

5 for more detail). In both cases, the quadratic term is significantly negative on the 1%

level. Data are from 1995 to 2011 for DAX and from 2000 to 2011 for ESX.
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Mean 0.2383 0.2387 0.2355 0.2416 0.2407 0.2416

Std. 0.1027 0.0925 0.0844 0.1029 0.0945 0.0897

Mean -0.1494 -0.1777 -0.1941 -0.1592 -0.1910 -0.2145

Std. 0.0465 0.0475 0.0464 0.0445 0.0438 0.0444

Mean 0.0594 0.0257 0.0085 0.0659 0.0293 -0.0017

Std. 0.0695 0.0614 0.0627 0.0719 0.0743 0.0810

Mean 0.6576 0.7870 0.9414 0.7919 1.0003 1.1921

Std. 0.7204 0.7216 0.8367 1.0351 1.1415 1.3735

96.6% 98.3% 98.5% 96.5% 97.8% 97.9%

Mean 0.2381 0.2385 0.2353 0.2394 0.2374 0.2372

Std. 0.1024 0.0922 0.0841 0.1026 0.0943 0.0893

Mean -0.1490 -0.1772 -0.1935 -0.1584 -0.1905 -0.2148

Std. 0.0469 0.0474 0.0461 0.0452 0.0446 0.0454

Mean 0.0632 0.0277 0.0116 0.0684 0.0306 -0.0009

Std. 0.0755 0.0629 0.0606 0.0729 0.0728 0.0768

Mean 0.6460 0.7671 0.9018 0.7821 0.9831 1.1707

Std. 0.7269 0.6985 0.7924 1.0387 1.1167 1.3169

Mean -0.7603 -0.6094 -0.5331 -0.7938 -0.6529 -0.5834

Std. 0.4617 0.3350 0.2927 0.4878 0.3704 0.3482

Mean -0.0069 0.0003 -0.0210 0.0705 -0.0401 -0.0809

Std. 0.7281 0.6142 0.7919 1.1912 1.0804 1.1969

Mean 1.3407 1.3105 1.2790 1.3130 1.3072 1.2723

Std. 0.7493 0.6571 0.6533 0.7648 0.7013 0.7371

98.4% 99.2% 99.2% 97.9% 98.7% 98.6%

TtM3
(N=1805)

Mean adj. R2

Panel B: Enhanced smile regression

Mean adj. R2

ODAX OESX

TtM1
(N=2770)

TtM2
(N=2789)

TtM3
(N=2219)

TtM1
(N=2694)

TtM2
(N=2609)

Panel A: Simple smile regression

1
∗

0
∗

2

3

3

2

1

0





c

Table 1: Descriptive statistics of smile regression parameters from January

2000 to December 2010 (both for ODAX and OESX). The time to maturity ranges

from 14 to 39 days (TtM1), 42 to 67 days (TtM2), and 70 to 95 days (TtM3).
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Year

