
On Non-Intrusive Workload-Aware
Database Replication

Doctoral Dissertation submitted to the

Faculty of Informatics of the University of Lugano

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Vaidė Narváez

under the supervision of

Fernando Pedone

June 2009

Dissertation Committee

M. Jazayeri University of Lugano, Switzerland
A. Carzaniga University of Lugano, Switzerland
R. Jiménez-Peris Technical University of Madrid (UPM), Spain
B. Kemme McGill University, Quebec, Canada
R. Oliveira University of Minho (UMinho), Portugal

Dissertation accepted on 20 June 2009

Research Advisor PhD Program Director

Fernando Pedone Fabio Crestani

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been sub-
mitted previously, in whole or in part, to qualify for any other academic award;
and the content of the thesis is the result of work which has been carried out
since the official commencement date of the approved research program.

Vaidė Narváez
Lugano, 20 June 2009

ii

to Christie

iii

iv

Everything should be made as
simple as possible, but not simpler

Albert Einstein

v

vi

Abstract

Performance and high-availability are the crucial factors in the development of
nowadays distributed database systems. Both of these challenges are commonly
addressed by means of the same technique, database replication. The overall
throughput of the system is increased by leveraging parallel computation on dif-
ferent sites, and in case of replica failures, availability is improved by redirecting
requests to operational replicas. However, providing transparent database repli-
cation is not an easy task. Although database replicas should be as independent
of each other as possible for performance and availability reasons, some syn-
chronization is required to provide data consistency.

This thesis is about non-intrusive (or middleware) database replication pro-
tocols. More specifically, this thesis focuses on the development of practical
replication protocols that use off-the-shelf database engines, take advantage of
group communication primitives, cope with failures of system components, be-
have correctly, and, by exploiting the specific characteristics of the application,
achieve high performance.

In the first part of this thesis we address the following problem: non-intrusive
database replication protocols cannot obtain fine-grained information about trans-
actions due to limited access to the database engine internals. We make three
contributions in this part. The first contribution is the Multiversion Database
State Machine, a middleware extension of the Database State Machine, a kernel-
based replication approach. The Multiversion Database State Machine assumes
predefined, parameterized transactions. The particular data items accessed by
a transaction depend on the transaction’s type and the parameters provided by
the application program when the transaction is instantiated. The second con-
tribution of this thesis is a technique to bypass the extraction and propagation of
readsets and writesets in non-intrusive replication protocols. We present the SQL
Inspector, a tool capable to automatically identify conflicting transactions before
their actual execution by partially parsing them. The performance of the Multi-
version Database State Machine can be further improved if transactions execute
at carefully chosen database sites. Thus, the third contribution of this thesis is

vii

viii

the conflict-aware load-balancing techniques. To keep the abort rate low despite
the coarse granularity of non-intrusive replication protocols, conflict-aware load-
balancing techniques attempt to reduce the number of conflicting transactions
executing on distinct database sites and seek to increase the parallelism among
replicas.

In the second part of this thesis we investigate correctness criteria for repli-
cated databases from the client’s perspective. We study the performance cost of
ensuring stronger consistency degrees in the context of three middleware repli-
cation protocols: primary-backup, optimistic update-everywhere and BaseCON,
a non-intrusive replication protocol that takes advantage of workload character-
ization techniques to increase the parallelism in the system. BaseCON makes
use of total-order broadcast primitives to provide strong consistency and fault-
tolerance. A lightweight scheduler interposed between clients and the database
replicas allows the system to adapt easily to the correctness criterion required
and serves as a load-balancer for read-only transactions.

In the last part of this thesis we address the problem of partial replication.
In particular, we investigate the effects of distributed transactions on the abort
rate of such systems. Our contribution in this area is a probabilistic model of
transaction abort rates for two different concurrency control mechanisms: lock-
and version-based. The former models the behavior of a replication protocol
providing one-copy serializability; the latter models snapshot isolation.

Acknowledgements

This thesis is a result of several years of effort and there is a number of people
who in a way or another contributed to the success of this work. First and fore-
most, I would like to thank my advisor Fernando Pedone. Four years of guidance
taught me much about the art of research. His confidence and continuous en-
couragements maintained my motivation up and engrained in me the curiosity
and persistence to continue. Much of this dissertation is a result of his endless
support. I thank you.

Next I wish to thank Josep M. Bernabé-Gisbert. The collaboration with him
taught me more than he might think. The many discussions we had influenced
significantly the research presented in this thesis. Gracias, Josep!

Part of the work of this thesis has been done in the context of the EU GORDA
project. I wish to thank all the partners for making this work possible. I would
also like to express my gratitude to the members of my dissertation commit-
tee for their valuable feedback and the time spent examining my dissertation
proposal and this thesis.

All the people I shared my endeavor and made friends with: Lásaro, Paolo,
Rodrigo, Marcin, Nicolas, Marija, Jochen, Amir – I am thankful for your com-
pany.

Finally, I wish to thank my dearest companion in life, Christian, to whom I
dedicate this thesis. None of this work would have been possible without his
patience and support.

ix

x

Preface

This thesis concerns my PhD work done under the supervision of Prof. Fernando
Pedone at the University of Lugano, from 2004 to 2009. During this period I was
also involved in the EU project “Open Replication of Databases” (GORDA). The
main goal of the GORDA project was to promote the interoperability of DBMSs
and replication protocols by defining a generic architecture and interfaces that
can be standardized. Within this project, the objective of this thesis has been to
provide non-intrusive database replication solutions.

Most of the results presented in this thesis appear in previously published
articles and technical reports:

Zuikevičiūtė, V. and Pedone, F. [2005]. Revisiting the Database State Machine
Approach, WDIDDR’05: Proceedings of VLDB Workshop on Design, Imple-
mentation, and Deployment of Database Replication, pp. 1–7.

Zuikevičiūtė, V. and Pedone, F. [2006]. Conflict-Aware Load-Balancing Tech-
niques for Database Replication, Technical Report 2006/01, University of
Lugano.

Zuikevičiūtė, V. and Pedone, F. [2008a]. Conflict-Aware Load-Balancing Tech-
niques for Database Replication, SAC’08: Proceedings of ACM Symposium
on Applied Computing, Dependable and Adaptive Distributed Systems Track,
ACM Press, pp. 2168–2173.

Zuikevičiūtė, V. and Pedone, F. [2008b]. Correctness Criteria for Database
Replication: Theoretical and Practical Aspects, DOA’08: Proceedings of 10th
International Symposium on Distributed Objects, Middleware, and Applica-
tions, Springer Verlag 2008.

Bernabé-Gisbert, J. M., Zuikevičiūtė, V., Muñoz-Escoí, F. D. and Pedone, F.
[2008]. A probabilistic analysis of snapshot isolation with partial repli-
cation, SRDS’08: Proceedings of 27th IEEE International Symposium on Re-
liable Distributed Systems, IEEE, pp. 249–258.

xi

xii

Contents

Contents xv

List of Figures xviii

List of Tables xix

1 Introduction 1
1.1 Motivation . 1
1.2 Research Contributions . 3
1.3 Thesis Outline . 5

2 System Model and Definitions 7
2.1 Model . 7
2.2 Database and Transactions . 8
2.3 Consistency Criteria . 9

2.3.1 Serializability . 9
2.3.2 Snapshot Isolation . 10

2.4 State Machine Replication . 11
2.5 Total-Order Broadcast and Multicast 11

3 Replication Made Simple 13
3.1 Revisiting the Database State Machine Approach 13

3.1.1 Deferred-Update Replication 13
3.1.2 DBSM . 14

3.2 DBSM? or Readsets-free Certification 15
3.3 Multiversion Database State Machine 17

3.3.1 Proof of Algorithm Correctness 19
3.4 Related Work and Final Remarks . 21

xiii

xiv CONTENTS

4 Workload Characterization Techniques 25
4.1 SQL Statements Inspection . 26

4.1.1 Locking in MySQL InnoDB . 26
4.1.2 DML . 27
4.1.3 DDL . 30
4.1.4 The SQL Inspector . 30

4.2 Analysis of the Benchmarks . 32
4.2.1 TPC-W . 33
4.2.2 TPC-C . 33
4.2.3 Accuracy of the SQL Inspector 35

4.3 Related Work and Final Remarks . 36

5 Conflict-Aware Load-Balancing Techniques 37
5.1 Minimizing Conflicts and Maximizing Parallelism 38
5.2 Static vs. Dynamic Load Balancing 39
5.3 Analysis of the Benchmarks . 41

5.3.1 A Simple Example . 41
5.3.2 Scheduling TPC-C . 42

5.4 Evaluation . 46
5.4.1 Prototype Overview . 46
5.4.2 Experimental Setup . 47
5.4.3 Throughput and Response Time 48
5.4.4 Abort Rate Breakdown . 50

5.5 Related Work and Final Remarks . 52

6 The Cost of Correctness Criteria for Non-Intrusive Database Replica-
tion 55
6.1 Correctness Criteria . 56
6.2 Replication Protocols . 57

6.2.1 Primary-Backup Replication 57
6.2.2 Optimistic Update Everywhere Replication 58
6.2.3 Pessimistic Update Everywhere Replication 59

6.3 BaseCON . 59
6.3.1 One-Copy Serializability . 59
6.3.2 Session Consistency . 64
6.3.3 Strong Serializability . 65
6.3.4 Proofs of Correctness . 67

6.4 Evaluation . 69
6.4.1 Experimental Environment . 70

xv Contents

6.4.2 Performance Results . 70
6.5 Related Work and Final Remarks . 80

7 Partial Database Replication 83
7.1 Distributed Transactions in Partial Replication 84
7.2 Simple Probabilistic Analysis . 85

7.2.1 Replication Model . 85
7.2.2 Analytical Model . 86

7.3 Analytical Evaluation . 93
7.3.1 Objectives . 93
7.3.2 Parameter Values . 93
7.3.3 Standalone vs. Fully Replicated System 94
7.3.4 Two Data Versions are Sufficient to Eliminate Execution

Aborts . 95
7.3.5 The Impact of Read-Only Transactions 97
7.3.6 Adding Database Sites to the System 98
7.3.7 The Effects of the Load, the Number of Operations and the

Database Size . 99
7.3.8 The Environments Beneficial to SI Version-Based Systems . 101

7.4 Related Work and Final Remarks . 101

8 Conclusions 103
8.1 Contributions . 103
8.2 Future Directions . 105

Bibliography 107

xvi Contents

Figures

5.1 Random: overlapping rate and load distribution over the replicas 43
5.2 MCF: overlapping rate and load distribution over the replicas . . . 43
5.3 MPF 1: overlapping rate and load distribution over the replicas . . 44
5.4 MPF 0.1: overlapping rate and load distribution over the replicas 44
5.5 MPF 0.5: overlapping rate and load distribution over the replicas 45
5.6 MPF 0.8: overlapping rate and load distribution over the replicas 45
5.7 Prototype architecture . 46
5.8 vDBSM: Throughput and response time 48
5.9 MPF, the effects of the parameter f 49
5.10 vDBSM, varied number of replicas: Throughput and response time 50
5.11 Abort rates, 4 and 8 replicas . 51

6.1 Dealing with failures and false suspicions 63
6.2 BaseCON, TPC-C 20: Throughput and response time 71
6.3 BaseCON, TPC-C 50: Throughput and response time 72
6.4 BaseCON, TPC-C 20, 8 replicas: Throughput and response time . 73
6.5 BaseCON, TPC-C 20, varied number of replicas: Throughput and

response time . 74
6.6 Response time breakdown, TPC-C 20 76
6.7 Pronto, TPC-C 20: Throughput and response time 77
6.8 TPC-C 20: Abort rates . 78
6.9 vDBSM, TPC-C 20: Throughput and response time 79

7.1 Standalone vs. fully replicated system, TotalT PS = 250 95
7.2 The effects of distributed transactions; base scenario 96
7.3 The effects of versions available; base scenario, y-axis in logarith-

mic scale . 96
7.4 The effects of increasing read-only transactions in the workload;

L = 0.9 . 97
7.5 The effects of the number of database sites, base scenario 99

xvii

xviii Figures

7.6 The impact of the load over the system; base scenario 100
7.7 The impact of the number of operations, op = 1000 (a) and the

database size, DB_SI Z E = 500.000 (b); base scenario 100
7.8 Configurations where abort rate of SI systems is ≤ 10%; base

scenario . 101

Tables

4.1 Accuracy of the SQL Inspector, TPC-C benchmark; (a) the locks
used by the database, and (b) the granularity achieved by the
SQL Inspector . 36

6.1 CPU usage (%) . 74
6.2 Disk usage at the replicas . 75

7.1 Model parameters . 87
7.2 Model parameter values . 94

xix

xx Tables

Chapter 1

Introduction

Over the last decades the amount of data captured by enterprises has exploded.
This has been fueled by high speed networks, the decreasing cost of powerful
hardware, and the invasion of digital devices into everyday life and every part
of the commercial world. Internet-based services have become the new stan-
dard of today’s businesses where massive amounts of data are being collected
and manipulated each day. Google alone processes multiple exabytes of data
per year; Facebook claims to be one of the largest MySQL installations running
thousands of databases serving millions of queries a day, MySpace records 7 bil-
lion user events per day; and the latest physics particle accelerator is expected to
produce 10-15 petabytes of data each year. By no surprise, high-availability and
performance are crucial in such systems. Both of these challenges are commonly
addressed by means of the same technique, namely replication.

1.1 Motivation

Replication is an area of interest to both distributed systems and databases: in
database systems replication is done mainly for performance and availability,
while in distributed systems mainly for fault tolerance. The synergy between
these two disciplines offers an opportunity for the emergence of database repli-
cation protocols based on group communication primitives. To overcome the
performance limitations of classical replication solutions these protocols take
advantage of message ordering and atomicity guarantees provided by group-
communication systems (e.g., the former Isis, Horus, Totem, Transis and the
current Appia, Spread, Ensemble, JGroups, Cactus).

In spite of thirty years of active research in database replication, there is
still room for improvement, mainly concerning the practicality of the existing

1

2 1.1 Motivation

solutions. Traditional replication approaches implement replica control within
the database kernel. Although kernel-based solutions can benefit from optimiza-
tions in the database engine, the approach has a number of shortcomings. First,
it requires access to the source code of the database management system lim-
iting the implementation of the replication to database vendors or open source
solutions only. Even if the source code is available, modifying it is not an easy
task. Second, such protocols are tightly integrated with the implementation of
the regular database functionality, and therefore are difficult to maintain in a
continuously evolving software. For the sake of portability and heterogeneity,
replication protocols should be independent of the underlying database man-
agement system. As a consequence, non-intrusive (or middleware) database
replication has received a considerable amount of attention in the last years
(e.g., [Cecchet et al., 2004; Correia et al., 2005; Lin et al., 2005; Muñoz-Escoí
et al., 2006; Patiño-Martínez et al., 2005; Pedone and Frølund, 2008; Plattner
and Alonso, 2004; Rodrigues et al., 2002]). Such solutions can be maintained
independently of the database engine, and can even be used in heterogeneous
settings. Non-intrusive protocols match the semantics of standard database ac-
cess interfaces (e.g., ODBC or JDBC), which makes it straightforward to migrate
from centralized to replicated environments. The downside of the approach is
that the protocols usually have limited information about the data accessed by
the transactions, and may end up duplicating back-end database logic into the
middleware, resulting in reduced concurrency, or increased abort rate, or both.
Standard database interfaces do not provide fine-grained information from the
database engine, such as, accessed data items per transaction, when a transac-
tion begins its execution, when different SQL statements take place, and when a
transaction finishes. Such level of detail is essential in order to guarantee strong
consistency and achieve high concurrency, and consequently better performance
of the replicated system.

Not all database sites in the replicated system need to keep a full database
copy — databases can be replicated partially only and thus can improve the
scalability of the system. Most work on database replication using group com-
munication concentrates on full replication strategies. However, scalability of
such protocols is limited under update-intensive workloads: Each replica added
to the system allows to submit more transactions; if these transactions modify
the database, they will add load to every individual database. Unfortunately, it
is not obvious how to extend many of the protocols developed for full replication
to systems with partial replication. The majority of existing partial replication
protocols (e.g., [Cecchet et al., 2004; Coulon et al., 2005; Schiper et al., 2006;
Sousa et al., 2001]) build on the strong assumption that transactions can al-

3 1.2 Research Contributions

ways execute locally at one database site. Such an assumption requires prior
knowledge of the workload and a very precise data distribution over the repli-
cas or at least a single replica that holds the whole database. Lack of support
for distributed execution of transactions is a serious constraint, which limits the
applicability of partial replication solutions to particular workloads only.

To circumvent the limitations of traditional middleware solutions in the con-
text of both full and partial replication, it is necessary to rethink the way replica
correctness is handled. In [Stonebraker et al., 2007] the authors criticize the
one-size-fits-all paradigm of databases and argue for a redesign, which would
take into account application-specific needs. Motivated by these observations,
this thesis focuses on the development of practical protocols for database repli-
cation that use off-the-shelf database engines, cope with failures of system com-
ponents, behave correctly, and, by exploiting the specific characteristics of the
application, achieve high performance.

1.2 Research Contributions

This thesis provides the following contributions.

Multiversion Database State Machine. The Multiversion Database State Ma-
chine is a middleware extension of the Database State Machine replication, a
kernel-based replication technique. The Multiversion Database State Machine
assumes predefined, parameterized transactions. The particular data items ac-
cessed by a transaction depend on the transaction’s type and the parameters
provided by the application program when the transaction is instantiated. By
estimating the data items accessed by transactions before their execution, even
if conservatively, the replication protocol is spared from extracting readsets and
writesets during the execution. In the case of the Multiversion Database State
Machine, this has also resulted in a certification test simpler than the one used
by the original Database State Machine, although both techniques guarantee the
same strong consistency.

Workload Characterization Techniques. Transaction readsets and writesets
information is an essential component of database replication protocols, in par-
ticular when strong system consistency is targeted. The workload characteri-
zation techniques allow to bypass the extraction and propagation of readsets
and writesets in non-intrusive replication protocols. We present the SQL Inspec-
tor, a tool capable to automatically identify conflicting transactions by partially

4 1.2 Research Contributions

parsing them. The SQL inspector is a conservative technique and may over-
approximate the set of data items accessed by the transaction that could cause
conflicts. However, the evaluation of the TPC-C benchmark reveals that the
SQL Inspector achieves finer than just table-level granularity. To the best of
our knowledge this is the first attempt to automate the extraction of transaction
readsets and writesets outside the database engine.

Conflict-Aware Load-Balancing techniques. Optimistic database replication
protocols, especially non-intrusive ones, may suffer from excessive synchroniza-
tion aborts. A key property of the Multiversion Database State Machine is that
if transactions with similar access patterns execute at the same database replica,
then the local replica’s scheduler will serialize them and both can commit reduc-
ing the abort rate. Based on the information obtained by the SQL Inspector, we
can carefully assign transactions to database replicas avoiding conflicts as much
as possible. The proposed conflict-aware load-balancing techniques schedule
transactions to replicas so that the number of conflicting transactions executing
on distinct sites is reduced and the load over the replicas is equitably distributed.
Experimental results show that exploring specific workload information while
assigning transactions to the replicas is a promising technique to improve the
performance of non-intrusive replication protocols.

