
ADAPTIVE HYPERMEDIA SYSTEM DESIGN:
A METHOD FROM PRACTICE

Jacopo ARMANI
Institute of Communication Technology

Faculty of Communication Sciences
Università della Svizzera italiana (USI)

Jacopo.Armani@lu.unisi.ch

Luca BOTTURI
Institute of Communication and Education

Faculty of Communication Sciences
Università della Svizzera italiana (USI)

Luca.Botturi@lu.unisi.ch

ABSTRACT

Adaptive Hypermedia Systems represent a great potential for e-learning; nevertheless instructors and designers find it
difficult to develop adaptive application within their framework. This paper presents a map-based visual design method,
developed at the AHS atelier in the University of Lugano and tailored for non-technical people, for designing adaptive
courseware according to different instructional strategies.

KEYWORDS

Educational Adaptive Hypermedia Systems, design, maps, interfaces, instructional strategy.

1. INTRODUCTION

Along the last years, Adaptive Hypermedia Systems (AHS) have been presented as a promising innovation
first in CAI, then CBT and finally e-learning. Their potentiality of personalization and adaptation to the
learner's cognitive style make them indeed a powerful tool. Nevertheless, while conceptual models have been
refined and technical implementations improved, one deciding point has hindered the widespread application
of AHS: design.

The study presented in this paper moves from the consideration that potential instructors and instructional
designers (generally, adopters) willing to exploit any AHS simply do not know how to do it. On the one side,
AHS still require high technical skills, and this imposes high production and testing costs. On the other side,
each AHS requires the use of a specific conceptual model: each model is unique, and works in its own way.
Moreover, no design method comes with the system, so that potential adopters do not know how to design
their application. Despite these issues have been recognized in the last years and current research efforts are
focused on developing authoring tools that enable adopters to use adaptive systems (Wu et al. 2000), very
few works (Cristea & Aroyo, 2002, Carro et al., 2002) are aimed specifically at defining methodologies that
enable adopters to effectively exploit AHS. Our contribution is focused on the development of a practical
methodology for designing adaptive courseware.

2. THE ADAPTIVE HYPERMEDIA SYSTEM ATELIER

This issue was considered in the Adaptive Hypermedia Systems Atelier, held at the University of Lugano in
2002/2003. The Atelier involved 18 students from the School of Communication Science who worked under
the authors' guidance at the development of online adaptive self-learning modules. The atelier's goal was to

Luca Botturi
Copyright of IADIS. Originally published as Armani, J. & Botturi, L. (2003). Adaptive Hypermedia System Design: a Method from Practice. WWW/Internet 2003, Algarve, Portugal.

develop a methodology for adaptive courseware design. Students were divided in four groups and the
following conditions were set:
1. Dimension: the final outcome for each group was an online adaptive module for about a 4 hours' self-

learning activity.
2. Target: the intended targets for the instruction developed in the atelier were university students and

young managers.
3. Subject matter: the topics of the instruction were effective email use (chosen by 3 groups) and Rhetorics

(chosen by 1 group).
4. Technical environment: the adaptive modules were to be exploited online, and the adaptive engine

selected was AHA! version 1.0. We chose AHA! among other general purpose adaptive systems
because of its reasonable ease of configuration and because of its availability for both UNIX and
Microsoft platforms.

5. Reality check: groups were asked to develop real courseware for the selected topics, so not only a demo,
but actual courseware potentially ready for real instruction. The only exception made was for time -
consuming multimedia development (i.e. audio files, animations, videos).

3. WORKING HYPOTHESES

As pointed out by (Carro, 2002) “It can be desirable to specify the educational strategies that should be used
when presenting information to the users”. Thus our instructional working hypothesis was that the AHA!
system (as any general purpose AHS) could be better exploited through implementing a specific instructional
strategy instead of concentrating on a generic "adaptive exposition" of content. Each group was therefore
assigned a definite strategy to be matched with the subject matter. The selected strategies were the following:
Learning Styles (Kolb 1999), Scenario-based learning, Problem solving (Smith & Ragan 1999) and
Increasing complexity.
The leading hypothesis was therefore that the instructional strategy would provide the main guidelines for the
developing of the conceptual model of the AHS, as well as indications about the kind of interaction expected
between the learner and the system.
From the technical point of view, other hypotheses were necessary. According to De Bra et al. (1999) an
Adaptive Hypermedia System architecture need at least two models to function properly: the domain model
representing the subject matter or the content to be learnt; and the user model representing the learner’s status
of knowledge or his/her general profile, as well as a description of how to update it during the interaction
with the system. AHA! is an implementation of this general architecture. (De Bra & Calvi 1998a, De Bra &
Calvi 1998b, De Bra et al. 2000).
AHA!’s domain model consists of a network of concepts, each coupled with one single HTML page. The
arcs of the network are of two types:
1. Pre-requirement, i.e. the relationship existing between a concepts A and B when the learner must know

B prior to visiting A in order to get a complete understanding of A.
2. Propagation , i.e. the relationship existing between a concepts A and B meaning that, when the learner

understands A, he also understands “something” of B. Propagation can be expressed in terms of
percentage or absolute value.