1995 -0.4136 1.3141 90.5% -0.3160 1.2723 93.9% -0.2580 1.1807 92.6%

1996 -0.5812 1.0487 96.3% -0.4450 1.0659 98.1% -0.4152 1.1532 98.1%

1997 -0.6118 1.1914 96.0% -0.4307 1.1210 96.9% -0.3737 1.1429 96.7%

1998 -0.9291 1.4214 98.2% -0.7011 1.4047 99.2% -0.5947 1.3427 98.6%

1999 -0.7483 1.2755 98.5% -0.6366 1.2508 99.5% -0.5234 1.1053 99.4%

2000 -0.4271 1.2408 97.6% -0.3557 1.1617 98.7% -0.3014 1.0821 98.8%

2001 -0.6426 1.4110 97.3% -0.5127 1.4252 98.4% -0.4272 1.3321 98.6%

2002 -0.6679 1.2952 97.8% -0.4970 1.2281 98.8% -0.4375 1.2269 98.9%

2003 -0.6331 1.3246 97.2% -0.5027 1.2471 98.9% -0.4360 1.1940 99.0%

2004 -0.7214 1.4561 98.6% -0.5968 1.3630 99.4% -0.5077 1.2724 98.9%

2005 -0.5306 1.1529 98.2% -0.4738 1.2562 99.2% -0.4515 1.2798 99.4%

2006 -0.8666 1.3705 99.1% -0.6648 1.3745 99.5% -0.5714 1.3618 99.6%

2007 -1.1012 1.3940 99.4% -0.8612 1.4099 99.6% -0.7289 1.4189 99.6%

2008 -0.9709 1.4515 98.7% -0.7756 1.3566 99.2% -0.6618 1.3039 99.1%

2009 -0.6811 1.2475 99.0% -0.5883 1.2306 99.5% -0.5411 1.2435 99.4%

2010 -0.9133 1.4365 99.0% -0.7403 1.3834 99.7% -0.6421 1.3347 99.7%

2011 -0.9600 1.3130 98.7% -0.7392 1.2888 99.3% -0.6420 1.2699 99.5%

2000 -0.4951 1.1989 94.6% -0.4273 1.1534 98.1% -0.4086 1.2047 98.1%

2001 -0.6476 1.3439 96.9% -0.5247 1.3784 97.8% -0.5183 1.4187 97.2%

2002 -0.7034 1.2726 96.7% -0.5181 1.1328 98.3% -0.4891 1.2090 98.2%

2003 -0.6836 1.3326 97.4% -0.5870 1.2899 97.6% -0.5233 1.2426 98.7%

2004 -0.7627 1.2594 98.2% -0.6865 1.3796 98.7% -0.6580 1.3840 99.0%

2005 -0.6432 1.0746 98.6% -0.5458 1.2207 98.8% -0.4074 1.0254 99.0%

2006 -0.8277 1.2918 98.8% -0.6352 1.2781 98.9% -0.5418 1.2192 98.7%

2007 -1.0644 1.2864 99.2% -0.8570 1.3672 99.3% -0.6888 1.3094 99.0%

2008 -0.9821 1.4980 98.5% -0.7954 1.4208 98.8% -0.6777 1.3431 98.6%

2009 -0.7165 1.3218 98.8% -0.6227 1.3133 98.8% -0.5671 1.2823 98.7%

2010 -0.9578 1.4408 98.9% -0.7759 1.3899 99.3% -0.6774 1.3348 98.9%

2011 -0.9695 1.3902 98.1% -0.7217 1.2835 99.2% -0.6292 1.2554 98.6%

Panel A: ODAX

Panel B: OESX

TtM1 TtM2 TtM3

 c Radj
2  c Radj

2  c Radj
2

Table 2: Mean estimates of daily measures of asymmetric volatility by year.

The time to maturity ranges from 14 to 39 days (TtM1), 42 to 67 days (TtM2), and 70

to 95 days (TtM3).
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1 98 -1.0480 1.7941 108 -0.7998 1.6984 82 -0.6514 1.5476