BaseCON and the cost of correctness criteria for non-intrusive database repli-
cation. It has been generally believed that additional constraints on correct-
ness degrades the performance of a replicated system. To verify this statement
we investigate the performance cost of implementing different consistency de-
grees in BaseCON and two other non-intrusive replication protocols. BaseCON
is a simple yet fault-tolerant non-intrusive replication protocol that takes advan-
tage of workload characterization techniques to increase the parallelism in the
system. The experimental evaluation reveals that stronger consistency does not
necessarily imply worse performance in the context of middleware-based repli-
cation. On the contrary, two of the three protocols evaluated are able to pro-
vide different consistency guarantees without penalizing system’s performance.
Even though the implementation of strong serializability requires ordering read-
only transactions in all protocols studied, the overhead introduced by total-order
primitives is insignificant in non-intrusive replication.

Probabilistic model of transaction abort rates for partial replication. Not all
the database sites in a replicated system need or are able to keep a full copy

5 1.3 Thesis Outline

of the database — databases can be replicated partially only. If each replica
keeps only part of the database, a transaction may require access to data stored
on remote replicas and thus, a distributed execution involving more than one
replica becomes necessary. The problems introduced by distributed transac-
tions in partially-replicated systems differ depending on the concurrency con-
trol mechanism used. We introduce a probabilistic model for abort rates of
partially replicated systems when lock- and version-based concurrency control
mechanisms are used. The former models the behavior of a replication protocol
providing one-copy-serializability; the latter models snapshot isolation.

The analytical evaluation shows that in the version-based system the num-
ber of data versions available decreases the execution abort rate exponentially.
Furthermore, in the version-based system even if the workload over the partially
replicated system is dominated by read-only transactions, but the few update
transactions perform a lot of updates, distributed read-only transactions can still
cause a noticeable number of aborts, as opposed to typical full replication pro-
tocols, in which the number of versions available is (in principle) unbounded,
and thus, read-only transactions executing under snapshot isolation are never
aborted.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 describes the
system model details, terminology, assumptions, and the definitions on which
the replication protocols suggested in this thesis are based. In Chapter 3 we first
recall the concepts of deferred-update and the Database State Machine repli-
cation; then, we show how the original Database State Machine can be imple-
mented in the middleware layer and introduce the Multiversion Database State
Machine replication. In Chapter 4 we present the SQL Inspector, a tool capable
to automatically identify conflicting transactions by partially parsing them. We
explain the idea, the actual implementation of the tool and the case study of
the two workloads chosen. Chapter 5 introduces conflict-aware load-balancing
techniques that can be used to further improve the performance of the Multiver-
sion Database State Machine. We illustrate the behavior of the algorithms with
the chosen benchmarks and present a thorough experimental evaluation of the
load-balancing techniques. In Chapter 6 we investigate the performance cost of
different consistency degrees in the context of non-intrusive replication protocols
and introduce BaseCON, a simple, yet fault-tolerant, middleware-based replica-
tion protocol. Chapter 7 addresses the issue of partial replication. In particular,

6 1.3 Thesis Outline

a simple probabilistic analysis of transaction abort rates is introduced. Finally,
Chapter 8 concludes the thesis and outlines some future research directions.

Chapter 2

System Model and Definitions

This chapter presents the main definitions and assumptions on which the repli-
cation protocols suggested in this thesis are based. All the protocols proposed
hereafter rely on three building blocks: database sites, state machine replication
and total-order broadcast. In the following we detail each of them.

2.1 Model

Distributed systems can be classified according to the way the system compo-
nents exchange information and the way they fail and recover. In this the-
sis we assume a system in which individual components may crash and re-
cover. The distributed system considered is composed of database clients, C =
{c1, c2, ..., cm}, and a set of database sites (or database replicas), S = {s1, s2, ..., sn}.
First we require that each database site store a full copy of the database, then in
Chapter 7 we relax the requirement of full replication and assume partial replica-
tion. Database sites fail independently and only by crashing and may eventually
recover during execution but never behave maliciously. Even though sites may
recover, they are not obliged to do so once they have failed.

In the crash-recovery model, sites are classified as good and bad according to
their behavior concerning failures [Aguilera et al., 1998]:

Good: if site s never crashes or if site s crashes at least once, but there is time
after which s is permanently up.

Bad: if there is time after which site s is permanently down or if site s crashes
and recovers infinitely many times.

All sites have access to stable storage which they can use to keep their state
in between failures. State not kept in stable storage is lost during the crash.

7

8 2.2 Database and Transactions

Communication among sites is by message passing and there is no access to a
shared memory or a global clock. We further assume the existence of total-order
broadcast and total-order multicast primitives defined in Section 2.5.

The system is asynchronous, that is, we do not make any assumptions about
the time it takes for clients and database sites to execute and for messages to
be transmitted. We do assume however that the system is augmented with un-
reliable failure detectors [Chandra and Toueg, 1996]. Such oracles can make
an unbounded number of mistakes: sites may be incorrectly suspected to have
crashed even if they are just slow to respond. We rely on failure detectors
targeted specifically for crash-recovery models and defined by Aguilera et al.
[1998]. Informally, to ensure progress such failure detectors satisfy the follow-
ing properties1: for every bad site s, at every good site there is a time after
which s is never trusted (completeness); and some good site is eventually trusted
forever by all good sites (accuracy).

2.2 Database and Transactions

A database D = {d1, d2, ...} is a set of data items. For each database site si,
I tems(si) ⊆ D is defined as the set of data items stored at si. If full database
replication is considered I tems(si) = D for all database sites si.

A transaction Ti starts with a begin operation bi and a sequence of read
and write operations followed by a commit ci or an abort ai. star t(Ti) and
commit(Ti) are bi and ci timestamps. We denote T ′i s write operation on data
item x by wi[x i], and read operation by ri[x j], where x j is the value of x written
by T j. A transaction is called read-only if it does not contain any write operations;
otherwise it is called an update transaction. The transaction’s readset and writeset
identify the data items read and written by the transaction, denoted as rs(Ti)
and ws(Ti) for transaction Ti respectively. The transaction’s updates contain
the values written and can be redo logs or the rows it modified and created.
The workload submitted to the database is composed of a set of transactions
T = {T1, T2, ...}.

We target enterprise environments in which transactions are embedded in
application programs to enforce the business logic. Thus, clients interact with
the system by triggering application-oriented functions. Each of these functions
is a predefined, parameterized transaction. We refer to application-oriented

1Formal definitions of the properties are defined in [Aguilera et al., 1998], where authors
also introduce the epoch number of a site. The epoch number is an estimate of the number of
times the site has crashed and recovered in the past.

9 2.3 Consistency Criteria

functions as simply transactions. Each transaction is identified by its type and
the parameters provided by the application program when the transaction is in-
stantiated. We say that two transactions Ti and T j conflict, denoted as Ti ∼ T j,
if they access some common data item, and at least one transaction writes it.

2.3 Consistency Criteria

We are mainly interested in two database consistency criteria: serializability (SR)
[Bernstein et al., 1987] and snapshot isolation (SI) [Berenson et al., 1995].

2.3.1 Serializability

We recall some basic definitions of serialization theory introduced by Bernstein
et al. [1987]. Transactions executing in a database are formalized by histories.
A history H over a set of transactions T is a partial order with ordering relation
<H , where

a) H contains all the operations op of each transaction Ti ∈ T ;

b) ∀Ti ∈ T and ∀opi ∈ Ti: if opi precedes opi
′ in Ti, then opi <H opi

′; and

c) if Ti reads data item x from T j, then w j[x j]<H ri[x j].

A history H is serial if, for every two transactions Ti and T j in H, either all
operations of Ti happen before all operations of T j or vice versa. Two histories
H, H ′ are view equivalent (≡) if

a) they are over the same set of transactions;

b) for any Ti, T j and data item x: if w j[x j]<H ri[x j], then w j[x j]<H ′ ri[x j];
and

c) for each x , if wi[x i] is the final write on x in H, then it is also the final
write of x in H ′.

A typical correctness criterion for replicated databases is one-copy serializ-
ability (1SR)[Bernstein et al., 1987].

Definition 1. History H is one-copy serializable iff there is some serial history Hs

such that H ≡ Hs.

10 2.3 Consistency Criteria

Informally, 1SR requires the execution of concurrent transactions on different
replicas to appear as if transactions were executed in some sequential order on
a single replica. To guarantee serializability most DBMSs implement two-phase
locking (2PL) or strict 2PL concurrency control [Bernstein et al., 1987], where
locks on data items are handled by a transaction in two consecutive phases dur-
ing its execution.

2.3.2 Snapshot Isolation

In snapshot-isolated databases transactions read data from a committed snap-
shot of the database taken at the time the transaction starts. We denote the
time when transaction’s Ti snapshot is taken as snapshot(Ti). All transactions
execute without interfering with each other, however, transaction Ti can only
successfully commit if there exists no other transaction T j that committed after
Ti started and updated the same data items (first-committer-wins rule). If no
such a transaction exists, then Ti can commit and its updates will be visible to
all the transactions that start after Ti ’s commit.

Snapshot isolation is less abstract and more implementation related when
compared to serializability. As a result, several extensions of conventional SI can
be found in the literature. In [Lin et al., 2005] the authors develop a formalism
for SI in replicated systems and introduce one-copy snapshot isolation (1CSI).
Elnikety et al. [2005] further extend snapshot isolation to better fit replicated
databases and define generalized snapshot isolation (GSI). GSI is based on the
observation that a transaction need not necessarily observe the latest snapshot.
More formally, GSI was defined as follows:

Definition 2. For any history H created by GSI, the following two properties hold:

• GSI Read Rule
∀Ti, x j such that ri[x j] ∈ H:

1. w j[x j] ∈ H and c j ∈ H;

2. commit(T j)< snapshot(Ti);

3. ∀Tk such that wk[xk], ck ∈ H:

[commit(Tk)< commit(T j) or snapshot(Ti)< commit(Tk)].

• GSI Commit Rule
∀Ti, T j such that ci, c j ∈ H:

11 2.4 State Machine Replication

4. ¬(ws(Ti)∩ws(T j) 6= ; and
snapshot(Ti)< commit(T j)< commit(Ti)).

The GSI Read Rule regulates read operations and ensures that only committed
data is read. The GSI Commit Rule guarantees first-committer-wins behavior.

Unfortunately snapshot isolation does not forbid all the serialization anoma-
lies [Berenson et al., 1995]. For instance, it allows the write-skew anomaly:

ri[xk], ri[yl] ... r j[xk], r j[yl], w j[x j], c j ... wi[yi], ci

In the above example transactions Ti and T j are executed concurrently at
two different sites, Ti reads data items xk and yl , T j also reads xk and yl , writes
x j and tries to commit. Then transaction Ti writes yi and tries to commit. Both
transactions pass the certification test because their writesets do not intersect,
however the execution is not serializable (i.e., no serial execution is equivalent
to it).

2.4 State Machine Replication

The state machine approach is a non-centralized replication technique [Schnei-
der, 1990]. Its key concept is that all database sites receive and process the
same sequence of requests in the same order. Consistency is guaranteed if repli-
cas behave deterministically, that is, when provided with the same input (e.g., a
request) each replica will produce the same output (e.g., state change).

The way requests are disseminated among replicas can be decomposed into
two requirements:

1. Agreement. Every good site receives every request.

2. Order. Every good site processes the requests it receives in the same rela-
tive order.

2.5 Total-Order Broadcast and Multicast

In order to satisfy the aforementioned state machine requirements, database
sites interact by means of atomic or total-order broadcast. Total-order broadcast
allows to send messages to all the database sites in a system with the guarantee
that all sites agree on both either to deliver or not to deliver the message, and

12 2.5 Total-Order Broadcast and Multicast

the order according to which the messages are delivered. More formally, total-
order broadcast is defined by the primitives to-broadcast(m) and to-deliver(m),
and guarantee the following properties:

1. Integrity. For any message m, every site delivers m at most once, and only
if some site broadcast m.

2. Agreement. If a site delivers a message m, then every good site eventually
delivers m.

3. Validity. If a site broadcasts message m and does not fail, then every good
site eventually delivers m.

4. Total Order. No two sites deliver any two messages in different orders.

The notion of uniform delivery captures the concept of durability, that is, a
database site must not forget that it has delivered a message after it recovers
from a crash. After recovery the site delivers first all the messages it missed
during the crashed period.

Contrary to the broadcast, multicast allows messages to be addressed to a
subset of the database sites in the system. Similarly to total-order broadcast,
total-order multicast ensures that the addressees of every message agree either
to deliver or to not deliver the message, and no two sites deliver any two mes-
sages in different order. Although total-order multicast is the preferred abstrac-
tion for partial replication, existing total-order multicast protocols are costlier to
ensure than the broadcast ones [Delporte-Gallet and Fauconnier, 2000].

Chapter 3

Replication Made Simple

This chapter introduces the first contribution of this thesis, the Multiversion
Database State Machine. The Multiversion Database State Machine (vDBSM) is
a middleware extension of the Database State Machine (DBSM) [Pedone et al.,
2003], a kernel-based replication protocol. The vDBSM is a non-intrusive full
replication protocol that ensures strong consistency (i.e., one-copy serializabil-
ity), can possibly be used with heterogeneous off-the-shelf database manage-
ment systems and can be implemented on cheap commodity hardware.

In this chapter, we first recall the original Database State Machine and the
concept of deferred-update replication that DBSM is built upon; then we show
how to solve the problem of readsets extraction essential to guarantee correct-
ness in DBSM. We present two solutions: we begin with an approach which is
more of a theoretical interest and complete with a practical protocol.

3.1 Revisiting the Database State Machine Approach

3.1.1 Deferred-Update Replication

The main idea of deferred-update replication [Bernstein et al., 1987] consists in
executing all operations of a transaction on a single database site, so that trans-
actions are synchronised according to some local concurrency control mecha-
nism. Read-only transactions can commit immediately at the replica they ex-
ecuted; update transactions must be globally certified and, if committed, have
their update operations reflected at all database sites. The certification ensures
that committing transactions do not lead the database to an inconsistent state;
otherwise the transaction is aborted.

Since most practical workloads have a majority of read-only transactions,

13

14 3.1 Revisiting the Database State Machine Approach

deferred-update replication allows for a good load balance among the repli-
cas that execute such transactions completely independent of each other. Be-
cause of its good performance deferred-update replication lay basis for a number
of database replication protocols (e.g., [Amir and Tutu, 2002; Patiño-Martínez
et al., 2000; Lin et al., 2005]; Plattner and Alonso [2004]; Irún-Briz et al.
[2005]).

In this thesis we focus on the Database State Machine (DBSM) approach for
handling full database replication [Pedone et al., 2003] .

3.1.2 DBSM

The Database State Machine is an optimistic kernel-based replication protocol.
In DBSM read-only transactions are processed locally at some database replica;
update transactions do not require any synchronization between replicas until
commit time. When an update transaction is ready to be committed, its updates,
readsets, and writesets are total-order broadcast to all replicas. All sites receive
the same sequence of requests in the same order and certify them determinis-
tically. The certification procedure ensures that committing transactions do not
conflict with concurrent already committed transactions.

During processing, transactions pass through some well-defined states:

1. Executing state. In this state transaction Ti is locally executed at site si

according to strict 2PL.

2. Committing state. Read-only transactions commit immediately upon re-
quest. If Ti is an update transaction, it enters the committing state and si

starts the termination protocol for Ti: Ti ’s updates, readsets, and writesets
are broadcast to all replicas. Upon delivering this message, each database
site si certifies Ti.

Transaction Ti is allowed to commit at database site si only if there is no
conflicting transaction T j that executed concurrently and has been certified
to commit already. Only write-read conflicts are considered: write-write
conflicts are solved by total-order broadcast which guarantees that updates
are applied at all replicas in the same order; read-write conflicts are not
relevant since only committed transactions take part in Ti ’s certification
test. More formally, transaction Ti passes the certification test at si if the
following condition holds:

�

∀T j committed at si :
T j → Ti ∨ (ws(T j)∩ rs(Ti) = ;)

�

,

15 3.2 DBSM? or Readsets-free Certification

where T j → Ti denotes the precedence relation, and is defined as follows:

• If Ti and T j execute on the same replica si, then T j → Ti only if T j

enters the committing state at si before Ti enters the committing state
at si.

• If Ti and T j execute on different replicas si and s j, respectivelly, then
T j → Ti only if T j is committed at si before Ti enters the committing
state at si.

Total-order broadcast ensures that the sequence of transactions certified
by each replica is the same; together with a deterministic certification test
it guarantees one-copy serializability.

3. Committed/Aborted state. If Ti passes the certification test, its updates are
applied to the database and Ti passes to the committed state. Transactions
in the executing state at s j holding locks on data items updated by Ti are
aborted.

The main weakness of the DBSM lies in its dependency on transaction read-
sets. In the original DBSM, readsets of update transactions need to be broad-
cast to all sites for certification. Although storing and transmitting readsets are
sources of overhead, extracting them from transactions is a more serious prob-
lem since it usually implies accessing the internals of the database engine or
parsing SQL statements outside the database. On the other hand, obtaining
writesets is less of a problem: writesets tend to be much smaller than readsets
and can be extracted during transaction processing (e.g., using triggers or log
sniffing). Thus, for the sake of portability, simplicity, and efficiency, certification
in non-intrusive replication solutions should be “readsets-free”.

3.2 DBSM? or Readsets-free Certification

In order to solve the problem of readsets extraction in middleware replication
some protocols require all the operations of the transaction to be known in ad-
vance [Pacitti et al., 2005]; others assume coarser granularity: the tables ac-
cessed by the transaction and the type of the access (i.e., read or write) are re-
quired beforehand [Amza et al., 2003; Patiño-Martínez et al., 2005]. Coarser
granularity information is easier to obtain, however, it decreases parallelism
among transactions and leads to spurious aborts. Other approaches
[Plattner and Alonso, 2004; Elnikety et al., 2006; Lin et al., 2005] guarantee

16 3.2 DBSM? or Readsets-free Certification

snapshot isolation, which does not rely on transactions readsets to ensure cor-
rectness.

The DBSM has an interesting property: if all transaction requests are submit-
ted to the same replica, the DBSM will behave as primary-backup replication.
Since all transactions would then be executed under strict 2PL at the primary
site and serialized accordingly, and the updates would be applied at all sites in
the same order, 1SR would be ensured. In particular, if all transactions execute
at the same site, neither readsets nor writesets information is required for the
certification test: due to 2PL scheduler for all transactions T j committed at the
database site si, the relation T j → Ti is always true. Therefore, another way
to ensure 1SR in the DBSM is by carefully scheduling update transactions to
some selected database site; read-only transactions could still be executed at
any replica. However, for load-balancing and availability reasons, localizing the
execution of update transactions in the same site may not be such a good idea.

Following these ideas, we describe next the DBSM?, a readsets-free DBSM,
which guarantees 1SR with no communication overhead w.r.t. the original DBSM.
The basic idea of the DBSM remains the same: transactions are executed locally
according to strict 2PL. In contrast to the original DBSM, in DBSM? when an up-
date transaction requests a commit, only its updates and writesets are broadcast
to the other sites. Briefly, the mechanism works as follows:

1. The database is logically divided into a number of disjoint sets (accord-
ing to tables, rows, etc), each one under the responsibility of a different
replica, and extended with a control table containing one dummy row per
logical set. This control table is used for conflict materialization [Fekete
et al., 2005]. Note that each replica still stores a full copy of the database.

2. Each replica is responsible for processing update transactions that access
data items in its assigned logical set. Transactions that only access data
items in a single logical set and execute at the corresponding replica (we
call them “local”) are serialized with other transactions of the same type
by the 2PL scheduler on the replica where they execute.