The user model is actually a replication of the domain model for each learner (an overlay model , see De Bra
et al. 1999) tagged with further information recording the learner’s interactions, namely indicating if the
learner visited a concept (i.e. the page coupled with that concept) and recording a number quantifying the
learner’s knowledge of the concept. Generally speaking, if a learner has all the necessary pre-requirements
for a concept and he/she visits it, he will get a score of 100; else a lower score, e.g. 35.

With these models, AHA! supports two kinds of adaptation. The link annotation feature means that a link
may change color for a specific learner according to the pre-requirements the learner has achieved. A link can
be recommended, to-be-avoided, visited or neutral. The selective release feature means that pages may
contain conditional blocks that are visualized to a single user according to his/her level of knowledge, e.g. if
he/she visited a particular page, or got at least 50 for concept X. Because this kind of adaptation is at the code

level of the page, namely HTML, it’s up to the designer to decide if the selective release is used only for
content (e.g. showing a text or not) or if to use it for altering the navigation interface (e.g. building an
adaptive menu or a dynamic course map)

AHA! therefore offers great flexibility, in terms of content structuring and navigation behavior design, as
well as interface design. Our working hypothesis was to exploit AHA! as a low-level adaptive engine, on the
top of which a more complex model can be built, with the method presented in the following section.

4. THE DESIGN METHOD

The design method includes five steps. Them main tools used are maps. In order to clarify the process we
will present as example the design documentation produced by the group dealing with learning styles on the
topic of effective email use (email 3).

4.1 Concept Map

The first step is drawing a map of concepts. Each concept will store a knowledge value for each user,
representing how much the student knows the associated page. A first innovation, not represented by AHA!
but extremely useful for designers, is the introduction of islands of concepts (Botturi 2000), i.e. groupings of
concepts into semantic areas.

Moreover, we used abstract concepts in order to support the more demanding interactions that the
instructional strategies required. Abstract concepts are variables that are not coupled with any physical
HTML or XML page or other file; they are specific elements suitable for maintaining additional information
about the user, such as preferences, early choices, answers, etc.

MESSAGE

Intro_Msg

Priority

Save

Address

Attachment

ReplyAll

ORGANIZE

Intro_Organize

test

Order

Folder

Rules
Color

CONTACTS

Intro_Contacts

AB_Newentry

AB_Selection

ADVANCED FUNCTIONS

Intro_Advfunc

Autoreply

Signature

STATE

Introduction

test
Beginner

Advanced

Expert

USE OF E-MAIL

Intro_Use Use_Subj

FormatBody
Use_Attach

Use_Signature

Image

USER

Audio

Text

Example

on
off

More_Text

More_Image

Less_Text

Less_Image

test

test test

test

Less_Example
More_Example

Figure 1. Concept map from the Learning Style application

Figure 1 shows seven islands with the concepts developed by the email 3 group. Five islands gather the
actual domain model (concepts are represented by dots). The USER island gathers the abstract concepts used
for recording the learner’s learning preferences, i.e. quantity of text, use of pictures, use of audio, quantity of
examples. The STATE island records the initial knowledge level of the learner. Moreover, each content island
contains one abstract concept (e.g. MESSAGE, ORGANIZE, etc., represented by stars), used for recording the
overall knowledge degree for all the island’s concepts. This knowledge level can be used in the navigation
map to set conditions to show or inhibit the access to other islands. Because of this use, we call abstract
concepts launching pads.

We suggest that this map should be designed without thinking explicitly how the application should
interact with the user, rather just trying to represent the domain and the user as precisely as possible.

4.2 Pre-requirement Map

The concept map is then developed introducing pre-requirement arcs between concepts. Pre-requirement arcs
can ideally connect page-related concepts and abstract concepts, but due to the particular way AHA! uses
them, they will map differently when translated into the internal models of the AHA! system.
Each arc has a tag indicating the threshold of the requirement that must be fulfilled to understand the
destination. As for the concept map, the pre-requirement map should as well be designed thinking of the
subject matter “as is”, without much concern for the user interface.

4.3 Propagation Map

Similarly to the previous map, propagation arcs can be introduced on the concept map. They also connect
both page-related concepts and abstract concepts. The tag reports the weight of the propagation, which, as
said, for AHA! can be relative (e.g. +30, which means 30%) or absolute (e.g. 30).