2 149 -0.9617 1.7761 146 -0.7276 1.5962 113 -0.6072 1.5583

3 432 -0.8726 1.5991 441 -0.6840 1.5137 317 -0.5906 1.4333

4 1174 -0.7404 1.3593 1161 -0.5797 1.3072 868 -0.5175 1.2939

5 1410 -0.6747 1.2022 1414 -0.5459 1.2108 1045 -0.4858 1.1966

6 439 -0.6406 1.1190 433 -0.5309 1.1371 319 -0.4686 1.1018

7 125 -0.6834 1.1663 128 -0.5404 1.1563 97 -0.4942 1.1497

8 69 -0.5205 0.9237 75 -0.4192 0.9080 62 -0.3560 0.8706

1 391 -0.9084 1.5305 386 -0.7079 1.4667 285 -0.6240 1.4344

2 1348 -0.7483 1.3787 1342 -0.5916 1.3330 1013 -0.5143 1.2900

3 1612 -0.6830 1.2610 1620 -0.5444 1.2328 1245 -0.4860 1.2255

4 545 -0.6996 1.1621 558 -0.5747 1.2007 360 -0.5050 1.1293

1 85 -1.1507 1.8569 83 -0.9027 1.6923 63 -0.7340 1.5720

2 132 -1.1221 1.8429 127 -0.8230 1.6629 76 -0.7020 1.5352

3 335 -0.8993 1.5251 319 -0.7511 1.4948 230 -0.6448 1.4113

4 793 -0.8141 1.3330 756 -0.6654 1.3315 532 -0.5940 1.3015

5 839 -0.7372 1.2150 829 -0.6140 1.2278 558 -0.5588 1.2091

6 345 -0.6457 1.0866 325 -0.5498 1.1352 228 -0.5256 1.1567

7 95 -0.6733 1.0722 99 -0.5909 1.1783 68 -0.5286 1.1541

8 70 -0.5769 1.0296 71 -0.4951 1.0142 50 -0.4313 0.9380

1 157 -1.0759 1.6089 149 -0.8641 1.5484 124 -0.7146 1.4346

2 1110 -0.8231 1.3807 1069 -0.6575 1.3375 721 -0.5962 1.3333

3 1261 -0.7241 1.2192 1229 -0.6142 1.2554 834 -0.5481 1.2016

4 166 -0.8605 1.2935 162 -0.7211 1.2791 126 -0.6144 1.2316

Panel B: OESX (2000-2011)

DR

OR

DR

OR

Panel A: ODAX (1995-2011)

TtM1 TtM2 TtM3

 cN cN cN

Table 3: Mean estimates of daily measures of asymmetric volatility by classes

of daily return (DR) and overnight return (OR). The time to maturity ranges

from 14 to 39 days (TtM1), 42 to 67 days (TtM2), and 70 to 95 days (TtM3). The days

of the sample period are grouped into eight daily return and four overnight return groups.

Group DR1 includes all days with a return below -0.03, group DR8 all days with a return

above 0.03. The groups in-between cover a return interval of one percentage point each, in

ascending order. OR is defined as the log return of the index based on the opening price

of the current day and the closing price of the previous trading day. OR groups are built

in ascending order with return thresholds of 0.005, 0.0, and 0.005. Sorting is done in one

dimension, either by DR or OR.
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DR OR TtM ATM Skew
Trading
Volume