3. Update transactions that access data items in more than one logical set
should execute on a site responsible for one of these logical sets. We call
such transactions “complex”. Total-order broadcast ensures that complex
transactions are serialized with other transactions updating data items in
intersecting logical sets in the same order at all database sites. However
total-order broadcast is not sufficient to serialize them with interfering
transactions executing at different replicas. Two transactions interfere if

17 3.3 Multiversion Database State Machine

one reads what is written by the other (notice that this is precisely what
the original DBSM certification test guarantees).

4. To ensure 1SR update transactions that read data items in a logical set
belonging to the remote replica are extended with update statements for
dummy rows corresponding to each remote logical set read. This can be
done when the application requests the transaction commit. Dummy rows
are constructed in such a way to materialize write-write conflicts between
complex or local transactions that access data items in the same logical
set. Therefore, if transaction Ti executes at si and one of Ti ’s operations
reads a data item that belongs to s j ’s logical set, a dummy write for s j

logical set is added to Ti. This ensures that if Ti executes concurrently
with some transaction in s j, complex or not, only one transaction will pass
the certification test of DBSM?:

�

∀T j committed at si :
T j → Ti ∨ (ws(T j)∩ws(Ti) = ;)

�

5. Read-only transactions can be executed at any database site independently
of the data items accessed.

Although DBSM? does not rely on exact transactions readsets information, the
division of the database into logical sets and transaction scheduling must be pre-
cise to avoid spurious aborts. Abort rates can be further reduced if the division
of the database into logical sets takes the workload into account. For example, a
criterion for defining logical sets could be the tables accessed by the transactions.
We do not have to know exactly which data items are accessed by a transaction
to schedule it to its correct replica; only its logical sets have to be known (e.g.,
which tables are accessed by the transaction). Furthermore, any transaction can
be executed at any database site as long as a corresponding dummy writes for
remote logical sets read are added to materialize the conflict.

Row level knowledge of transaction readset and writeset would allow to
eliminate spurious aborts. In the following sections we show how such data can
be obtained from the middleware layer and without modifying DBMS internals.

3.3 Multiversion Database State Machine

In this section we introduce the Multiversion Database State Machine (vDBSM),
which together with the SQL Inspector (see Chapter 4) allows for efficient mid-

18 3.3 Multiversion Database State Machine

dleware implementation of the DBSM. Like the DBSM, the vDBSM guarantees
one-copy serializability; we prove its correctness in Section 3.3.1.

The vDBSM assumes predefined, parameterized transactions. As we will
show in Chapter 4, the readset and writeset of a predefined transaction can
be estimated, even if conservatively, before the transaction is executed. Because
of that the certification test of vDBSM is much simpler than the DBSM’s certifi-
cation test.
We further recall, that the transaction’s Ti readset and writeset are denoted as
rs(Ti) and ws(Ti), respectively. The new protocol works as follows:

1. We assign to every table and to each data item in the database a version
number. Thus, besides storing a full copy of the database, each replica sk

also has a vector Vk of version numbers. The current versions of the table
table and the data item dx at site sk are denoted by Vk[table] and Vk[x]
respectively.

2. Both read-only and update transactions can execute at any replica. Just
like in the DBSM, read-only transactions are local to the replica and are
committed immediately upon request.

3. During the execution of an update transaction, the versions of the data
items read by the transaction are collected. If transaction readset cannot
be obtained at the row level, table version is taken instead.

We denote by V (Ti)[x] the version of each data item dx read by Ti. Simi-
larly, the versions of the tables accessed by Ti are denoted as V (Ti)[tables].
The versions of the data read by Ti are broadcast to all replicas together
with its readset, writeset, and updates at commit time.

4. Upon delivery update transactions are certified. Transaction Ti passes cer-
tification if all data items it read during its execution are still up-to-date at
certification time. If row-level granularity is not available, table versions
are compared.

For example, two conflicting transactions Ti and T j execute concurrently
on different database sites. T j updates data item x and commits. Ti reads
x concurrently but is delivered after T j. Initially, Vk[x] = 0, once T j has
committed the version of data item x is incremented at all database sites.
The version of data item x collected during execution of transaction Ti is
V (Ti)[x] = 0; since Ti is certified after T j, Vk[x] 6= V (Ti)[x], and thus Ti

is aborted. If Ti and T j execute at the same replica, due to 2PL concurrency

19 3.3 Multiversion Database State Machine

control, Ti will obtain a read lock on data item x only after T j has released
its locks, i.e., only after T j is committed. Consequently, Vk[x] = V (Ti)[x]
and thus Ti is allowed to commit too. Notice that such a certification test
implements the certification test of the original DBSM (see Section 3.1.2).

More formally, Ti passes certification on replica sk if the following condi-
tion holds:







∀tables ∈ rs(Ti) : Vk[table] = V (Ti)[table]
and
∀dx ∈ rs(Ti) : Vk[x] = V (Ti)[x]







5. If Ti passes certification, its updates are applied to the database, and the
version numbers of the tables and data items it wrote are incremented.
The versions of the tables to which the modified rows belong are also
incremented. All replicas must ensure that transactions that pass certifica-
tion are committed in the same order.

In the vDBSM as well as in the original DBSM, if two transactions Ti and T j

conflict and are executed concurrently on different database sites, certification
may abort one of them. If they execute on the same replica, however, the local
scheduler of the replica will serialize conflicting transactions appropriately, and
thus, both Ti and T j can commit. When two conflicting transactions execute
on distinct replicas, one transaction may read data items concurrently being up-
dated by another transaction, if the latter is certified to commit first, the former
has read inconsistent data and thus must abort to ensure strong consistency. If
such transactions execute at the same database site, the local concurrency con-
trol mechanism will forbid reading intermediate data, that is, data items modi-
fied by an uncommitted transaction are locked until that transaction commits or
aborts.

In optimistic replication protocols that usually suffer from aborts due to lack
of synchronization and especially in non-intrusive solutions where the abort rate
is further increased due to coarse grain conflict information, careful scheduling
of transactions may considerably improve the performance of the system. We
explore this idea further and present a thorough evaluation of the vDBSM in
Chapter 5.

3.3.1 Proof of Algorithm Correctness

Proposition 1. The vDBSM ensures one-copy serializability.

20 3.3 Multiversion Database State Machine

Proof (Sketch). We show that every history H produced by vDBSM has an acyclic
multiversion serialization graph (MVSG). From [Bernstein et al., 1987], if
MVSG(H) is acyclic, then H is one-copy serializable. MVSG is a directed graph
with the nodes representing committed transactions and edges representing
read-from and version order relationships between them. From the protocol,
the version order on every data object is defined by the commit order of trans-
actions. If � is a version order and Ti and T j update data object x , then
x i � x j ⇔ commit(Ti)< commit(T j).

To prove that MVSG(H) is acyclic we show that for every edge Ti → T j ∈
MVSG, it follows that commit(Ti)< commit(T j). In the following we consider
each edge type of MVSG(H).

• Read-from edge. If T j reads data object x from Ti, i.e., r j[x i], then Ti →
T j ∈ MVSG(H). We have to show that commit(Ti)< commit(T j).

If both Ti and T j are update transactions, T j can read the updates of
Ti only if Ti has been already certified and committed. If T j is a read-
only transaction, due to 2PL, T j can read only committed data. Thus,
commit(Ti)< commit(T j)

• Version order edge.

– If both Ti and T j update x , such that x i � x j, then Ti → T j ∈
MVSG(H).

From the definition of version order we have that x i � x j ⇔
commit(Ti)< commit(T j).

– If Ti reads xk and both Tk and T j write x such that xk � x j, then
Ti → T j ∈ MVSG(H).

For a contradiction, assume that commit(T j)< commit(Ti). To com-
mit at some site Sl in the vDBSM, Ti must pass the certification test.
Therefore, it follows that for every data item y and for every table
read by Ti, Vl[y] = V (Ti)[y] and Vl[table] = V (Ti)[table].

First, let’s assume that Ti and T j execute in parallel. During the ex-
ecution of Ti, the current versions of data items read are collected
and stored in V (Ti)[y] and V (Ti)[table]. Since Ti reads data item
x , depending on the granularity achieved, V (Ti)[x] or V (Ti)[table]
is collected also. From the definition of version order edge T j up-
dates data item x . When T j commits, versions Vl[x] and Vl[table]
are incremented. Since T j commits before Ti is certified, it cannot be

21 3.4 Related Work and Final Remarks

that Vl[x] 6= V (Ti)[x] and Vl[table] 6= V (Ti)[table]. Thus, since T j

writes data items read by Ti, Ti and T j cannot execute in parallel.

Now, let’s assume that transaction Ti started after T j has committed.
Ti reads xk from transaction Tk, so commit(Tk) < commit(Ti), and
this can only happen if T j updates x and commits before Tk, that is
x j � xk. This contradicts that xk � x j and consequently proves that
commit(Ti)< commit(T j).

In case of failures, uniform total order broadcast guarantees that recovering sites
first deliver all the messages missed during the crashed period. Since delivery
and certification of transactions is in total order, even the recovering sites will
reach the same decision on transactions fate.

3.4 Related Work and Final Remarks

Gray et al. [1996] classify recent database replication protocols according to
two parameters. The first parameter determines where transaction updates take
place and thus distinguishes primary-backup and update everywhere replication
approaches. Primary-backup replication requires update transactions to be sub-
mitted to the same dedicated replica, while in the update everywhere approach
any replica can execute any transaction. Clearly, both solutions require changes
introduced by a transaction to be applied at all the database sites. Thus the sec-
ond parameter determines when transactions updates are applied at the replicas.
In eager replication a transaction synchronizes with all the replicas before it com-
mits at the local replica. Such protocols guarantee strong consistency at the price
of increased response times due to communication overhead. Lazy replication
schemes allow changes introduced by a transaction to be propagated to other
replicas after the transaction has committed. Lazy replication is a standard fea-
ture of most mainstream database management systems (Microsoft SQL Server,
Oracle, Sybase, IBM DB2, PostgreSQL, MySQL). Such solutions scale very well,
but provide weaker consistency guarantees and require complex reconciliation
techniques.

As an alternative, group communication-based replication protocols have
emerged. In contrast to replication based on distributed locking and atomic
commit protocols, group communication-based protocols minimize the interac-
tion between replicas and the resulting synchronization overhead. Proposed
solutions vary in the execution mode—transactions can be executed conserva-
tively [Kemme et al., 1999; Patiño-Martínez et al., 2000, 2005] or optimistically

22 3.4 Related Work and Final Remarks

[Kemme and Alonso, 2000; Lin et al., 2005; Pedone et al., 2003; Wu and Kemme,
2005], and in the database correctness criteria they provide—one-copy serializ-
ability [Amir and Tutu, 2002; Patiño-Martínez et al., 2000, 2005; Pedone and
Frølund, 2008; Pedone et al., 1998, 2003; Rodrigues et al., 2002] or snapshot
isolation [Elnikety et al., 2006; Lin et al., 2005; Wu and Kemme, 2005]. In the
following we summarize recent group communication-based replication proto-
cols and compare them with our approach. In particular we are interested in the
solutions that are closely related to ours, specially with regards to non-intrusive
aspect.

Agrawal et al. [1997] present a family of replica management protocols that
exploit the properties of total-order broadcast and are based on state machine
replication. Their first protocol suffers from excessive broadcast overhead since
every transaction’s operation is broadcast to every database replica; in the sec-
ond protocol read operations are localized; and finally, in the third protocol,
transactions are executed locally and total-order broadcast is used only for trans-
actions termination. Deferred updates replication based on group communica-
tion was also proposed in [Pedone et al., 1997]. However, both approaches
assume preexisting knowledge on data accessed by the transactions.

Patiño-Martínez et al. [2005] present three conservative protocols (DISCOR,
NODO and REORDERING) which use conflict classes for concurrency control of
update transactions. A conflict class represents a partition of the data and is
used for transaction synchronization. Transactions are sent to all the replicas
using optimistic total-order broadcast [Kemme et al., 2003] but the outcome of
transactions is only decided at the master site of the respective conflict class.
Hence, remote sites do not even have to wait for the definitive total order to
execute a transaction. The authors require the data partitions accessed by the
transaction to be known in advance; no discussion on how conflict classes could
be obtained automatically is provided.

The Pronto protocol presented by Pedone and Frølund [2008] was among
the first to consider building database replication without requiring modifica-
tions to the database engine, allowing it to be deployed in a heterogeneous en-
vironment. The protocol is based on the primary-backup replication model and
total-order broadcast primitives. Although the solution does not require readsets
and writesets information, the throughput of update transactions is limited by
the performance of a single primary replica handling all update load. Whereas
in vDBSM update transactions can execute at any replica.

Clustered JDBC (C-JDBC) [Cecchet et al., 2004] is an open-source middle-
ware solution for database clustering on a shared-nothing architecture built with
commodity hardware. C-JDBC supports both partial and full replication. The

23 3.4 Related Work and Final Remarks

approach consists in hiding a lot of database complexity in the C-JDBC layer,
outside the database.

Snapshot Isolation is especially attractive for middleware-based concurrency
control. In Lin et al. [2005] the authors propose SI-Rep, a pure middleware
replication solution providing a replicated form of snapshot isolation. Transac-
tions are first executed at a local database replica providing SI. At the end of
the execution the updated records are extracted. After retrieving the writesets,
SI-Rep performs a validation to check for write/write conflicts with transactions
that executed at other replicas and have been already validated. If validation
succeeds, the transaction commits at the local replica and the writeset is applied
at the remote replicas in a lazy fashion. Elnikety et al. Elnikety et al. [2006] also
take advantage of snapshot isolation concurrency control and presents Tashkent,
which further improves system performance by uniting transactions ordering
and durability. Although snapshot isolation is an appealing alternative to one-
copy serializability, certain anomalies forbidden in serializable executions may
occur and may be unacceptable for some applications.

Irún-Briz et al. [2005] present MADIS, a platform that supports a number
of different replication protocols and implements an extension to the database
schema (called report tables) in order to retrieve information accounting the
execution of various transactions at each replica. In Muñoz-Escoí et al. [2006]
the authors suggest using database system’s locking tables to determine conflict-
ing transactions in middleware-based database replication architectures. Even
if all DBMSs would have such tables, their handling is DBMS dependent, what
rules out one of the goals of non-intrusive replication to be independent of the
underlying database engine.

Pacitti et al. [2005] present preventive replication that supports multi-master
and partial configurations. The consistency is guaranteed by annotating trans-
actions with a chronological timestamp value and ensuring FIFO order among
messages sent by a replica. The transaction is allowed to execute on a database
site only when the upper bound of the time needed to multicast a message has
exceeded. Further optimizations of the protocol allow concurrent transactions
execution at the replicas and eliminate the delay time. The proposed protocol is
also studied in the context of partial database replication. However, the authors
assume that transaction access patterns (its readsets and writesets) are known.

The DBSM has several advantages when compared to existing replication
schemes. In contrast to lazy replication techniques, the DBSM provides strong
consistency (i.e., one-copy serializability) and fault tolerance. When compared
with primary-backup replication, it allows transaction execution to be done in
parallel on several replicas, which is ideal for read-only transactions and work-

24 3.4 Related Work and Final Remarks

loads populated by a large number of non-conflicting update transactions. By
avoiding distributed locking used in synchronous replication, the DBSM scales
to a larger number of database sites. Finally, when compared to active replica-
tion, it allows better usage of resources because each transaction is completely
executed by a single replica only. In this chapter we have addressed one of the
main weaknesses of the DBSM: its dependency on transaction readsets for cer-
tification. The conflict materialization technique adopted for DBSM? does that
without sacrificing strong consistency or increasing communication overhead.
Furthermore, we have introduced vDBSM, a practical non-intrusive replication
protocol. To provide strong consistency and reduce spurious aborts the vDBSM
takes advantage of workload characterization techniques introduced in the up-
coming chapter.

Chapter 4

Workload Characterization
Techniques

Transaction readsets and writesets information is an essential component of
database replication protocols, in particular when strong system consistency is
targeted. Such knowledge may be useful even before actually executing the
transactions at the database engine. Conservative replication protocols require
transaction’s access patterns data beforehand to guarantee replicated system’s
consistency; optimistic protocols may use such information to reduce the syn-
chronization aborts induced by conflicting transactions executing concurrently
at distinct database replicas.

Non-intrusive replication solutions have no access to fine grain concurrency
control information at the database engine and often suffer from duplicating
the back-end database logic into the middleware or from reduced concurrency
among transactions and increased number of aborts. However, data items ac-
cessed by predefined transactions can be detected automatically before their
actual execution by partially parsing SQL statements. By estimating the data
items accessed by transactions before their execution, even if conservatively, the
replication protocols are spared from extracting readsets and writesets during
the execution.

In this chapter we introduce the second contribution of this thesis, the SQL
Inspector, a tool capable to automatically identify conflicting transactions by
partially parsing them. In the following sections we explain the idea, the actual
implementation of the tool, and the case study of the two workloads chosen.

25

26 4.1 SQL Statements Inspection

4.1 SQL Statements Inspection

Transactions’ writeset can be obtained during transaction execution by using
triggers or log sniffing. A database trigger is a procedure that is automatically
executed in response to a certain event on a particular table in a database. Most
modern DBMS (e.g., Oracle, MySQL, PostgreSQL, Microsoft SQL Server) support
triggers (also known as Data Manipulation Language (DML) triggers) that fire
on data modification events, such as INSERT, UPDATE and DELETE. Thus, the
identifiers of rows modified by the transaction can be obtained by triggers and
stored in a temporary table. Some DBMSs (e.g., Microsoft SQL Server, Oracle)
also support Data Definition Language (DDL) triggers, which can fire in reaction
to a very wide range of events, including: DROP, CREATE or ALTER table.

Unfortunately, triggers cannot be used to audit data retrieval via SELECT
statements. One may be mistaken by the fact that the identifiers of data items
collected while executing some SELECT statement actually define the transac-
tion readset. Primary keys of the records returned after executing SQL state-
ments do not necessary indicate the records physically read by the database.
There are many situations when the database scans the whole table to retrieve a
set of particular tuples and such cases differ from DBMS to DBMS depending on
the concurrency control mechanism employed and the way the database engine
handles phantoms [Gray and Reuter, 1993]. To simplify the explanation of the
tool hereafter we assume MySQL InnoDB storage engine [MySQL 5.0 Reference
Manual, 2008], however, most of the general ideas are still applicable to other
DBMSs. We outline how locking is implemented in MySQL in Secion 4.1.1.

4.1.1 Locking in MySQL InnoDB

InnoDB implements standard row level locking without lock escalation. There
are two types of locks: a shared lock and an exclusive lock. Shared locks are
required to read database records and exclusive locks must be obtained when
modifying the data. When the database engine searches or scans an index of a
table, it sets shared or exclusive locks on the index records it encounters. Thus,
the row level locks are actually index record locks. If no suitable index exists,
MySQL has to scan the whole table to process the statement, every row of the
table becomes locked, which in turn blocks all inserts to the table.

To ensure that no phantom phenomenon occurs InnoDB uses next-key locking.
Phantoms may arise when a transaction accesses tuples via an index: in such
cases the transaction typically does not lock the entire table, just the records in
the table that are accessed by the index. In the absence of a table level lock,

27 4.1 SQL Statements Inspection

other transactions may insert or delete records from the same table. If these
newly inserted or deleted records satisfy a predicate of another transaction, they
will appear is subsequent accesses via that predicate. Although the two transac-
tions conflict logically, there is no record in common: the record that causes the
conflict is a phantom record that has suddenly appeared/disappeared from the
database.