Figure 3 clarifies one possible use of abstract concepts in the content islands: thanks to the propagation
rules they “collect” information about the learner’s general knowledge in that area. This information may be
used to disclose new areas to the student (see Navigation and Interface Map below). E.g., before enabling the
ADVANCED FUNCTIONS area we may require that the MESSAGE area (collected by the launching pad
MESSAGE) have a knowledge value of at least 75.

In other cases abstract concepts store information on the learner’s preferences and attitudes, e.g. Audio,
Text, Image, Example are Boolean variables that represents the learner’s learning preferences as they have
been stated during the interaction (thus representing his/her learning style).

As for the two previously presented maps, the propagation rules should be designed thinking of the
subject matter “as is”. Additional guidelines should be specified concerning abstract concepts and pads,
which should be updated according to the desired tracking of the user profile. E.g., audio is updated
according to the learner’s request of having audio explanations.

MESSAGE

Intro_Msg

Priority

Save

Address
Attachment

ReplyAll

ORGANIZE

Intro_Organize

test

Order

Folder

Rules
Color

CONTACTS

Intro_Contacts

AB_Newentry
AB_Selection

ADVANCED FUNCTIONS
Intro_Advfunc

Autoreply

Signature

STATE

Introduction

test
Beginner

Advanced

Expert

USE OF E -MAIL
Intro_Use Use_Subj

FormatBody Use_Attach

Use_Signature

Image

USER

Audio

Text

Example

More_Text

More_Image

Less_Text

Less_Image

test

test test

test

Less_Example
More_Example

20 40

MESSAGE

Intro_Msg

Priority

Save

Address

Attachment

ReplyAll

ORGANIZE

Intro_Organize

test

Order

Folder
Rules

Color

CONTACTS

Intro_Contacts
AB_Newentry

AB_Selection

ADVANCED
FUNCTIONS

Autoreply

Signature

STATE

Introduction

test

Beginner
Advanced

Expert

USE OF E -MAIL
Intro_Use

Use_Subj

FormatBody
Use_AttachUse_Signature

Image

USER

Audio

Text

Example

test

test test

test

+30

+30

Intro_Advfunc

+30

1

2

3

on
off

More_Text

More_Image

Less_Text

Less_Image

Less_Example
More_Example

1

1

1

1

0

0

0

0

Figure 2. Pre-requirement map from the Learning Style

application

Figure 3. Propagation map from the Learning Style
application

4.4 Navigation map and User Interface model

The fourth step introduces the major concern of interface design. In our opinion, in an educational context an
adaptive application is useful inasmuch it offers an adaptive support through an intelligible and clear
interface. Changes in the application may disorient or indispose the learner. We assumed as a design
principle that the learner should be able to understand the rationale of the adaptation. The design of
predictable interfaces can be conducted transforming the pre-requirement map into a navigation map.
We suggest below a procedure useful as a guideline:

1. Design the interface layout, defining functional screen areas and menus
2. Define what concepts/pages are linked directly from the menus and for each of them determine

a. If anchor in the menu is always present (then do nothing)
b. If the anchor in the menu appears only under certain conditions, then write them near the concept.

These will be later implemented as conditional blocks.
3. For each pre-requirement arrow on concepts that are not in menus, decide if it will

a. Be used for link annotation, then mark the arrow with A. These will be later implemented as
annotated links.

b. Be used for making a link appear or disappear according to the pre-requirement, then mark the
arrow with D. These will be later implemented as conditional blocks.

c. Be used only for tracking the user knowledge, but not for adaptive behavior (then do nothing).
4. Finally, introduce all other links between concepts that are not bound to pre-requirements or other

adaptive behaviors.

Figure 4 shows the example navigation map. The interface layout presents a menu area (conditions and links
are reported only for the MESSAGE and USE OF EMAIL islands) and a user preferences area. All pre-
requirements within each island were used for conditional link annotation (tagging is not reported).

Image

USER

Audio
Text

Example

More_Text

More_Image

Less_Text

Less_Image

Less_Example
More_Example

STATE

Introduction

test

Beginner
Advanced
Expert

ADVANCED FUNCTIONS

Intro_Advfunc

AutoreplySignature
test

MESSAGE
Intro_Msg
Priority

Save

Address
Attachment
ReplyAll

test

USE OF E-MAIL
Intro_Use

Use_Subj

FormatBody Use_Attach

Use_Signature test

ORGANIZE
Intro_Organize

test

Order
Folder

Rules Color
CONTACTS

Intro_Contacts

AB_Newentry

AB_Selectiontest

CONTENT
AREA

User preferences area

Links to USER island
concepts
(in a new window)

Message menu area

Use of email menu area

Links to USE OF EMAIL island concepts.
Visible IF STATE>=3 OR (MESSAGE>70
ANDORGANIZE>70)