Call 
Ratio Adj. R2

Panel A: ODAX

1995 -23.84 a -22.03 a 0.0005 -2.7107 3.8245 c 2.98E-07 a 0.1087 b 8.6%

1996 -31.19 a -14.20 b 0.0013 4.3701 c 1.3766 -2.42E-08 0.0488 10.2%

1997 -43.40 a 2.65 -0.0022 1.4728 b 2.3113 c -3.91E-08 b -0.0314 10.3%

1998 -14.53 a -16.61 a -0.0007 -0.2848 1.2761 2.08E-08 0.0452 12.1%

1999 -19.35 a -3.67 -0.0050 a 1.4808 b -0.9242 -5.02E-08 a 0.0406 14.0%

2000 -13.12 a 57.68 b 0.0013 3.9148 b 5.2990 a 3.37E-08 b 0.0337 c 9.5%

2001 -5.98 a 37.00 b 0.0024 0.3156 3.4597 a 5.34E-09 0.0554 a 5.6%

2002 -5.22 a -16.25 -0.0025 c 0.1515 -0.8987 2.80E-09 -0.0064 5.7%

2003 -5.45 a -22.47 0.0004 -0.3329 1.4546 3.24E-08 b 0.0068 3.1%

2004 -7.50 b -7.62 -0.0010 6.1724 a 2.6584 b 2.44E-08 -0.0016 5.5%

2005 -37.65 a -39.03 a 0.0000 5.2865 b -0.5846 -5.19E-09 0.0029 11.7%

2006 -13.46 a -9.30 0.0000 0.2663 -1.7777 a 1.71E-08 0.0200 5.2%

2007 -17.21 a -5.54 0.0010 1.6307 c 1.6654 b -4.17E-09 -0.0094 6.8%

2008 -9.72 a -2.73 -0.0006 0.2638 1.2301 9.16E-10 0.0138 15.7%

2009 -9.59 a -17.60 a -0.0011 0.1004 -0.3687 -8.39E-10 0.0150 9.6%

2010 -9.93 a 1.95 -0.0012 1.4502 0.2976 8.58E-09 c -0.0007 4.0%

2011 -6.64 a -9.64 a -0.0007 -0.0866 -1.1108 7.77E-09 b -0.0073 9.1%

F/MB -5.73 a -0.94 -1.15 2.47 b 2.36 b 1.06 2.45 b

Panel B: OESX

2000 -12.67 a 20.37 0.0013 2.1648 3.2477 c 3.78E-08 0.0162 4.2%

2001 -6.69 a -17.85 0.0033 0.5016 1.2730 5.03E-08 0.0312 b 3.3%

2002 -6.25 a -26.23 -0.0043 b -0.0147 -1.8068 c 1.08E-08 -0.0055 5.2%

2003 -10.40 a -4.88 0.0005 0.7935 c 1.6152 3.72E-09 0.0070 5.2%

2004 -9.78 b -26.54 0.0012 5.6427 a 0.1915 -8.20E-09 -0.0018 3.9%

2005 -45.91 a 64.68 0.0020 5.1670 b 2.5864 b -2.46E-08 -0.0044 14.2%

2006 -18.33 a 2.05 -0.0003 4.3278 1.6346 2.92E-09 -0.0157 7.9%

2007 -15.36 a -17.99 a 0.0021 c 3.6963 a 3.6594 a 3.31E-09 -0.0002 11.8%

2008 -8.31 a -15.45 a 0.0007 0.4159 a 2.5000 1.91E-09 b 0.0094 16.4%

2009 -11.35 a -15.61 a 0.0001 0.6609 c 1.0244 -1.50E-09 0.0178 11.0%

2010 -9.92 a -1.82 0.0003 2.8160 a 1.5125 b 2.11E-09 -0.0014 10.6%

2011 -7.42 a -2.76 -0.0013 0.6793 b -0.2500 4.34E-09 a -0.0140 c 7.8%

F/MB -4.34 a -0.48 0.81 3.81 a 3.24 a 1.22 0.81

Table 4: Regression results for determinants of leverage measures. The table

shows estimated regression coefficients of yearly regressions of leverage coefficient c on

explanatory variables. DR is daily return, OR overnight return, TtM the time to maturity

in days, ATM the at-the-money implied volatility, Skew the slope of the smile function,

Trading Volume is trading volume measured in Euro per day, and Put-Call Ratio is the

ratio of trading volume of puts to the trading volume of calls (per day). Significance levels

of 1%, 5% and 10% are indicated by superscripts a, b and c. F/MB shows t-statistics

based on the time series of yearly coefficient estimates according to the Fama/MacBeth

(1973) method.
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Linear regression Quadratic regression

Option, TtM ̂0 Median ̂ ̂ 2 ̂0 ̂1 ̂2 2
ODAX, 1 1339 1431  0001 1506a 663% 0001a 1474a −10300a 682%

ODAX, 2 1310 1398  0001 1519a 719% 0001a 1448a −14977a 747%

ODAX, 3 1258 1379  0001 1409a 733% 0000 1423a 0343 733%

OESX, 1 1233 1361  0001 1574a 712% 0001 1565a −5404a 716%

OESX, 2 1255 1376  0001 1550a 705% 0001 1529a −8397a 712%

OESX, 3 1206 1330  0001 1369a 583% 0001 1417a −14218a 613%

Table 5: Regression results for day-to-day movements. The table shows results of

regression models (9), (10) and (11). Median is the median of (), and ̂0 is the mean
of (). TtM is the time-to-maturity class. Superscript a indicates significance on the

1 percent level (two-sided test).
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