In conventional next-key locking [Gray and Reuter, 1993] an insertion of
a tuple with index key k allocates an exclusive lock on the next-key tuple that
exists in the index: the tuple with the lowest key greater than k. Thus the
subsequent insertions cannot appear in between two tuples that were returned
previously by an active transaction; furthermore tuples cannot be inserted just
below the lowest-keyed tuple previously returned. The next-key locking protocol
requires read transactions to be modified as well, so that they must get a shared
lock on next-key tuple in the index as well — the minimum-keyed tuple that
does not satisfy the query predicate.

Thus in InnoDB next-key locks affect not only the index record accessed but
also the "gap" before it. If there is a shared or an exclusive lock on the record
in the index, new index record cannot be inserted immediately before it in the
index order. InnoDB sets exclusive or shared next-key locks when executing most
of SQL statements, except an INSERT SQL statement — only a simple exclusive
lock is set on the inserted row. If a duplicate key error occurs, a shared lock on
the duplicate index record is set.

4.1.2 DML

If the workload is known in advance a transaction’s readset and writeset can
be estimated before their actual execution. In the following we explain how
such information can be extracted from SQL statements of Data Manipulation
Language.

Readsets analysis

A SELECT query in SQL retrieves a set of tuples from one or more tables. It can
consist of up to six clauses, but only two, SELECT and FROM, are mandatory:

SELECT <attribute list> FROM <table list> [WHERE <condition>]

[GROUP BY <grouping attributes>]

[HAVING <group condition>]

[ORDER BY <attribute list>]

28 4.1 SQL Statements Inspection

The SELECT clause lists the attributes to be retrieved, the FROM clause speci-
fies all tables required by the query, the WHERE clause defines the conditions for
selection of tuples from those tables. GROUP BY specifies grouping attributes,
whereas HAVING defines a condition on the groups being selected rather than in-
dividual tuples. ORDER BY specifies an order for displaying the result of a query.
Omitting the WHERE clause indicates that all tuples of the table are read. If the
WHERE keyword is present it is followed by a logical expression, also known
as a predicate, which identifies the tuples to be retrieved. If the predicate is
an equality comparison on a unique indexed attribute, the exact rows scanned
by the database can be estimated. For example, consider the query where the
predicate is based on a primary key attribute:

SELECT clientName FROM clientsTable WHERE clientId = 10

The database engine will lock only the record that is identified by the client’s id
equal to 10. Thus, the record read by such a query is simply identified by the
client’s id.

A unique index of the table can be also composed of several attributes. In
both cases the database locks only the records identified by their unique indices.
However, as explained in Section 4.1.1, to prevent phantoms the database en-
gine may lock part or even the whole table to retrieve a set of particular records.
As another example, suppose one wants to obtain all the clients that are older
than 30 years. Assume there is a non-unique index on the column clientAge:

SELECT clientSurname FROM clientsTable WHERE clientAge >30

The surnames of the clients obtained by the query are not necessarily the records
physically locked by the database engine. The query scans the index starting
from the first record where client’s age is bigger than 30. If the locks set on
the index records would not prevent inserts in the gaps, a new tuple might be
meanwhile inserted to the table. If the same SELECT statement is executed again
within the transaction, a new row would be returned in the resultset of the query.
However, such execution violates the isolation property of transactions [Gray
and Reuter, 1993]: even if transactions execute concurrently, it should appear
that they were executed one after the other. When InnoDB scans an index, it can
also lock the gap after the last record in the index. In the previous example, the
locks set by InnoDB forbid inserting new clients older than 30.

Hence to ensure strong consistency we have two alternatives: choose table
level granularity when queries retrieve records based on non-unique indices—
an undesirable solution due to reduced transaction concurrency, or record level

29 4.1 SQL Statements Inspection

granularity as if considering primary key indices. However, in the latter case,
consistency still needs to be ensured. On the other hand, one might always
decide to relax the consistency requirement assuming such phenomena do not
arise frequently and they are not crucial for the application considered.

Besides equality, the WHERE clause may contain different comparison op-
erators (<,>,<=,>=), complex expressions that consist of extended functions
(LIKE, BETWEEN, NOT NULL) or another (nested/sub-) query. The records
physically read by the database processing such queries are DBMS implemen-
tation dependent. The same holds when joins on non-unique indices over sev-
eral tables are performed. Since we aim at non-intrusive replication, table level
granularity is used in all the situations above and the cases not covered.
Notice that the OLTP workloads (e.g., TPC [2005, 2001]) are typically composed
of SQL statements that mainly use primary indices to retrieve the particular
records, and thus row level granularity can be achieved in the majority of the
cases.

Writesets extraction

There are three SQL statements for data modification: INSERT, UPDATE and
DELETE. INSERT is used to add rows to an existing table and has the following
form:

INSERT INTO <table> (column1,[column2,...]) VALUES (val1,[val2,...])

INSERT sets an exclusive lock on the inserted tuples, thus the exact rows can
be estimated by their primary keys.1 For example, the writeset of the follow-
ing statement is identified by the primary key attribute, i.e., only the row with
client’s id equal to 11 is actually locked by the database engine:

INSERT INTO clientsTable (clientId,clientName) VALUES (11, ’Jim’)

UPDATE is used to modify the values of a set of existing table rows:

UPDATE <table> SET column1 = val1[, column2 = val2...][WHERE <condition>]

Entire rows can be deleted from a table using the DELETE clause:

DELETE FROM <table> [WHERE <condition>]

The writesets of both, DELETE and UPDATE statements similarly to SELECT,
can be estimated at the record level only if the WHERE clause contains an equal-
ity comparison on unique identifiers. Otherwise, table level granularity is con-
sidered.

1Recall that we assume MySQL InnoDB engine. Other DBMSs may handle INSERT and
DELETE statements differently (e.g., using table locks).

30 4.1 SQL Statements Inspection

4.1.3 DDL

The workload we assume in this thesis is composed of predefined, parameterized
transactions. Usually such workloads, as for example, TPC-C and TPC-W bench-
marks, do not contain any Data Definition Language SQL statements. Although
there is nothing fundamentally different about these SQL statements that would
prevent our tool to detect the writesets (CREATE, ALTER, DROP, RENAME table
statements would clearly require table level granularity), currently we do not
consider DDL statements in our workload analysis.

4.1.4 The SQL Inspector

Following the aforementioned ideas, we have built the SQL Inspector, a tool to
partially parse SQL statements and detect potential conflicts among transactions.
In this section we outline the architecture of the tool and detail the steps required
to analyze the workload.

Our tool is implemented entirely in Java and relies on the open source SQL
parser JSqlParser [2008]. The SQL Inspector can be used as a standalone appli-
cation for transaction analysis or it can be integrated into a replication protocol
to simplify the concurrency control management of the replicated system.

Hereafter we assume the following general structure of predefined, parame-
terized transactions:

TransactionName(parameterName1, parameterName2, ...)

sql statements ...

Each transaction template is identified by its name (TransactionName) and a
number of parameters (parameterName1, parameterName2). For example, trans-
action UpdateOrderTransaction has a single parameter paramName which is the
name of the client. This parameter is later used within the SQL statements of
the transaction:

UpdateOrderTransaction(paramName)

SELECT clientId FROM clientsTable WHERE clientName = paramName

UPDATE ordersTable SET orderAmount = 500 WHERE orderId = clientId

Not all SQL statements in a transaction template are executed on every in-
vocation of the transaction. Loops and “if ... else” statements require special
attention. Thus the first step of the analysis is to rewrite the transactions tem-
plates so that every significant path of control flow is presented as a separate

31 4.1 SQL Statements Inspection

parameterized transaction. In the case when the condition of the “if ... else”
statement is not known in advance, the transaction is considered as if all the
SQL statements in both execution paths would execute. Being hard to automate,
this step is done manually.

The second step of the analysis is the database schema (SQL DDL statements)
parsing. Although we do not support DDL statements within transactions, our
tool is able to parse SQL statements used to create tables in a database. The In-
spector parses CREATE table statements to obtain primary keys and other unique
indices information for each database table. Such information is necessary to be
able to identify conflicts among transactions at the record level. If table level
granularity is requested no schema parsing is required.

Finally, during the third step of the analysis transaction templates are parsed
and a preliminary conflict relation is constructed. Defining a conflict relation for
the whole workload is not trivial. First, the parameter space is large: we cannot
check all permutations of transactions instantiated with all possible parameter
values; and second, the decisions made by the SQL Inspector may vary depend-
ing on specific application requests. We identify the following parameters that
can affect conflict relation:

1. The conflicts among transactions can be determined at different granular-
ities:

- table level,

- record level.

2. Based on concurrency control provided by the database engine (2PL or
snapshot isolation), different conflicts types may be considered:

- read-write and write-write conflicts,

- only write-write conflicts.

3. An application may demand different degrees of consistency:

- strong, where no phantom phenomena are allowed, or

- weaker isolation levels, where phantoms are tolerated.

All combinations of such requirements are possible. For example, the application
might request row level granularity but permit weaker isolation; or strong con-
sistency is required but table level granularity is acceptable. Such requirements
can be identified by the application developer and given to the SQL Inspector as
an input.

32 4.2 Analysis of the Benchmarks

The SQL Inspector can be used for online and offline analysis of transactions.
The online analysis will certainly introduce some overhead, but may result in
more precise conflict information when compared to offline analysis. The online
processing costs can be reduced if database schema is preprocessed beforehand.
On the other hand, the overhead introduced by offline analysis is close or equal
to zero. Depending on the nature of transactions, such offline workload anal-
ysis may still result in coarse conflict information. For example, if not all the
parameters of the operations within the transaction are known in advance:

UpdateOrderTransaction(paramName)

SELECT clientId FROM clientsTable WHERE clientName = paramName

UPDATE ordersTable SET orderAmount = 500 WHERE orderId = clientId

Assume there is a unique index on client’s name column in the clients table and
a primary key index on order’s id in the orders table. The client’s name is known
in advance (paramName), but the order’s id is obtained only during transaction
execution. The database engine would use row level locking for this transaction,
however the SQL Inspector has no information about which row is locked in
the orders table — the value of order’s id is not known beforehand. If there
is another transaction accessing the orders table, SQL Inspector would detect
a conflict, even though the actual rows locked in the table would be different.
A finer granularity of information can be achieved if the same SQL statements
inspection strategy is used per operation and online (during real execution of
transactions).

The presented SQL statements inspection allows for higher flexibility of repli-
cation protocols: ranging from table to record level granularity and providing
different consistency guarantees based on application demands. It turns out that
such simple SQL analysis covers all the transaction types in standard database
benchmarks, i.e. TPC-C and TPC-W. We show next the analysis of these bench-
marks.

Being a conservative technique the SQL Inspector uses table level granularity
for unsupported statements, such as, explicit locking (e.g., LOCK TABLES, LOCK
IN SHARE MODE) or SELECT ... FOR UPDATE, UNION statements.

4.2 Analysis of the Benchmarks

In this section we overview the TPC-W and TPC-C benchmarks, show how they
can be mapped to our transactional model, and how our SQL statements inspec-
tion can be applied to them.

33 4.2 Analysis of the Benchmarks

4.2.1 TPC-W

TPC-W [TPC, 2001] is an industry standard transactional web benchmark used
to evaluate e-commerce systems. It implements an on-line bookstore and has
three workload mixes that differ in the relative frequency of each of the transac-
tion types. The ordering workload mix has 50% updates, the shopping workload
mix has 20% updates, and the browsing workload mix has 5% updates. The
bookstore (a total of 8 tables) size is chosen from among a set of given scale
factors, which is the number of items in inventory and varies from 1,000 to
10,000,000 items.

TPC-W defines its workload as a mix of web interactions. Each web interac-
tion is composed of one or more transactions. Therefore, to be able to use the
SQL Inspector, we must identify the transaction templates within the web inter-
actions. This has to be done manually. After careful analysis this resulted in 20
different transaction templates.

To illustrate how SQL Inspector works, consider two very simple transactions,
BuyRequest and CustomerRegistration:

BUYREQUEST(c_id)

UPDATE customer SET c_login = ?, c_expiration = ? WHERE c_id = c_id

CUSTOMERREGISTRATION(c_id)

SELECT c_uname FROM customer WHERE c_id = c_id

Since both transactions use a primary key (c_id) to access data, readsets and
writesets can be identified at the row level. The SQL Inspector determines that
the two transactions conflict if they are issued by the same customer, that is, the
value of c_id is the same in both transactions. The Inspector can also be used on
already instantiated transactions, in that case, the result of the analysis is just
true or false, i.e., transactions conflict or not.

4.2.2 TPC-C

TPC-C is another benchmark for online transaction processing (OLTP) from TPC
[2005]. It represents a generic wholesale supplier workload. The benchmark’s
database consists of a number of warehouses, each one composed of 10 districts
and maintaining a stock of 100000 items; each district serves 3000 customers.
All the data is stored in a set of 9 relations: Warehouse, District, Customer, Item,
Stock, Orders, Order Line, New Order, and History.

34 4.2 Analysis of the Benchmarks

Being simpler than TPC-W, TPC-C defines only five transaction types: the
New Order transaction places an order from a warehouse; the Payment transac-
tion records a payment received from a customer; the Delivery transaction pro-
cesses pending orders at the specified warehouse; the Order Status transaction
returns the status of the customer’s last order; and the Stock Level transaction
examines the quantity of stock for the items ordered at the selected warehouse.
Order Status and Stock Level are read-only transactions; the others are update
transactions. Since we are interested in readsets and writesets of only update
transactions, there are only three transaction types to consider: Delivery, Pay-
ment, and New Order. These three transaction types compose 92% of TPC-C
workload.

The SQL Inspector can help to detect that, for example, both New Order
and Payment transactions access Customer, District and Warehouse relations, but
none ever writes on fields read by the other. However, since traditional databases
consider row level granularity, New Order and Payment transactions might con-
flict if they operate on the same warehouse. Delivery and Payment transactions
have conflicts only on the Customer relation: both update customer’s balance
information and there might also be a read-write conflict since Payment transac-
tions also read this data. New Order and Delivery transactions conflict because
of read and write operations on New Order, Order Line and Orders tables.

Since TPC-C workload is relatively simple (only 3 transaction templates to
consider), careful analysis of the above-mentioned information allows us to de-
fine a conflict relation for the whole workload. Let’s denote the workload of
update transactions as:

T = {Di , Pi jkm, NOi jS | i, k ∈ 1..#WH;
j, m ∈ 1..10;
S ⊆ {1, ..., #W H}}

where #WH is the number of warehouses considered. Di stands for a Delivery
transaction accessing districts in warehouse i. Pi jkm relates to a Payment transac-
tion which reflects the payment and sales statistics on district j and warehouse i
and updates the customer’s balance. In 15% of the cases, the customer is chosen
from a remote warehouse k and district m. Thus, for 85% of transactions of type
Pi jkm: (k = i)∧(m= j). NOi jS is a New Order transaction referring to a customer
assigned to warehouse i and district j. For an order to complete, some items
must be chosen: 99% of the time the item chosen is from the home warehouse
i and 1% of the time from a remote warehouse. S represents a set of remote
warehouses.
If read-write and write-write conflicts at the row level are considered the conflict
relation ∼ between transaction types is as follows:

35 4.2 Analysis of the Benchmarks

∼ = {(Di , Dx) | (x = i)} ∪
{(Di , Px ykm) | (k = i)} ∪
{(Di , NOx yS) | (x = i)} ∪
{(Pi jkm, Px yzq) | (x = i)∨ ((z = k)∧ (q = m))} ∪
{(NOi jS , NOx yZ) | ((x = i)∧ (y = j))∨ (S ∩ Z 6= ;)} ∪
{(NOi jS , Px yzq) | (x = i)∨ ((z = i)∧ (q = j))}

For instance, two Delivery transactions conflict if they access the same ware-
house.

Notice that we do not have to consider every transaction that may happen in
the workload in order to define the conflict relation between transactions. Only
the transaction types and how they relate to each other should be taken into
account.

4.2.3 Accuracy of the SQL Inspector

The SQL Inspector is a conservative technique and may over-approximate the
set of data items accessed by the transaction that could cause conflicts. In other
words, the offline workload analysis may result in false positives. To evaluate
the accuracy of the SQL Inspector we have estimated the types of locks actually
used by the database engine for each transaction in TPC-C benchmark and the
granularity of locks achieved by the Inspector. We detect the type of locks used
by the database from the transaction execution plan (in MySQL such informa-
tion can be obtained with EXPLAIN command). The results are presented in
Table 4.1. The numbers correspond to the amount of statements within each
transaction using the specific kind of lock.2 Row and table lock types indicate
that row or table level locks are used, respectively. Range level lock indicates
that part of the table is locked by the transaction.

Notice that there are no table locks introduced by the SQL Inspector. Some row
locks are escalated to range locks mainly due to the fact that in offline analysis
there are some intermediate values that are not known in advance. Even being
a conservative technique, the SQL Inspector achieves finer granularity than just
table names accessed by the transactions — an approach taken by some middle-
ware replication solutions [Amza et al., 2003; Patiño-Martínez et al., 2005].

2The given number is an estimate and should not be taken as the actual number of statements
within each transaction: some of the statements may be executed more than once.

36 4.3 Related Work and Final Remarks

Locks: Row Range Table

NewOrder 10 0 0

Payment 8 1 0

Delivery 4 3 0

OrderStatus 1 3 0

StockLevel 1 1 0

(a)

Locks: Row Range Table

NewOrder 6 4 0

Payment 4 5 0

Delivery 0 7 0

OrderStatus 0 4 0

StockLevel 1 1 0

(b)

Table 4.1. Accuracy of the SQL Inspector, TPC-C benchmark; (a) the locks used
by the database, and (b) the granularity achieved by the SQL Inspector

4.3 Related Work and Final Remarks

Little research has considered workload analysis to increase the performance of
replicated systems. To the best of our knowledge, only the authors of [Jorwekar
et al., 2007] analyze SQL statements, although for a different purpose. The tool
implemented, similarly to our SQL Inspector, parses SQL statements to extract
syntactic readsets and writesets. Differently from us, the obtained information
is used to detect anomalies in snapshot isolated executions. No replication is
considered.

To enable transparent heterogeneous database replication C-JDBC [Cecchet
et al., 2004] parses SQL statement at the middleware layer. However, it is a
complete, conventional SQL parser, which, unlike our SQL Inspector, cannot be
used as a standalone application. Readsets and writesets extraction outside the
database engine by means of triggers and log mining was also discussed in [Salas
et al., 2006]

In this chapter we have shown how to automatically obtain transactions data
access pattern information. The proposed SQL inspector allows to estimate,
even if conservatively, the conflicts between predefined, parameterized transac-
tions. We have presented the idea and actual implementation of the tool. To
the best of our knowledge this is the first attempt to automate the extraction
of transactions readsets and writesets based on SQL statements analysis outside
the database engine. In the next chapter we show how exploiting the same
workload information the performance of database replication protocols can be
further improved.

Chapter 5

Conflict-Aware Load-Balancing
Techniques

Optimistic database replication protocols, especially non-intrusive ones, may suf-
fer from excessive synchronization aborts. In such protocols, each transaction is
first executed locally on some replica and during execution there is no synchro-
nization between database sites. If two conflicting transactions execute concur-
rently on distinct sites, one of them is aborted during certification to ensure
strong consistency (e.g., one-copy serializability). A key property of the vDBSM
is that if transactions with similar access patterns execute at the same database
replica, then the local replica’s scheduler will serialize them and both can com-
mit reducing the synchronization aborts. Based on the information obtained
by the SQL Inspector, we can carefully assign transactions to database replicas
avoiding conflicts as much as possible.