Links to MESSAGE
island concepts.
Visible IF STATE>=1

Figure 4. Navigation map from the Learning Style application

4.5 Content Implementation, System Set-up and Test

Content implementation means producing all the elements for the application. Their production strictly
depends on the design and on the instructional strategy: for learning styles, the same concept should be
presented with different media; for scenario-based learning great effort should be spent on creating “real”
situations, etc. Moreover, a number of local decisions have to be taken about the structure of each page. One
particularly relevant decision is the selection of alternate blocks with different media.
A practical issue is how to merge content within the general layout designed during the previous step. The
whole implementation encountered some difficulties due to a few technical requirements of the AHA!
version we used. For example AHA! does not support application-specific tags (e.g. by Macromedia
Dreamweaver); moreover several characters commonly used by text and HTML editors are not recognized by
the XML parser. These difficulties lead to increasing costs for page production and testing. While identifying
the issues at stake, the Atelier did not develop guidelines for content implementation, leaving this an open
issue.
Finally, the domain and user models should be translated into AHA! specific XML files, namely a file
defining the pre-requirements and another defining the propagation rules. Moreover, a list of the files
connected with concepts should be defined. Using both the prerequisite and propagation maps as a basis, this
step proceeds in a straightforward way.

5. CONCLUSION

In this paper we presented a method for designing adaptive hypermedia courseware, as well as some specific
issues concerning the design and implementation process. The method is based on maps that capture the core
aspects of an adaptive hypermedia application: domain, user profile and interaction. The method was
developed with real content and exp loiting the AHA! system. It was proofed through implementing four
different instructional strategies. This research aims at providing non-technical authors conceptual tools that
support them in the design process for exploiting AHS in education.

Some open issues have been identified. The first and more important is the refinement of the model and
its proof with different instructional strategies and different content. In particular, guidelines for the
implementation of adaptive content should be developed. Moreover, it should be assessed if all the
instructional strategies that may benefit from AHS can be developed following this method. Another issue is
the portability of the proposed method to other AHS different from AHA!. At what level our methodology
can be placed? It is more oriented to conceptual and functional design or to the implementation and logical
one? Finally, the methodology lacks of a page model that represents conditional contents, and their
showing/hiding conditions as well.

ACKNOWLEDGEMENTS

This research was conducted with the collaboration of Alberzoni D., Aus der Beck J., Crosta L., Di Nardo F.,
Franceschini P., Ghidoli B., Giuliani F., Henry W., Inglese T., Maino F., Pingitore C., Ricci E., Schoch M.,
Silvaroli M, Smacchia L., Spanò M., Turriziani L., and Vanucci F. Thanks also to Prof. Colombetti M. and
Mazza R..

REFERENCES

Botturi L., 2000. Seaway Tracker: An Adaptive Navigation Engine for Educational Applications, BUL, Lugano.
Carro R.M., 2002. Adaptive Hypermedia in Education: New Considerations and Trends. In 6th World Multiconference on

Systemics, Cybernetics and Informatics . Orlando, Florida, July 2002.
Carro R.M., Breda A.M., Castillo G., Bajuelos A.L., 2002: A Methodology for Developing Adaptive Educational-Game

Environments. In Adaptive Hypermedia and Adaptive Web-Based Systems. Lecture Notes in Computer Science 2347,
Eds. De Bra, P., Brusilovsky, P. and Conejo, R., Berlin, Springer-Verlag, pp. 90-99.

Cristea A., Aroyo L., 2002. Adaptive Authoring of Adaptive Educational Hypermedia, In AH 2002, Adaptive
Hypermedia and Adaptive Web-Based Systems, Lecture Notes in Computer Science 2347, Springer, pp. 122-132.

De Bra P., Aerts A., Houben G.J., Wu H., 2000. Making General-Purpose Adaptive Hypermedia Work. In WebNet
Conference. San Antonio, USA, pp. 117-123.

De Bra P., Calvi L., 1998 [a]. AHA! An open Adaptive Hypermedia Architecture. The New Review of Hypermedia and
Multimedia, Vol. 4, pp. 115-139.

De Bra P., Calvi L., 1998 [b]. AHA: a Generic Adaptive Hypermedia System. In 2nd Workshop on Adaptive Hypertext
and Hypermedia. Pittsburgh, USA, pp. 5-12

De Bra P., Houben G.-J., Wu H., 1999. AHAM: A Dexter-based Reference Model for Adaptive Hypermedia. In 10th
ACM conference on Hypertext and Hypermedia. Darmstadt, Germany, pp. 147-156.

Kolb D.A., 1999. Learning Style Inventory. Hay/McBer Training Resources Group, Boston.
Smith P., Ragan T., 1999. Instructional Design (2nd edition). Wiley & Sons Publisher, New York, USA.
Wu H., Houben G.J., De Bra P., 1999. Authoring Support for Adaptive Hypermedia Applications. In Ed-Media 99

Conference. Seattle, Washington. USA, pp. 364-469.