In this chapter we introduce conflict-aware load-balancing techniques that
schedule transactions in vDBSM to preferred database sites. Our algorithms strive
to assign transactions to replicas so that the number of conflicting transactions
executing on distinct database sites is reduced and the load over the replicas
is equitably distributed. In the following sections we present two greedy al-
gorithms that prioritize different requirements when assigning transactions to
preferred database sites: Minimizing Conflits First (MCF) and Maximizing Paral-
lelism First (MPF). We illustrate the behavior of the algorithms with the chosen
benchmark: TPC-C and a micro-benchmark, and present a thorough evaluation
of vDBSM with and without the load-balancing techniques.

37

38 5.1 Minimizing Conflicts and Maximizing Parallelism

5.1 Minimizing Conflicts and Maximizing Parallelism

The proposed conflict-aware load-balancing techniques build on two simple ob-
servations: (I) If conflicting transactions are submitted to the same database
site, the replica’s local scheduler serializes the conflicting operations appropri-
ately, reducing aborts. (II) In the absence of conflicts, however, performance is
improved if transactions execute concurrently on different replicas. Designing
load-balancing techniques that exploit the given observations efficiently is not
trivial. Concentrating conflicting transactions in a few replicas will reduce the
abort rate, but may leave many replicas idle.

Ideally, we would like to both (a) minimize the number of conflicting trans-
actions executing on distinct replicas and (b) maximize the parallelism between
transactions. If the workload is composed of many conflicting transactions and
the load over the system is high, then (a) and (b) become opposite require-
ments: While (a) can be satisfied by concentrating transactions on few database
sites, (b) can be fulfilled by spreading transactions on multiple replicas. But if
only few transactions conflict, then maximizing parallelism becomes the prior-
ity; likewise, if the load is low, few transactions will execute concurrently and
minimizing the number of conflicting transactions executing at distinct replicas
becomes less important.

We propose a hybrid load balancing technique which allows to give more or
less significance to minimizing conflicts or maximizing parallelism. We call it
Maximizing Parallelism First(MPF). MPF prioritizes parallelism between transac-
tions. Consequently, it initially tries to assign transactions in order to keep the
replicas’ load even. If more than one option exists, the algorithm attempts to
minimize conflicts.

To account for the computational resources needed to execute different trans-
actions, each transaction Ti in the workload is assigned a weight wi. For example,
simple transactions have less weight than complex transactions. The load of a
replica sk is given by the aggregated weight of active transactions at some given
time t, denoted as w(sk, t) =

∑

T j∈st
k
w j.

To compare the load of two database sites, we use factor f , 0 < f ≤ 1. Sites
si and s j have similar load at time t if the following condition holds: f ≤
w(si, t)/w(s j, t)≤ 1 or f ≤ w(s j, t)/w(si, t)≤ 1. For example, MPF with f = 0.5
allows the difference in load between two replicas to be up to 50%. We denote
MPF with a factor f as MPF f . MPF works as follows:

1. Consider replicas s1, s2, ..., sn. To assign each transaction Ti in the work-
load to some site at time t execute steps 2–4, if Ti is an update transaction,

39 5.2 Static vs. Dynamic Load Balancing

or step 5, if Ti is a read-only transaction.

2. Let W (t) = {sk | w(sk, t) ∗ f ≤ minl∈1..n w(sl , t)} be the set of replicas with
the lowest aggregated weight w(sl , t) at time t.

3. If |W (t)|= 1 then assign Ti to the replica in W (t).

4. If |W (t)|> 1 then let CW (Ti, t) be the set of replicas containing conflicting
transactions with Ti in W (t): CW (Ti, t) = {sk | sk ∈W (t) and ∃T j ∈ sk such
that Ti ∼ T j}.

(a) If |CW (Ti, t)| = 0, assign Ti to the sk in W (t) with the lowest aggre-
gated weight w(sk, t).

(b) If |CW (Ti, t)|= 1, assign Ti to the replica in CW (Ti, t).

(c) If |CW (Ti, t)|>1, assign Ti to the replica sk in CW (Ti, t) with the high-
est aggregated weight of transactions conflicting with Ti; if several
replicas in CW (Ti, t) satisfy this condition, assign Ti to any of these.
More formally, let CTi

(st
k) be the subset of st

k containing conflicting
transactions with Ti only: CTi

(st
k) = {T j | T j ∈ st

k ∧ T j ∼ Ti}. Assign
Ti to the replica sk in CW (Ti, t) with the greatest aggregated weight
w(CTi

(st
k)) =

∑

T j∈CTi
(st

k)
w j.

5. Assign read-only transaction Ti to the replica sk with the lowest aggregated
weight w(sk, t) at time t.

The choice of f depends heavily on workload characteristics: the number of
conflicting transactions, their complexity, and the load over the system.

We call Minimizing Conflicts First(MCF) a special case of MPF with a factor
f = 0. MCF attempts to minimize the number of conflicting transactions as-
signed to different replicas, even though this may create an unbalance in the
load of replicas. The algorithm initially tries to assign each transaction Ti in the
workload to the replica containing conflicting transactions with Ti. If there are
no conflicts, the algorithm tries to balance the load among the replicas.

Notice that regardless of the database site chosen for the execution of a trans-
action, the vDBSM always ensures strong consistency.

5.2 Static vs. Dynamic Load Balancing

The proposed conflict-aware load-balancing techniques can be implemented in
a static or in a dynamic load balancer. A static load balancer executes MCF

40 5.2 Static vs. Dynamic Load Balancing

and MPF offline, considering each transaction in the workload at a time in
some order—for example, transactions can be considered in decreasing order
of weight, or according to some time distribution, if available. Since the assign-
ments are pre-computed, during the execution there is no need for the replicas
to send feedback information to the load balancer. The main drawback of this
approach is that it can potentially make poor assignment decisions.

Dynamic load balancing can potentially outperform static load balancing
by taking into account information about the execution of transactions when
making assignment choices. Moreover, the approach does not require any pre-
processing since transactions are assigned to replicas on-the-fly, as they are sub-
mitted. As a disadvantage, a dynamic scheme requires feedback from the repli-
cas with information about the execution of transactions. Receiving and analyz-
ing this information may introduce overheads.

MCF and MPF can be implemented in a dynamic load balancer as follows:
The load balancer keeps a local data structure s[1..n] with information about
the current assignment of transactions to each database site. Each transaction
in the workload is considered at a time, when it is submitted by the client,
and assigned to a replica according to MCF or MPF. When a database site sk

finishes the execution of a transaction Ti, committing or aborting it, sk notifies
the load balancer. Upon receiving the notification of termination from sk, the
load balancer removes Ti from s[k].

A key difference between static and dynamic load balancing is that the for-
mer will only be effective if transactions are pre-processed in a way that resem-
bles the real execution. For example, assume that a static assignment considers
that all transactions are uniformly distributed over a period of time, but in re-
ality some transaction types only occur in the first half of the period and the
other types in the second half. Obviously, this is not an issue with dynamic load
balancing.

Another aspect that distinguishes static and dynamic load balancing is mem-
bership changes, that is, a new replica joins the system or an existent one leaves
the system (e.g., due to a crash). Membership changes invalidate the assign-
ments of transactions to database sites. Until MCF and MPF are updated with
the current membership, no transaction will be assigned to a new replica joining
the system, for example. Therefore, with static load balancing, the assignment
of preferred replicas has to be recalculated whenever the membership changes.
Notice that adapting to a new membership is done for performance, and not con-
sistency, since the certification test of the vDBSM does not rely on transaction
assignment information to ensure one-copy serializability; the consistency of the
system is always guaranteed, even though out of date transaction assignment

41 5.3 Analysis of the Benchmarks

information is used.
Adjusting MCF and MPF to a new system membership using a dynamic load

balancer is straightforward: as soon as the new membership is known by the
load balancer, it can update the number of replicas in either MCF or MPF and
start assigning transactions correctly. With static load balancing, a new mem-
bership requires executing MCF or MPF again for the complete workload, which
may take some time. To speed up the calculation, transaction assignments for
configurations with different number of “virtual replicas” can be done offline.
Therefore, if one replica fails, the system switches to a pre-calculated assign-
ment with one replica less. Only the mapping between virtual replicas to real
ones has to be done online.

We use a static load balancer to analyze the example workloads (see Sec-
tion 5.3), and a dynamic load balancer in the prototype evaluation (Section 5.4).

5.3 Analysis of the Benchmarks

We are interested in the effects of our conflict-aware load-balancing algorithms
when applied to different workloads. In the following sections we first demon-
strate the behavior of the proposed techniques with a simple example workload
and then we provide a more realistic analysis using the TPC-C workload. For il-
lustrative purposes in this section we present only a static analysis of the bench-
marks. We analyze the behavior of our algorithms as if all transaction types
were submitted to the system simultaneously. To keep our characterization sim-
ple, we will assume that the weights associated with the workload represent the
frequency in which transactions of some type may occur in a run of the bench-
mark.

5.3.1 A Simple Example

Consider a workload with 10 transactions, T1, T2, ..., T10, running in a system
with 4 replicas. Transactions with odd index conflict with transactions with
odd index; transactions with even index conflict with transactions with even
index. Each transaction Ti has weight w(Ti) = i. All transactions are submitted
concurrently to the system and the load balancer processes them in decreasing
order of weight.

MCF will assign transactions T10, T8, T6, T4, and T2 to s1; T9, T7, T5, T3, and T1

to s2; and no transactions to s3 and s4. MPF 1 will assign T10, T3, and T2 to s1;

42 5.3 Analysis of the Benchmarks

T9, T4, and T1 to s2; T8 and T5 to s3; and T7 and T6 to s4. MPF 0.8 will assign
T10, T4, and T2 to s1; T9 and T3 to s2; T8 and T6 to s3; and T7, T5, and T1 to s4.

MPF 1 creates a balanced assignment of transactions. The resulting scheme is
such that w(s1) = 15, w(s2) = 14, w(s3) = 13, and w(s4) = 13. Conflicting trans-
actions are assigned to all database sites however. MCF completely concentrates
conflicting transactions on distinct replicas, s1 and s2, but the aggregated weight
distribution is poor: w(s1) = 30, w(s2) = 25, w(s3) = 0, and w(s4) = 0, that is,
two replicas are idle. MPF 0.8 is a compromise between the previous schemes.
Even transactions are assigned to s1 and s3, and odd transactions to s2 and s4.
The aggregated weight is fairly balanced: w(s1) = 16, w(s2) = 12, w(s3) = 14,
and w(s4) = 13.

5.3.2 Scheduling TPC-C
To analyze TPC-C, we studied the load distribution over the database sites and
the number of conflicting transactions executing on different replicas. To mea-
sure the load, we use the aggregated weight of all transactions assigned to each
replica. To measure the conflicts, we use the overlapping ratio OR(si, s j) between
database sites si and s j, defined as the ratio between the aggregated weight of
update transactions assigned to si that conflict with update transactions assigned
to s j, and the aggregated weight of all update transactions assigned to si. For
example, consider that T1, T2, and T3 are assigned to si, and T4, T5, T6, and T7

are assigned to s j. T1 conflicts with T4, and T2 conflicts with T6. Then the over-
lapping ratio for these replicas is calculated as follows:

OR(si, s j) =
w(T1) +w(T2)

w(T1) +w(T2) +w(T3)
,

OR(s j, si) =
w(T4) +w(T6)

w(T4) +w(T5) +w(T6) +w(T7)
.

Notice that since our analysis here is static, the overlapping ratio gives a
measure of “potential aborts”; real aborts will only happen if conflicting trans-
actions are executed concurrently on different replicas. Clearly, a high risk of
abort translates into more real aborts during the execution.

For the analysis we have considered 4 warehouses (i.e., #WH = 4) and 8
database replicas, resulting in total of 2244 transactions. The order in which
transactions are considered by the load balancer matters to the final distribu-
tion obtained. Evaluating all possible permutations would take exponential time
(with the input size). Instead the load balancer processes the requests sequen-

43 5.3 Analysis of the Benchmarks

tially in some random order. The results shown correspond to the lowest over-
lapping rates found after executing each algorithm with 1000 different inputs.1

We compared the behavior of MCF and MPF, with various f , with a random as-
signment of transactions to replicas (dubbed Random). The random assignment
is what we would expect when no policy is used to schedule transactions. In
such a case, transactions would be randomly assigned to database replicas. The
results are presented in Figures 5.1 – 5.6.

1
2

3
4

5
6

7
8

1

2

3

4

5

6

7

8

0

20

40

60

80

100

Replicas

Random

Replicas

O
v

e
rl

a
p

p
in

g
 R

a
te

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Random

L
o
a
d
(%
)

Replicas

(a) (b)

Figure 5.1. Random: overlapping rate and load distribution over the replicas

1
2

3
4

5
6

7
8

1

2

3

4

5

6

7

8

0

20

40

60

80

100

Replicas

MCF

Replicas

O
v

e
rl

a
p

p
in

g
 R

a
te

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

MCF

L
o
a
d
(%
)

Replicas

(a) (b)

Figure 5.2. MCF: overlapping rate and load distribution over the replicas
1We have also run longer analysis based on 200 000 executions, but found that the improve-

ment in overlapping rates is less that 1% with respect to the best result found with 1000 inputs.

44 5.3 Analysis of the Benchmarks

A random assignment of transactions to replicas results in a very high over-
lapping ratio although the load is distributed over all the replicas (Fig. 5.1). As
expected, MCF (see Fig. 5.2) minimizes significantly the number of conflicts,
but update transactions are distributed over 4 replicas only; the other 4 replicas
execute just read-only transactions. This is a consequence of TPC-C and the 4
warehouses considered. Even if more replicas were available, MCF would still
strive to minimize the overlapping ratio, assigning update transactions to only 4
replicas.

1
2

3
4

5
6

7
8

1

2

3

4

5

6

7

8

0

20

40

60

80

100

Replicas

MPF 1

Replicas

O
v

e
rl

a
p

p
in

g
 R

a
te

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

MPF 1

L
o

a
d

(%
)

Replicas

Figure 5.3. MPF 1: overlapping rate and load distribution over the replicas

1
2

3
4

5
6

7
8

1

2

3

4

5

6

7

8

0

20

40

60

80

100

Replicas

MPF 0.1

Replicas

O
v

e
rl

a
p

p
in

g
 R

a
te

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

MPF 0.1

L
o

a
d

(%
)

Replicas

Figure 5.4. MPF 0.1: overlapping rate and load distribution over the replicas

While MPF 1 (see Fig. 5.3) distributes the load equitably over the replicas,
similarly to Random, it has a very high overlapping ratio. A compromise between
maximizing parallelism and minimizing conflicts can be achieved by varying the
f factor of the MPF algorithm. Figures 5.4, 5.5 and 5.6 present the results

45 5.3 Analysis of the Benchmarks

obtained with MPF 0.1, MPF 0.5 and MPF 0.8. MPF 0.1 allows up to 90% of
load difference between the replicas, but, giving more importance to conflicts,
results in much lower overlapping ratio than MPF 1 and Random. With f =
0.5 and f = 0.8 more significance is given to parallelism and thus the load
among the replicas is distributed better but also the overlap is higher. MPF with
different f allows to trade even load distribution for low transaction aborts.
Finally, notice that TPC-C transactions have very sparse data access pattern (i.e.,
no “hot-spots”) and a small database schema. The benchmark was conceived to
avoid a “perfect distribution of transactions” (i.e., no conflicts and perfect load
balance).

1
2

3
4

5
6

7
8

1

2

3

4

5

6

7

8

0

20

40

60

80

100

Replicas

MPF 0.5

Replicas

O
v

e
rl

a
p

p
in

g
 R

a
te

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

MPF 0.5

L
o

a
d

(%
)

Replicas

Figure 5.5. MPF 0.5: overlapping rate and load distribution over the replicas

1
2

3
4

5
6

7
8

1

2

3

4

5

6

7

8

0

20

40

60

80

100

Replicas

MPF 0.8

Replicas

O
v
e
rl

a
p

p
in

g
 R

a
te

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

MPF 0.8

L
o

a
d

(%
)

Replicas

Figure 5.6. MPF 0.8: overlapping rate and load distribution over the replicas

46 5.4 Evaluation

cust-JDBC

APPLICATION

cust-JDBC

APPLICATION

cust-JDBC

APPLICATION

Load Balancer

REPLICATION

MODULE

JDBC ABcast

REPLICATION

MODULE

JDBC ABcast

REPLICATION

MODULE

JDBC ABcast

DBMS DBMS DBMS

R
e
p

li
c
a
ti

o
n

 m
id

d
le

w
a
re

2PL2PL 2PL

1SR

Figure 5.7. Prototype architecture

5.4 Evaluation

In order to evaluate the effects of the proposed conflict-aware load-balancing
techniques on the performance of the replicated compound, we have built a
prototype of the vDBSM and implemented MCF and MPF on top of it. This
section describes the prototype developed and presents the experimental results
obtained in a cluster of database sites running the TPC-C benchmark.

5.4.1 Prototype Overview

The prototype of the vDBSM has been implemented entirely in Java v.1.5.0
(Fig. 5.7). Client applications interact with the replicated compound by sub-
mitting SQL statements through a customized JDBC-like interface. Application
requests are sent to the load balancer and then re-directed to a database site. A
replication module at each site is responsible for executing transactions against
the local database, and certifying and applying them in case of commit. Ev-
ery transaction received by the replication module is submitted to the database
through the standard JDBC interface. The communication between clients, repli-
cas and the load balancer uses Unix sockets. Update transactions are broadcast
to all replicas using a communication library implementing the Paxos algorithm
[The DaisyLib/Fractal project, 2007].

On delivery, transactions are enqueued for certification. While transactions
execute concurrently in the database, their certification and possible commit-

47 5.4 Evaluation

ment are sequential. The current versions of the data items are kept in main
memory to speed up the certification process; however, for persistency, every
row in the database is extended with a version number. If a transaction passes
the certification test, its updates are applied to the database and the versions
of the data items written are incremented both in the database, as part of the
committing transaction, and in main memory. We group the updates of several
remote transactions into a single transaction in order to reduce the number of
disk writes.

To ensure that all replicas commit transactions in the same order, before
applying Ti ’s updates, the database site aborts every locally executing conflicting
transaction T j. To see why this is done, assume that Ti and T j write the same
data item dx , each one executes on different replicas si and s j, respectively. Ti is
delivered first, and both transactions pass the certification test. T j already has
a lock on dx at replica s j, where it executed, but Ti should update dx first. We
ensure correct commit order by aborting T j at s j and re-executing its updates
later. If T j keeps a read lock on dx , it is a doomed transaction, and in any case it
would be aborted by the certification test later.

The assignment of submitted transactions to database sites is computed on-
the-fly based on currently executing transactions at the replicas. The load bal-
ancer keeps track of each transaction’s execution and completion status at the
replicas. No additional information exchange is needed for locally executing
transactions. For better load estimation, the replication modules periodically in-
form the load balancer about the remote updates waiting to be applied at the
replicas. Our load balancer is lightweight: CPU usage at the load balancer is less
than 4% throughout all experiments.

5.4.2 Experimental Setup

The experiments were run in a cluster of Apple Xservers equipped with a dual
2.3 GHz PowerPC G5 (64-bit) processor, 2GB DDR SDRAM, and an 80GB 7200
rpm disk drive. Each server runs Mac OS X Server v.10.4.11. The servers are
connected through a switched 1Gbps Ethernet LAN. We used MySQL v. 5.0.67
with InnoDB storage engine as our database server. The isolation level was set
to serializable throughout all experiments.

Each server stores a TPC-C database, populated with data for 8 warehouses.
In all experiments clients submit transactions as soon as the response of the
previously issued transaction is received (i.e., we do not use TPC-C think times).
Besides Random and MCF, we also report results of MPF with f values ranging
from 0.1 to 1. We measure throughput in terms of the number of committed

48 5.4 Evaluation

transactions per minute (tpm). The response time reported represents the mean
response time of committed transactions in milliseconds (msec). We further
assume that all transactions in the workload have the same weight.2

5.4.3 Throughput and Response Time

We initially studied the effects of our techniques under various load conditions.
Figure 5.8 shows the achieved throughput and response time of committed
transactions on a system with 4 and 8 database replicas. MCF, which primar-
ily takes conflicts into consideration, suffers from poor load distribution over the
replicas and fails to improve the throughput. Even though the aborts due to lack
of synchronization are reduced significantly, the response time grows fast. Re-
sponse time increases as a consequence of all conflicting transactions executing
on the same replica and competing for the locks on the same data items.

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

3000

3500

Load (number of concurrent clients)

T
h

ro
u

g
h

p
u

t
(t

p
m

)

4 replicas

Random

MCF

MPF 1

MPF 0.8

MPF 0.5

MPF 0.1

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

1600

1800

2000

4 replicas

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

e
c

)

Load (number of concurrent clients)

Random

MCF

MPF 1

MPF 0.8

MPF 0.5

MPF 0.1

(a) (b)

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

3000

3500

8 replicas

T
h

ro
u

g
h

p
u

t
(t

p
m

)

Load (number of concurrent clients)

Random

MCF

MPF 1

MPF 0.8

MPF 0.5

MPF 0.1

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

1600

1800

2000

8 replicas

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
e
c
)

Load (number of concurrent clients)

Random

MCF

MPF 1

MPF 0.8

MPF 0.5

MPF 0.1

(c) (d)

Figure 5.8. vDBSM: Throughput and response time

2A more realistic estimation of weight could be the average execution time of transaction.

49 5.4 Evaluation

Prioritizing parallelism (MPF 1) doubles the achieved throughput when com-
pared to Random (Fig. 5.8(a)). Although Random assigns transactions equi-
tably to all replicas, differently from MPF 1, it does not account for the vari-
ous execution times of transactions. Under light loads MPF 1 and the hybrid
load-balancing techniques, MPF 0.1, MPF 0.5 and MPF 0.8, which consider both
conflicts between transactions and the load over the replicas, demonstrate the
same benefits in performance. If the load is low, few transactions will execute
concurrently and minimizing the number of conflicting transactions executing at
distinct replicas becomes less effective. However, once the load is increased, the
hybrid techniques outperform MPF 1. The same conclusions hold for both ex-
perimental setups, i.e., the systems with 4 (Fig. 5.8(a)(b)) and 8 (Fig. 5.8(c)(d))
database replicas.

To better understand the effects of the load difference allowed among the
replicas we have varied the factor f from 0 to 1. The results obtained are de-
picted in Figure 5.9. Each curve corresponds to a different number of concur-
rently executing clients.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

500

1000

1500

2000

2500

3000

3500

4 replicas

T
h

ro
u

g
h

p
u

t
(t

p
m

)

f

4

10

20

30

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

4 replicas

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

e
c

)

f

4

10

20

30

40

(a) (b)

Figure 5.9. MPF, the effects of the parameter f

It appears that choosing the parameter f is not a trivial task. Except for
f = 0, the response time of the transactions is nearly the same for all f values,
slightly growing with the increasing load (Fig. 5.9(b)). Under the given experi-
mental setup the higher throughput is achieved with MPF where f values range
from 0.2 to 0.5 (Fig. 5.9(a)), that is, the TPC-C workload benefits more from
the conflict-aware load-balancing techniques when more importance is given to
conflicts than load distribution.

We then considered how the proposed algorithms react to a varying number
of replicas. Notice that adding new replicas in an update intensive environment

50 5.4 Evaluation

(92% af all transactions in TPC-C are updates) will improve the availability of
the system but may not increase its performance. In the vDBSM, transactions
are executed and broadcast by one database site, then delivered, validated, and
applied by all replicas. More replicas may help spreading the load of executing
transactions, but in any case, their updates will be processed at every database
site. Moreover, in some techniques adding more replicas increases the chance
that conflicting transactions are executed on distinct replicas, consequently caus-
ing more aborts.

For the following experiments, we kept the load constant at 10 concurrently-
executing clients while increasing the number of replicas from 2 to 10. Fig-
ure 5.10 shows that the effects of our load-balancing algorithms are sustainable.
In fact, Random benefits from an increasing number of replicas. However nei-
ther Random nor MCF reach the performance of MPF, which behave similarly for
all configurations considered. From these experiments, it turns out that increas-
ing the availability of the system with MPF can be achieved without performance
penalties.

2 4 6 8 10
0

500

1000

1500

2000

2500

3000

3500

4000

vDBSM

T
h

ro
u

g
h

p
u

t
(t

p
m

)

Replicas

Random

MCF

MPF 1

MPF 0.8

MPF 0.5

MPF 0.1

2 4 6 8 10
50

100

150

200

250

300

350

400

450

500

vDBSM

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
e
c
)

Replicas

Random

MCF

MPF 1

MPF 0.8

MPF 0.5

MPF 0.1

(a) (b)

Figure 5.10. vDBSM, varied number of replicas: Throughput and response time

5.4.4 Abort Rate Breakdown

To analyze the effects of conflict-awareness we present a breakdown of abort
rate. There are four main reasons for a transaction to abort: (i) it fails the
certification test, (ii) it holds locks that conflict with a committing transaction
(see Section 5.4.1), (iii) it times out after waiting for too long to obtain a lock,
and (iv) it is aborted by the database engine to resolve a deadlock. Notice that

51 5.4 Evaluation

aborts due to conflicts are similar in nature to certification aborts, in that they
both happen due to the lack of synchronization between transactions during the
execution. Thus, a transaction will never be involved in aborts of type (i) or (ii)
due to another transaction executing on the same replica.

Random MCF MPF 1 MPF 0.8 MPF 0.5 MPF 0.1
0

10

20

30

40

50

60

70

80

90

100

4 replicas

A
b

o
rt

 r
a
te

 (
%

)

Certification

Deadlocks

Timeouts

Conflicts

10

30

40

20

4

4

10

20

30

40

40

30

20

10
4 4

10

4 4
10

40

30

20

10

20

30

40 40

20
30

(a)

Random MCF MPF 1 MPF 0.8 MPF 0.5 MPF 0.1
0

10

20

30

40

50

60

70

80

90

100

8 replicas

A
b

o
rt

 r
a
te

 (
%

)

Certification

Deadlocks

Timeouts

Conflicts

4

4

4

10

10

10

20

20
20

30

30

40

40

40
30

20

4
10

40
30

20
30

40

104

40
30

20
104

(b)

Figure 5.11. Abort rates, 4 and 8 replicas

Figure 5.11 shows the abort rate breakdown for each of the techniques run
on the system with 4 and 8 replicas; each vertical bar per technique represents
different submitted load. Random and MPF 1 lead to aborts mainly due to con-
flicts and certification, whereas aborts in MCF are primarily caused by timeouts.
Due to better precision in load balancing and conflict-awareness, MPF 1 also re-
sults in lower abort rates when compared to Random. MCF successfully reduces
the number of aborts due to lack of synchronization. However, increasing the

52 5.5 Related Work and Final Remarks

load results in many timeouts caused by conflicting transactions competing for
locks. A hybrid approach, which tries to account for both conflicts and load,
is able to reduce the number of aborts significantly. In particular, MPF 0.5 de-
creases the abort rate from ≈ 40% to ≈ 11% (data corresponds to 10 clients and
4 replicas setup).

5.5 Related Work and Final Remarks

We focus on related work in the area of database replication where some form
of load balancing techniques are used.

In [Milán-Franco et al., 2004] the authors introduce a two-level dynamic
adaptation technique for replicated databases. At the local level the algorithms
strive to maximize performance of each individual replica by taking into account
the load and the replica’s throughput to find the optimum number of transac-
tions that are allowed to run concurrently. At the global level the system tries to
distribute the load over all the replicas considering the number of active trans-
actions and their execution times. Differently from our approach, this work does
not consider transaction conflicts for load balancing.

Elnikety et al. [2007] propose a load balancing technique that takes into ac-
count transactions memory usage. Transactions are assigned to replicas in such
a way that memory contention is reduced. To lower the overhead of updates
propagation in a replicated system, the authors also present a complementary
optimization called update filtering. Replicas only apply the updates that are
needed to serve the workload submitted, i.e., transaction groups are partitioned
across replicas. Differently from ours, the load balancer in [Elnikety et al., 2007]
doesn’t consider conflicts among transactions. Further, if workload characteris-
tics change, the assignment of transaction groups to replicas requires complex
reconfiguration, which is limited if update filtering is used. On the contrary, our
load-balancing decisions are made per transaction.

Clustered JDBC (C-JDBC) [Cecchet et al., 2004] uses round-robin, or weighted
round-robin or least pending requests first for transactions scheduling to the
database replicas. Similarly, the Ganymed scheduler [Plattner and Alonso, 2004]
assigns read-only transactions to the slave replicas according to least-pending-
requests-first rule. However, none of these approaches exploit transaction con-
flicts information.

A thorough study of load balancing and scheduling strategies is performed
in [Amza et al., 2005]. Conflict-aware scheduling [Amza et al., 2003] is the
winning technique of all considered. The scheduler is extended to include con-

53 5.5 Related Work and Final Remarks

flict awareness in the sense that requests are scheduled to replicas that are up-
to-date. Unlike in our load balancing techniques, conflict awareness is at a
coarse granularity, i.e., table. Further, if the scheduler fails, the system needs
to deal with a complicated recovery procedure to continue functioning cor-
rectly; whereas in our approach the load balancer is independent of the sys-
tem’s correctness—even if the load-balancer fails, transactions can execute at
any replica without hampering consistency.

In summary, to keep low abort rate despite the coarse granularity of non-
intrusive replication protocols, we introduced conflict-aware load-balancing tech-
niques. The proposed algorithms attempt to reduce the number of conflicting
transactions executing on distinct database sites and seek to increase the paral-
lelism among replicas. MCF concentrates conflicting transactions on a few repli-
cas reducing the abort rate, but leaves many replicas idle and overloads others;
MPF with the sole goal of maximizing parallelism distributes the load over the
replicas, but ignores conflicts among transactions. A hybrid approach, combin-
ing MCF and MPF, allows database administrators to trade even load distribution
for low transaction aborts in order to increase throughput with no degradation
in response time.

54 5.5 Related Work and Final Remarks

Chapter 6

The Cost of Correctness Criteria for
Non-Intrusive Database Replication

Just like kernel-based protocols, non-intrusive database replication solutions can
implement a large variety of consistency criteria, ensuring different degrees of
guarantees to the system’s clients. A classic example of consistency criterion in
replicated systems is one-copy serializability [Bernstein et al., 1987].

It has been generally believed that additional constraints on correctness de-
grades the performance of a replicated system. To verify this statement, in this
chapter we investigate the performance cost of implementing different consis-
tency degrees in middleware protocols. In the following sections we analyze
correctness criteria for replicated databases from the client’s perspective and
present a uniform characterization of them. We further study the effects of dif-
ferent consistency criteria in the context of three replication protocols, each rep-
resenting a different protocol class. The first protocol we consider falls into the
primary-backup replication category; the other two protocols belong to the up-
date everywhere replication class, however they differ in the execution mode:
one executes transactions optimistically, the other, conservatively.

The conservative protocol, named BaseCON, is a simple yet fault-tolerant
middleware-based replication protocol that takes advantage of workload char-
acterization techniques to increase the parallelism in the system. We present
three variants of BaseCON, one for each correctness criterion discussed, and
analyze their behavior in case of failures and false suspicions.

55

56 6.1 Correctness Criteria

6.1 Correctness Criteria

A great number of replication protocols proposed (e.g., Amir and Tutu [2002];
Patiño-Martínez et al. [2000, 2005]; Pedone and Frølund [2008]; Pedone et al.
[1998, 2003]; Rodrigues et al. [2002]) guarantee one-copy serializability [Bern-
stein et al., 1987]. Informally, 1SR requires the execution of concurrent trans-
actions on different replicas to appear as if transactions were executed in some
sequential order on a single replica. 1SR does not necessarily preserve the order
in which transactions are submitted to the system. It allows the situation where
transaction T j may not see the effects of Ti, even though Ti commits before T j

started executing. Although some applications can accept this for performance,
in most cases transactions expect to read the updates of preceded transactions.
For example, the effects of an update transaction should be seen by a successive
read-only transaction issued by the same client. In practice, transactions of the
same client are executed within a session. Thus, at least transactions issued in
one session should see the effects of each other.

In order to capture this additional requirement, session consistency (SC) was
introduced [Daudjee and Salem, 2004].

Definition 3. History H is session consistent iff there is some serial history Hs such
that (a) H ≡ Hs (i.e., H is 1SR) and (b) for any two transactions Ti and T j that
belong to the same session, if the commit of Ti precedes the submission of T j in real
time, then Ti commits before T j is started in Hs.

SC is stronger than one-copy serializability: it preserves the real-time order-
ing of transactions submitted in the same session only; as a consequence, clients
always read their own updates.

Consider the following example. Two clients share the same account on a
flight reservation system. The first clients reserves a flight and tells the other
to check it. The second client connects to the system, but he does not find the
reservation. Such situation is allowed by SC since only transactions within the
same session, i.e., submitted by the same client, must maintain the real-time
order.

Thus, even stronger properties must be defined if we require that all trans-
actions in the workload preserve the real-time order, i.e., any transaction reads
updates of previously committed transactions. Such real-time ordering of trans-
actions is captured by strong serializability (strong 1SR) introduced in [Sethi,
1982].

Definition 4. History H is strongly serializable iff there is some serial history Hs

such that (a) H ≡ Hs and (b) for any two transactions Ti and T j, if the commit of

57 6.2 Replication Protocols

Ti precedes the submission of T j in real time, then Ti commits before T j is started
in Hs.

Both session consistency and strong serializability strengthen the original
correctness criterion by restricting what transactions are allowed to read. Thus,
the notion of these stronger properties is valid regardless of how the original cor-
rectness criterion handles the execution of transactions. SC and strong 1SR are
not fundamentally related to 1SR and they could be applied to other correctness
criteria such as snapshot isolation [Berenson et al., 1995].

6.2 Replication Protocols

In this section we first present our classification of the replication protocols and
then discuss how each of the correctness criteria can be achieved in the repre-
sentative solution of each protocol class.

There have been several attempts to classify the existing replication approaches
(e.g., [Gray et al., 1996; Wiesmann et al., 2000a,b]). Gray et al. [1996] group
database replication protocols according to where transaction updates take place
and when updates are applied to other database replicas. We limit the protocols
considered to group communication-based replication and focus on the first pa-
rameter protocols, i.e., primary-backup and update everywhere replication. Up-
date everywhere approaches can further differ in transaction’s execution mode:
transactions can be executed conservatively (pessimistically) or optimistically.
In what follows we discuss each of the protocol classes.

6.2.1 Primary-Backup Replication

Primary-backup replication requires all update transactions to be submitted to
the same dedicated database site, the primary replica. The requests are executed
at the primary and only the updates are sent to the backups. Because there is
only one replica executing the transactions, there are no conflicts across the
database site. The local concurrency control mechanism of the primary replica
determines the serialization order of update transactions and the communica-
tion between the primary and the backups must guarantee that updates are
processed in the same order at all replicas.

As a representative example of primary-backup replication we have chosen
the Pronto replication protocol [Pedone and Frølund, 2008]. In a nutshell the
protocol works as follows. Clients submit update transactions to the primary

58 6.2 Replication Protocols

replica. Once the request is executed and ready to commit, the primary broad-
casts update SQL statements to all backups. To ensure consistency despite multi-
ple primaries resulting from incorrect failure suspicions, a total-order broadcast
is used to propagate updates. Upon delivery of updates each site executes a de-
terministic validation test. The validation test ensures that only one primary can
successfully execute a transaction. If the replica decides to commit the transac-
tion, the update statements are applied to the database. The response is given to
the client as soon as any replica commits the transaction. Read-only transactions
are submitted and executed at random replica.

The original Pronto protocol guarantees one-copy serializability. The easiest
way to provide session consistency in Pronto is to require clients to submit their
read-only transactions to the replica which was the first to commit the previous
transaction of the same client. To guarantee strong serializability the protocol
needs to ensure that the effects of committed transactions are visible to all fol-
lowing transactions. To provide this in Pronto, read-only transactions are total-
order broadcast to all replicas. However, there is no need to require all replicas
to execute the query: one randomly chosen replica executes the transaction and
replies to the client.

6.2.2 Optimistic Update Everywhere Replication

The main difference between primary-backup and update everywhere replica-
tion is that in the update everywhere approach any replica can execute any
transaction. However, it is more difficult to achieve data consistency than in
primary approaches. In update everywhere approach conflicting update trans-
actions can run concurrently on distinct database sites, and thus, an additional
synchronization phase between database sites is required to provide correctness.

In optimistic protocols each transaction is first executed locally at some data-
base site. At commit time update transactions are total-order broadcast to all
replicas. An update transaction is allowed to commit only if there were no con-
flicting transactions executing concurrently at remote database sites. To ensure
that all replicas agree on the same outcome of the transaction a final validation
or voting phase is executed.

An instance of optimistic update everywhere replication is the Multiversion
Database State Machine replication protocol (see Chapter 3). The vDBSM pro-
tocol guarantees one-copy serializability. Session consistency can be trivially
attained enforcing that the client always contacts the same replica for executing
its transactions. As in Pronto strong serializability is ensured if read-only trans-
actions are total-order broadcast to all replicas. The delivery of such a transac-

59 6.3 BaseCON

tion is ignored by all but one replica: the read-only transaction is executed at a
selected database site.

6.2.3 Pessimistic Update Everywhere Replication

In conservative protocols an a priori coordination among the replicas ensures
that during transaction execution there are no concurrent conflicting requests
being executed at the distinct replicas and therefore transaction’s success de-
pends entirely on the local database engine. Throughout the transaction execu-
tion there is no synchronization between replicas.

BaseCON is a simple update everywhere replication protocol that executes
transactions conservatively. We discuss the protocol in detail and show how
BaseCON achieves each of the discussed correctness criteria in the following
section.

6.3 BaseCON

BaseCON is a conservative replication protocol which takes advantage of total-
order broadcast primitives to provide strong consistency and fault-tolerance.
False suspicions are tolerated and never lead to incorrect behavior. In this sec-
tion we first describe the behavior of the algorithm that guarantees 1SR in a
failure-free scenario and in case of failures; then we discuss two BaseCON vari-
ants, each of which ensures different consistency guarantees: SC and strong
1SR. Correctness proofs of all BaseCON variants can be found in Section 6.3.4.

6.3.1 One-Copy Serializability

BaseCON assumes a lightweight scheduler interposed between the clients and
the cluster of database sites. Such scheduler serves as a load-balancer for read-
only transactions and implements different consistency properties. The main
challenge is to guarantee that despite failures and false suspicions of the sched-
uler, the required consistency degree is still provided.

Algorithm 1 presents the complete BaseCON when no failures or false sus-
picions occur. The algorithm is composed of five concurrent tasks and several
instances of executeTask. A new instance of executeTask is created for each
update or read-only transaction. Each line of the algorithm is executed atomi-
cally.

60 6.3 BaseCON

Algorithm 1 The BaseCON Algorithm: 1SR
1: Client ck:

2: if T.isReadOnl y
3: send(READONLY, T) to Dk

4: else
5: to_broadcast(T)

6: Scheduler Dk:

7: ∀Sk ∈ S : Load[Sk]← 0
8: p← 0
9: upon receive(READONLY, T) {T1}

10: if p = Dk

11: Smin
k ← min(Load[Sk], Sk ∈ S)

12: Load[Smin
k]← Load[Smin

k] + T.weight

13: T.repId ← Smin
k

14: send(READONLY, T) to Smin
k

15: else
16: send(READONLY, T) to p

17: upon to_deliver(T) {T2}
18: if p = Dk

19: ∀Sk ∈ S : Load[Sk]← Load[Sk] + T.weight

20: upon receive(RESULT, T) {T3}
21: if p = Dk

22: Load[T.repId]← Load[T.repId]− T.weight
23: if T.repId is the first replica to execute T
24: send(RESULT, T.resul t) to ck

25: Replica Sk:

26: t xnQ← ε
27: p← 0
28: function conflict(T , T ′)
29: return T.rs ∩ T ′.ws 6= ;
30: upon to_deliver(T) {T4}
31: T.repId ← Sk

32: prT xn← t xnQ
33: enqueue(t xnQ, T)
34: fork task executeTask(T, prT xn)

35: upon receive(READONLY, T) {T5}
36: fork task executeTask(T,;)
37: task executeTask(T, t xnSet)
38: if T.isReadOnl y
39: submit(T)
40: T.resul t ← commit(T)
41: else
42: wait until 6 ∃T ′ ∈ t xnSet : conflict (T, T ′)∧ T ′ ∈ t xnQ
43: submit(T)
44: wait until T = head(t xnQ)
45: T.resul t ← commit(T)
46: dequeue(t xnQ, T)
47: send(RESULT, T) to p

61 6.3 BaseCON

Clients. Transactions are issued by one or more concurrent clients. Read-
only transactions are sent only to the scheduler Dk(line 3). Update transactions
are total-order broadcast to all database replicas and the scheduler (line 5).

Replicas. The algorithm uses two global variables shared among all the
tasks at each replica: a queue of update transactions to be executed, t xnQ, and
an identifier of the scheduler, p. Access to these variables is mutually exclu-
sive. Upon delivery of an update transaction the database site enqueues the
transaction (line 33) and creates a new instance of executeTask to process the
transaction (line 34). Similarly, a new executeTask is created once a read-only
transaction is received (lines 35-36). Different instances of executeTask can
execute concurrently as long as the t xnQ data structure is thread-safe. If a
transaction is read-only, it can be submitted to the database for execution and
committed straightaway (lines 39-40). If a transaction is an update, the site
checks whether there are any conflicts with previously received but not yet com-
pleted transactions (stored in t xnSet). If there are no conflicts, the transaction
is submitted to the database (line 43); if there are some conflicts, the transac-
tion has to wait until conflicting transactions commit (lines 42). To ensure that
all replicas converge to the same database state, conflicting update transactions
must commit in the order they were delivered.

However, if non-conflicting update transactions can commit in different or-
ders at the replicas and read-only transactions are allowed to execute at any
database site, serializability guarantees may be violated. Consider four transac-
tions: T1:w1[x], T2:w2[y], T3:r3[x], r3[y] and T4:r4[y], r4[x]. Since T1 and T2

do not conflict they can execute and commit at database sites in different orders.
Let’s assume that T1 commits at S1 and T2 commits at S2 first. Transaction T3 is
scheduled for execution at S1 and T4 at S2; then S1 commits T2 and S2 commits
T1. As a consequence, transaction T3 sees the updates of T1, but not those of
T2, while T4 sees the updates performed by T2 but not by T1, and thus, violates
serializability. To avoid situations like this, we require all update transactions to
commit in their delivery order. Therefore, a commit is sent to the database site
only after the update transaction has reached the head of t xnQ, i.e., all previ-
ously delivered update transactions have completed already (lines 44-45). As
soon as the transaction commits, the result is communicated to the scheduler
(line 47).

Scheduler. We consider a primary-backup model to tolerate scheduler fail-
ures. There is only one scheduler at a time serving transactions, the primary.
If the primary scheduler fails or is suspected to have failed, a backup scheduler
takes over. Since our scheduler is lightweight, any replica can play the role of a
backup scheduler.

62 6.3 BaseCON

To ensure 1SR the scheduler can forward read-only transaction to any replica,
however, in order to balance the load we send the transaction to the least-loaded
replica. Any load balancing strategy can be applied. The scheduler maintains
current load information about each database site in Load[]. Upon delivery of
an update transaction at the primary scheduler the load over all sites is increased
by the weight of the transaction (line 19). Once a read-only transaction is re-
ceived by the primary scheduler, it is redirected to the replica with the lowest
aggregated weight (lines 9-14). The result of the transaction is communicated
to the client as soon as the corresponding response for the read-only transaction
is received; or the first response of the update transaction is received from any
replica (lines 23-24). Load information is updated with every reply from the
database sites (line 22).

Dealing with failures. If a replica suspects the scheduler has failed (see
Algorithm 2), a special NEWSCHEDULER message is total-order broadcast (lines
8-9). Upon delivery of this message, a new primary scheduler is selected from
the backups (lines 11). If the scheduler was suspected incorrectly, it will also de-
liver the NEWSCHEDULER message and will update its state to a backup scheduler,
thus, will stop serving read-only transactions (line 3). If a read-only transaction
is received, it is immediately forwarded to the primary scheduler. A failover
scheduler does not have any load information on the database sites. There-
fore, replicas respond to the new scheduler with their load estimates required
to handle read-only transactions (lines 12-13). Rarely, but it may happen that
transaction results are lost during scheduler failover. Hence client application
should be ready to resubmit transactions and ensure exactly-once semantics.

Since we do not make any assumptions on how long it takes for messages
to be transmitted and failure detectors can make mistakes, it is possible that
for a certain time period two schedulers may be able to process transactions
simultaneously. Such scenario is depicted in Fig. 6.1. Client c1 submits an up-
date transaction T1 which is total-order broadcast to all members of the system.
Database site s1 executes transaction T1 and forwards the result to the scheduler
p1. Since it is the first reply for this transaction, the result is communicated to
the client. Shortly after that, database site s2 suspects the primary scheduler p1

to have failed and broadcasts a NEWSCHEDULER message. Upon delivery of this
message both database sites send their load information to the newly selected
primary scheduler p2. Database site s2 executes transaction T1 and since it has
already delivered NEWSCHEDULER message, the result of T1 is forwarded to the
scheduler p2. The old scheduler was suspected incorrectly: it is still fully func-
tional, but since it hasn’t yet delivered a scheduler change message it is unaware
of the presence of the new scheduler. Consequently, it is unaware of transaction’s

63 6.3 BaseCON

Algorithm 2 The BaseCON Algorithm: Scheduler failover
1: Scheduler Dk:

2: upon to_deliver(NEWSCHEDULER)
3: p← (p+ 1)mod |D|
4: upon receive(STATE, load, Sk)
5: if p = Dk

6: Load[Sk]← load

7: Replica Sk:

8: upon scheduler suspected
9: to_broadcast(NEWSCHEDULER)

10: upon to_deliver(NEWSCHEDULER)
11: p← (p+ 1)mod |D|
12: load ←

∑

T∈t xnQ T.weight

13: send(STATE, load, Sk) to p

T1 commitment at replica s2. If client c2 submits read-only transaction T2 to the
old scheduler p1, the transaction will be scheduled based on erroneous load in-
formation at the replicas. However, to ensure 1SR read-only transactions can
execute at any replica, thus even if a scheduler makes decisions based on incom-
plete information, the consistency is still guaranteed, and only load-balancing
may be affected. We further discuss the implications of failures on consistency
in the context of SC and strong 1SR.

abcast(T1)

abcast(NewScheduler)

T2

response(T1)c1
c2

s1
s2

p1
p2 T1

T1

state

Figure 6.1. Dealing with failures and false suspicions

We use total-order broadcast primitives to replace the suspected scheduler. It
is not required to ensure consistency. Since update transactions are also totally
ordered, if a scheduler change occurs, all subsequent update transactions will
be processed by the new scheduler, i.e., all replicas will directly contact the new
scheduler with results of processed transactions. If a scheduler change was not
totally ordered with respect to update transactions, different schedulers would

64 6.3 BaseCON

be contacted by different replicas after processing the same update transactions,
and thus, more communication messages might be wasted for the client to re-
ceive the result of its transaction.

6.3.2 Session Consistency

To achieve session consistency the scheduler must forward read-only transac-
tions to the replica which has committed previous update transactions of the
same client.

We have modified BaseCON so that session consistency is ensured. The up-
dated part of the algorithm is presented in Algorithm 3. In addition to the load

Algorithm 3 The BaseCON Algorithm: SC
1: Client ck:

2: if T.isReadOnl y
3: send(READONLY, T , id, rep) to Dk

4: Scheduler Dk:

5: p← 0
6: ∀Sk ∈ S : Load[Sk]← 0, Commit ted[Sk]← 0
7: upon receive(READONLY, T ,id, rep)
8: if p = Dk

9: ∀Sk ∈ S :
10: if id ≤ Commit ted[Sk]
11: I ←I ∪ Sk

12: if I 6= ;
13: Smin

k ← min(Load[Sk], Sk ∈ I)
14: Load[Smin

k]← Load[Smin
k] + T.weight

15: I ← ;
16: T.repId ← Smin

k

17: send(READONLY, T) to Smin
k

18: else
19: send(READONLY, T) to rep
20: else
21: send(READONLY, T) to p

22: upon receive(RESULT, T)
23: if p = Dk

24: Load[T.repId]← Load[T.repId]− T.weight
25: if ¬T.isReadOnl y
26: Commit ted[T.repId]← T.id
27: if T.repId is the first replica to execute T
28: send(RESULT, T.resul t, T.id, T.repId) to ck

65 6.3 BaseCON

information the scheduler also stores the identifier of the last update transac-
tion committed per database site in Commit ted[] (line 6). The identifier of
an update transaction is a unique sequence number that follows the delivery
and consequently the commit order. Since some replicas might have fallen be-
hind with the application of update transactions, for read-only transactions the
scheduler first determines the set of replicas I where previous transactions of
the same client have been completed. From this set the scheduler then selects
the least-loaded replica to execute the read-only transaction (lines 13-17).

To guarantee session consistency in case of false suspicions, when submit-
ting a read-only transaction T the client also sends information about its last
committed update transaction T ′: the identifier id of T ′ and the replica rep
which executed T ′ first (line 3). On receiving T the scheduler checks whether it
has information about T ′’s commitment (line 10). If so, it is safe to schedule T
based on data available at the scheduler; if not, the result of T ′ was given to the
client by a newly introduced primary scheduler. Thus, the scheduler has no other
choice than sending T where T ′ has executed (line 19) — no load-balancing is
performed in this case.

6.3.3 Strong Serializability

To implement strong serializability we must ensure that all transactions see all
updates performed by previously committed transactions. We present BaseCON
that guarantees strong serializability in Algorithm 4.

First let’s see how strong 1SR can be guaranteed in a failure-free environ-
ment. As before, update transactions are total-order broadcast to all replicas.
Since such transactions commit in their delivery order, they always observe the
effects of previously committed transactions. Read-only transactions are sent
to the scheduler (line 4). Upon reception of the transaction the scheduler first
determines the set of replicas where preceding update transactions of any client
have already been executed and committed. Then the scheduler chooses the
least-loaded replica from that set and forwards the transaction for execution
(lines 10-15).

Unfortunately, that is not enough for consistency if failures and false suspi-
cions are tolerated: due to mistakes made by failure detectors two schedulers
may simultaneously schedule read-only transactions. Therefore, to avoid incon-
sistent scheduler decisions, read-only transactions need to be total-order broad-
cast to all replicas as well (line 2). The scheduler still serves as a load-balancer:
read-only transactions are executed at a single database site.

66 6.3 BaseCON

Algorithm 4 The BaseCON Algorithm: strong 1SR
1: Client ck:

2: to_broadcast(T)
3: if T.isReadOnl y
4: send(READONLY, T) to Dk

5: Scheduler Dk:

6: p← 0
7: ∀Sk ∈ S : Load[Sk]← 0, Commit ted[Sk]← 0
8: upon receive(READONLY, T)
9: if p = Dk

10: I ← max(Commit ted[Sk], Sk ∈ S)
11: Smin

k ← min(Load[Sk], Sk ∈ I)
12: Load[Smin

k]← Load[Smin
k] + T.weight

13: T.repId ← Smin
k

14: T.scheduler ← p

15: send(READONLY, T) to Smin
k

16: else
17: send(READONLY, T) to p

18: Replica Sk:

19: t xnQ← ε
20: p← 0
21: upon to_deliver(T)
22: T.repId ← Sk

23: prT xn← t xnQ
24: enqueue(t xnQ, T)
25: if¬T.isReadOnl y
26: fork task executeTask(T, prT xn)

27: task executeTask(T, t xnSet)
28: if T.isReadOnl y
29: submit(T)
30: wait until T ∈ t xnQ :
31: if T.scheduler 6= p
32: rollback(T)
33: submit(T)
34: T.resul t ← commit(T)
35: else
36: wait until 6 ∃T ′ ∈ t xnSet : conflict(T, T ′)∧ T ′ ∈ t xnQ
37: submit(T)
38: wait until T = head(t xnQ)
39: T.resul t ← commit(T)
40: dequeue(t xnQ, T)
41: send(RESULT, T) to p

67 6.3 BaseCON

In order to optimize the response time of read-only transactions in the ab-
sence of failures, we overlap the scheduling and the actual execution of the
transaction with the time it takes for a replica to deliver it. Assuming that it
takes less time to transmit a simple TCP message than an total-order broad-
cast message, when the chosen replica delivers the transaction, its execution has
started already. A transaction can commit only if it passes the validation test at
the time of the delivery. The validation test checks whether the transaction was
executed and delivered during the operation of the same scheduler (line 31).
If there were scheduler changes, the transaction is re-executed (lines 32-33),
otherwise the transaction commits and its result is forwarded to the client (line
41).

6.3.4 Proofs of Correctness

In the following we show that each variant of BaseCON guarantees its corre-
sponding correctness criteria.

Proposition 2. The BaseCON-1SR ensures one-copy serializability

Proof (Sketch). We show that every history H produced by BaseCON-1SR has
an acyclic multiversion serialization graph (MVSG). To prove that MVSG(H) is
acyclic we show that for every edge Ti → T j ∈ MVSG, it follows that
commit(Ti) < commit(T j). In the following we consider each edge type of
MVSG(H).

• Read-from edge. If T j reads data object x from Ti, then Ti → T j ∈ MVSG(H).
We have to show that commit(Ti)< commit(T j).

BaseCON executes conflicting update transactions sequentially. Thus, if
both Ti and T j are update transactions, they will be executed sequentially,
and T j can read the updates of Ti only if Ti has already committed. If T j

is a read-only transaction, due to 2PL, T j can read only committed data.
Thus, commit(Ti)< commit(T j).

• Version order edge.

– If both Ti and T j update x , such that x i � x j, then Ti → T j ∈
MVSG(H).

From the definition of version order we have that x i � x j ⇔
commit(Ti)< commit(T j).

68 6.3 BaseCON

– If Ti reads xk and both Tk and T j write x such that xk � x j, then
Ti → T j ∈ MVSG(H).
For a contradiction, assume commit(T j)< commit(Ti). If Ti is an up-
date transaction, it is total-order broadcast to all database sites. Con-
flicting update transactions execute sequentially in their delivery or-
der in BaseCON, thus if Ti reads xk, then commit(Tk)< commit(Ti).
Ti can read xk only if T j updates x and commits before Tk executes,
i.e., commit(T j) < commit(Tk) and x j � xk. This contradicts that
xk� x j and consequently proves that commit(Ti)< commit(T j).
If Ti is a read-only transaction, it is sent only to the scheduler Dk

and forwarded to the least-loaded database site. Due to 2PL Ti can
only read committed data, thus, commit(Tk) < commit(Ti). The
only way Ti can read xk is if commit(T j) < commit(Tk). But this
contradicts that xk� x j.

Let’s consider the case with scheduler failures. If the scheduler Dk

fails or is suspected to have failed, a special message is total-order
broadcast and a new primary scheduler Dk+1 is selected. We rely on
client applications to resubmit transactions and ensure exactly-once
semantics. Thus, if Dk receives transaction Ti and fails, the client will
resubmit the transaction eventually (e.g., on delivery of the special
NEWSCHEDULER message). If Dk fails after sending Ti to the database
site, the result of the transaction will be forwarded to the newly se-
lected scheduler Dk+1. If Dk fails after receiving the result of Ti but
before sending it to the client, the client application will resubmit the
transaction eventually and ensure exactly-once semantics.

Proposition 3. The BaseCON-SC ensures session consistency.

Proof (Sketch). To prove that every history H produced by BaseCON-SC is session
consistent, we have to show that (a) H is 1SR and that (b) for any two transac-
tions Ti and T j that belong to the same session, if the commit of Ti precedes the
submission of T j in real time, then commit(Ti)< commit(T j).

a) Similarly to BaseCON-1SR (see Proposition 2) BaseCON-SC ensures one-
copy serializability.

b) In the case where both Ti and T j are update transactions, if the client
received a commit for Ti, then all replicas will commit Ti and T j in the

69 6.4 Evaluation

same order (ensured by total-order broadcast primitives): commit(Ti) <
commit(T j).

If T j is a read-only transaction, it is scheduled to the replica which has
already executed Ti. Thus, commit(Ti) < commit(T j). Let’s consider the
case with scheduler failures. The scheduler Dk sends the response of Ti

to the client and fails. The new scheduler Dk+1 receives T j, but has no
information about previous Ti. Since T j carries the information where Ti

has executed, the scheduler forwards transaction to the specified replica.
Hence, commit(Ti)< commit(T j).

Proposition 4. The BaseCON-strong 1SR ensures strong serializability.

Proof (Sketch). We show that (a) every history H produced by BaseCON-strong
1SR is 1SR and (b) for any two transactions Ti and T j, if the commit of Ti

precedes the submission of T j in real time, then commit(Ti)< commit(T j).

a) Analogously to BaseCON-1SR (see Proposition 2) BaseCON-strong 1SR en-
sures one-copy serializability.

b) If both Ti and T j are update transactions and the client receives commit of
Ti, then at all replicas T j will be ordered after Ti by total-order broadcast
and thus, commit(Ti)< commit(T j).

If T j is a read-only transaction the scheduler forwards it for execution to
the replica which has committed Ti already. Let’s consider the situation
where the scheduler was suspected incorrectly and, based on incomplete
state information, schedules T j to the replica where Ti has not been ex-
ecuted. When T j is delivered, the NEWSCHEDULER message must have
been delivered before and thus, T j will fail the validation test and must
be rescheduled. Thus, commit(Ti)< commit(T j) is always enforced.

6.4 Evaluation

In this section we evaluate experimentally the performance of BaseCON under
different correctness criteria and compare it with primary-backup and optimistic
update-everywhere replication solutions.

70 6.4 Evaluation

6.4.1 Experimental Environment

All experiments were run in the same setup as described in Section 5.4.2. We
used a TPC-C database, populated with data for 8 warehouses, resulting in a
database of approximately 800MB in MySQL, that fits in main memory of the
server.

Since providing stronger correctness criterion has greater impact on read-
only transactions, we have increased the percentage of read-only transactions
in the TPC-C workload mix. In particular, we present results for two workloads:
TPC-C 20, which contains only 20% of update transactions; and TPC-C 50, which
represents TPC-C workload with balanced mix of update and read-only transac-
tions. We measure throughput in terms of the number of transactions committed
per minute (tpm). The response time reported represents the mean response
time of committed transactions in milliseconds (msec). Both throughput and
response time are reported separately for update and read-only transactions.

6.4.2 Performance Results

BaseCON

Figures 6.2 and 6.3 show the achieved throughput and response time of read-
only and update transactions on a system with 4 database replicas for TPC-C 20
and TPC-C 50, respectively.

There is no significant performance difference among distinct variants of
BaseCON: neither throughput nor response time suffer from stronger correct-
ness requirements. The BaseCON scheduler assigns the read-only transaction to
replicas so that there is no waiting involved: there is always at least one replica
where read-only transactions can execute. Thus, the scheduler does not intro-
duce any notable overhead to assign read-only transaction to a specific replica
instead of randomly chosen. Response time of update and read-only transactions
(Figs. 6.2(b) and (d)) is the same independently of the correctness criterion con-
sidered. This holds for all load conditions and different workloads considered
(see also Fig. 6.3).

Since BaseCON implements conservative transaction execution there are no
aborted transactions. On the other hand, due to conservative concurrency con-
trol response time of update transactions grows with increasing load, and thus
throughput is not improved. Read-only transactions are significantly simpler
and do not require additional synchronization, thus the growth in response time
is lower. Differently from update transactions, which are fully executed at all
replicas, read-only transactions execute only on a selected replica. The same

71 6.4 Evaluation

0 5 10 15 20 25 30 35 40
1000

1500

2000

2500

3000
4 replicas:BaseCON

T
h

ro
u

g
h

p
u

t
(t

p
m

);
 U

p
d

a
te

Load

1SR SC strong 1SR

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200
4 replicas:BaseCON

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

e
c

);
 U

p
d

a
te

Load

1SR SC strong 1SR

(a) Throughput of update transac-
tions

(b) Response time of update transac-
tions

0 5 10 15 20 25 30 35 40
7000

7500

8000

8500

9000

9500

10000
!"#$%&'()*+,)*$-./

0
1
#2
3
4
1
%
3
5"
65
%
7
89
":
$
)
;
!
.
<
&=

>2);

1SR SC strong 1SR

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100
!"#$%&'()*+,)*$-./

0
$
*
%
1
2
*
$
"3
'4
$
"5
4
*
$
(
67
"0
$
)
8
!
.
2
&9

:1)8

1SR SC strong 1SR

(c) Throughput of read-only transac-
tions

(d) Response time of read-only trans-
actions

Figure 6.2. BaseCON, TPC-C 20: Throughput and response time

conclusions hold for bigger replicated systems as well: Figure 6.4 presents the
results achieved with 8 database replicas and TPC-C 20 benchmark.

Figure 6.5 shows how adding more replicas to the system increases the total
throughput of committed transactions. We have varied the number of replicas
from 2 to 12, the number of concurrent clients is fixed to 20 for all experiments
and the workload submitted is TPC-C 20. Adding more replicas to the system
improves the total throughput from approximately 8500 transactions per minute
to 12000 transactions per minute.
Response time of transactions (see Fig. 6.5(b)) is reduced with increasing num-
ber of replicas: since the load is fixed and is composed of a lot of read-only
transactions adding more replicas decreases the load over a single database site

72 6.4 Evaluation

0 5 10 15 20 25 30 35 40
1000

1500

2000

2500

3000
4 replicas:BaseCON

T
h

ro
u

g
h

p
u

t
(t

p
m

);
 U

p
d

a
te

Load

1SR SC strong 1SR

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200
4 replicas:BaseCON

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
e
c
);

 U
p

d
a
te

Load

1SR SC strong 1SR

(a) Throughput of update transac-
tions

(b) Response time of update transac-
tions

0 5 10 15 20 25 30 35 40
1000

1500

2000

2500

3000
!"#$%&'()*+,)*$-./

0
1
#2
3
4
1
%
3
5"
65
%
7
89
":
$
)
;
!
.
<
&=

>2);

1SR SC strong 1SR

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100
!"#$%&'()*+,)*$-./

0
$
*
%
1
2
*
$
"3
'4
$
"5
4
*
$
(
67
"0
$
)
8
!
.
2
&9

:1)8

1SR SC strong 1SR

(c) Throughput of read-only transac-
tions

(d) Response time of read-only trans-
actions

Figure 6.3. BaseCON, TPC-C 50: Throughput and response time

and thus improves the response time of transactions.

Bottleneck analysis

To better understand the performance results obtained hereafter we present a
bottleneck analysis of the system. First we analyze hardware resources such as
CPU and disk usage during our experiments and then we present the breakdown
of transactions response time. The data was collected during the experiments
with 4 database replicas for both benchmarks (TPC-C 20 and TPC-C 50) with 10
and 40 concurrent clients, unless specified differently.

73 6.4 Evaluation

0 5 10 15 20 25 30 35 40
1000

1500

2000

2500

3000
8 replicas:BaseCON

T
h

ro
u

g
h

p
u

t
(t

p
m

);
 U

p
d

a
te

Load

1SR SC strong 1SR

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200
8 replicas:BaseCON

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

e
c

);
 U

p
d

a
te

Load

1SR SC strong 1SR

(a) Throughput of update transac-
tions

(b) Response time of update transac-
tions

0 5 10 15 20 25 30 35 40
7000

7500

8000

8500

9000

9500

10000
!"#$%&'()*+,)*$-./

0
1
#2
3
4
1
%
3
5"
65
%
7
89
":
$
)
;
!
.
<
&=

>2);

1SR SC strong 1SR

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100
!"#$%&'()*+,)*$-./

0
$
*
%
1
2
*
$
"3
'4
$
"5
4
*
$
(
67
"0
$
)
8
!
.
2
&9

:1)8

1SR SC strong 1SR

(c) Throughput of read-only transac-
tions

(d) Response time of read-only trans-
actions

Figure 6.4. BaseCON, TPC-C 20, 8 replicas: Throughput and response time

CPU and disk usage. Table 6.1 summarizes the use of CPU (in percentage) at
the scheduler and database replicas for each variant of BaseCON. We did not
observe a significant increase in CPU usage when providing stronger correct-
ness guarantees. The CPU usage at the scheduler is approximately 1% for the
TPC-C 20 workload independently of the number of concurrent clients and the
correctness criterion ensured. The workload of TPC-C 50 is more CPU intense,
nevertheless, the CPU usage is comparable for all BaseCON variants. As expected
the use of CPU at the replicas is much higher: ≈ 50% for TPC-C 20 and ≈ 80%
for TPC-C 50 workloads.

74 6.4 Evaluation

2 4 6 8 10 12
6000

7000

8000

9000

10000

11000

12000

13000
BaseCON

T
h

ro
u

g
h

p
u

t
(t

p
m

)

Replicas

1SR SC strong 1SR

2 4 6 8 10 12
60

80

100

120

140

160

180

200
BaseCON

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

e
c

)

Replicas

1SR SC strong 1SR

(a) Total throughput (b) Response time

Figure 6.5. BaseCON, TPC-C 20, varied number of replicas: Throughput and
response time

TPC-C 20 TPC-C 50

1SR SC strong 1SR 1SR SC strong 1SR

Scheduler
10 1.02 0.94 0.91 7.02 7.53 8.10

40 1.06 1.02 1.00 9.62 9.59 9.55

Replicas
10 48.81 50.13 49.20 80.54 75.50 74.21

40 49.30 49.55 50.31 80.24 79.18 77.29

Table 6.1. CPU usage (%)

Table 6.2 presents the average disk usage at the database replicas.1 We re-
port the number of disk reads and writes per second, denoted as rps and wps,
respectively, and the total amount of data read and written per second in kilo-
bytes (Kps). Almost no data is read from the disk (≈ 1.5Kps), which is a conse-
quence of the fact that the TPC-C database fits in main memory of the server. We
observed approximately 200 disk writes per second (≈ 4900 Kps) for the read-
intensive workload and approximately 534 disk writes per second (≈ 16312
Kps) for TPC-C 50 benchmark. The disk usage at the replicas is not affected by
stronger concurrency criterion provided: none of BaseCON variants resulted in

1Since the scheduler does not read or write to the disk, we do not present disk usage at the
scheduler here.

75 6.4 Evaluation

TPC-C 20 TPC-C 50

rps / Kps wps / Kps rps / Kps wps/Kps

1SR
10 0.33/1.63 178.10/4421.3 0.01/0.78 473.73/14434

40 0.15/0.85 202.15/5118.6 0.04/0.25 577.00/17798

SC
10 0.33/1.50 199.98/5055.9 0.03/0.53 526.03/16125

40 0.43/1.88 207.08/5201.1 0.03/0.53 471.52/14383

strong 1SR
10 0.35/1.75 181.63/4532.3 0.02/0.75 611.25/18344

40 0.01/0.98 192.20/4847.5 0.04/0.50 548.75/16793

Table 6.2. Disk usage at the replicas

significantly different disk access patterns at the replicas.

Response time breakdown. The response time of a transaction in BaseCON is
composed of the following: (i) the time spent waiting until conflicting transac-
tions in execution commit, (ii) the time of actual execution of operations of the
transaction, (iii) the time spent waiting to ensure the same commit order at all
database replicas, and (iv) the time it takes for the transaction to commit. In
addition to that to guarantee strong serializability read-only transactions may
need to wait for total-order delivery before committing (see Section 6.3.3).

Figure 6.6 shows the breakdown of response times for the TPC-C 20 bench-
mark run on the system with 4 database replicas. Since BaseCON handles
read-only and update transactions differently, the results are reported separately.
Each vertical bar represents different submitted load. Each different time spent
while executing the transaction is color coded and represented as the percentage
of the total response time.

The response time of read-only transactions is 100% the actual execution of
the operations of the transactions. This is also true for strong serializability: we
did not observe any delays due to waiting for delivery of read-only transactions
before their commit. On the other hand update transactions suffer from conser-
vative concurrency control implemented at the middleware layer: the time spent
waiting for conflicting transactions to commit constitutes more than 50% of total
response time for an average load (20 concurrent clients), independently of the
correctness criterion provided. Higher load further increases the waiting times.
A significant part of time is also spent waiting for transactions to commit in the

76 6.4 Evaluation

4 10 20 30 40
0

20

40

60

80

100

!"#$%&'%($)*$+%,-)*

.-$#

/
&
*
"
-
)
*
&
'0
,1
&
'2
3
4

4 10 20 30 40
0

20

40

60

80

100

/&$#!-)56'%($)*$+%,-)*

.-$#

/
&
*
"
-
)
*
&
'0
,1
&
'2
3
4

conflicts

execution

commit wait

commit

(a) 1SR

4 10 20 30 40
0

20

40

60

80

100

!"#$%&'%($)*$+%,-)*

.-$#

/
&
*
"
-
)
*
&
'0
,1
&
'2
3
4

4 10 20 30 40
0

20

40

60

80

100

/&$#!-)56'%($)*$+%,-)*

.-$#

/
&
*
"
-
)
*
&
'0
,1
&
'2
3
4

conflicts

execution

commit wait

commit

(b) SC

4 10 20 30 40
0

20

40

60

80

100

!"#$%&'%($)*$+%,-)*

.-$#

/
&
*
"
-
)
*
&
'0
,1
&
'2
3
4

4 10 20 30 40
0

20

40

60

80

100

/&$#!-)56'%($)*$+%,-)*

.-$#

/
&
*
"
-
)
*
&
'0
,1
&
'2
3
4

conflicts

execution

commit wait

commit

(c) strong 1SR

Figure 6.6. Response time breakdown, TPC-C 20

77 6.4 Evaluation

same order at all replicas.

Primary-backup replication

Figure 6.7 depicts the attained throughput and response time of Pronto running
TPC-C 20 on the system with 4 database replicas. The throughput of update
transactions is limited by a single primary replica handling most of the update
transactions load (backup replicas apply only updates). On the contrary, read-

0 5 10 15 20 25 30 35 40
1000

1500

2000

2500

3000
4 replicas:Pronto

T
h

ro
u

g
h

p
u

t
(t

p
m

);
 U

p
d

a
te

Load

1SR SC strong 1SR

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200
4 replicas:Pronto

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
e
c
);

 U
p

d
a
te

Load

1SR SC strong 1SR

(a) Throughput of update transac-
tions

(b) Response time of update transac-
tions

0 5 10 15 20 25 30 35 40
6000

6500

7000

7500

8000

8500

9000

9500

10000
!"#$%&'()*+,#-./-

0
1
#-
2
3
1
%
2
/"
4/
%
5
67
"8
$
)
9
!
:
.
&;

<-)9

1SR SC strong 1SR

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

200
!"#$%&'()*+,#-./-

0
$
*
%
-
.
*
$
"1
'2
$
"3
2
*
$
(
45
"0
$
)
6
!
7
.
&8

9-)6

1SR SC strong 1SR

(c) Throughput of read-only transac-
tions

(d) Response time of read-only trans-
actions

Figure 6.7. Pronto, TPC-C 20: Throughput and response time

only transactions are distributed over all replicas and consequently higher trans-
actions load results in higher throughput for both 1SR and strong 1SR. However,

78 6.4 Evaluation

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

20
4 replicas:Pronto

A
b

o
rt

 r
a
te

 (
%

)

Load

1SR SC strong 1SR

0 5 10 15 20 25 30 35 40
2

4

6

8

10

12

14

16

18

20
4 replicas:vDBSM

A
b

o
rt

 r
a
te

 (
%

)

Load

1SR SC strong 1SR

(a) Pronto (b) Update everywhere

Figure 6.8. TPC-C 20: Abort rates

the performance of Pronto implementing SC is considerably worse. To guaran-
tee SC read-only transactions must execute on a replica which was the first to
commit previous transactions of the same client. Since upon delivery of up-
dates the primary replica just performs the certification test and can commit the
transaction, while backups still need to apply the received SQL statements, the
primary replica is the fastest one to respond. As a result, both read-only and
update transactions execute locally at the primary replica overloading it. To
guarantee strong 1SR Pronto totally orders read-only transactions with respect
to all other transactions but executes them only on selected replicas. In this way
the load of read-only transactions is distributed over the replicas. Furthermore,
such transactions execute in isolation, as opposite to SC, where read-only trans-
actions execute concurrently with all the load submitted to the primary replica.
Further, differently from BaseCON, Pronto aborts some transactions due to local
timeouts and deadlocks (Fig. 6.8(a)).

Update everywhre replication

Figure 6.9 depicts performance graphs of vDBSM running TPC-C 20 on the sys-
tem with 4 database replicas. As in the case of BaseCON, implementing differ-
ent correctness criteria with vDBSM does not introduce any notable overhead
and thus has no significant influence on system’s performance. Even though
the response time of committed transactions is comparable to BaseCON, such
results are achieved at the price of high abort rate (see Fig. 6.8(b)). With in-

79 6.4 Evaluation

0 5 10 15 20 25 30 35 40
300

400

500

600

700

800

900

1000

1100

1200
4 replicas:vDBSM

T
h

ro
u

g
h

p
u

t
(t

p
m

);
 U

p
d

a
te

Load

1SR SC strong 1SR

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200
4 replicas:vDBSM

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
e
c
);

 U
p

d
a
te

Load

1SR SC strong 1SR

(a) Throughput of update transac-
tions

(b) Response time of update transac-
tions

0 5 10 15 20 25 30 35 40
3500

4000

4500

5000

5500

6000

6500

7000
!"#$%&'()*+,-./0

1
2
#3
4
5
2
%
4
6"
76
%
8
9:
";
$
)
<
!
=
>
&?

@3)<

1SR SC strong 1SR

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

200
!"#$%&'()*+,-./0

1
$
*
%
2
3
*
$
"4
'5
$
"6
5
*
$
(
78
"1
$
)
9
!
:
3
&;

<2)9

1SR SC strong 1SR

(c) Throughput of read-only transac-
tions

(d) Response time of read-only trans-
actions

Figure 6.9. vDBSM, TPC-C 20: Throughput and response time

creasing number of concurrent clients more update transactions will execute in
parallel without synchronization and consequently more will be aborted by the
certification test to ensure strong consistency. Thus the throughput of update
transactions degrades leaving more room for executing read-only transactions.

To summarize, we show experimentally that stronger consistency does not
necessarily imply worse performance in the context of middleware-based repli-
cation. On the contrary, two of the three protocols evaluated are able to provide
different consistency guarantees without penalizing system’s performance. Even
though the implementation of strong serializability requires ordering read-only
transactions in all protocols studied, the overhead introduced by total order

80 6.5 Related Work and Final Remarks

primitives is insignificant in middleware-based replication. Moreover, imple-
mentation of session consistency in the primary-backup protocol exhibits worse
performance than strong serializability.

6.5 Related Work and Final Remarks

In this chapter we are interested in the correctness criteria used in non-intrusive
database replication systems. The majority of database replication protocols
proposed in the literature ensure either one-copy serializability (e.g., [Patiño-
Martínez et al., 2005; Pedone and Frølund, 2008; Pedone et al., 2003; Rodrigues
et al., 2002]) or snapshot isolation (e.g., [Lin et al., 2005; Wu and Kemme,
2005; Elnikety et al., 2005]). However, some applications may require stronger
guarantees.

Daudjee and Salem [2004] address the problem of transaction inversions in
lazily replicated systems that ensure one-copy serializability . They introduce
the notion of strong session serializability, which is equivalent to our session
consistency, and show how it can be implemented. However, only a simulation
study is presented. An analogous study is conducted for snapshot isolation in
[Daudjee and Salem, 2006].

Causality expected by the clients is studied in [Oliveira et al., 2006] as well.
Differently from us, Oliveira et al. [2006] consider only the DBSM and present
two ways (optimistic and conservative) to provide expected causality. The con-
servative way is equivalent to the one chosen by us, since the optimistic tech-
nique results in unacceptable abort rate of read-only transactions. The results
reported in [Oliveira et al., 2006] confirm the results we have attained.

Ganymed, a lightweight scheduler that routes transactions to a set of snap-
shot isolation based replicas, was introduced in [Plattner and Alonso, 2004].
The main idea behind Ganymed is a separation between updates and read-only
transactions: updates are handled by a master replica and lazily propagated to
the slaves, where read-only transactions are processed. The scheduler assigns
read-only transactions to the replica which contains the latest version of the
database, thus ensures strong serializability, but might introduce delays if such
a replica is not available. If clients are not willing to accept such delays, the
correctness criterion can be weakened: read-only transactions are scheduled to
replicas so that some staleness threshold is satisfied or clients are guaranteed to
read at least their own updates.

Besides uniform characterization of consistency degrees, we also show how
each of them can be achieved in the context of BaseCON and two other repli-

81 6.5 Related Work and Final Remarks

cation solutions. BaseCON was originally inspired by conflict-aware scheduling,
a replication technique by Amza et al. [2003]. The authors use transaction
scheduling to design a lazy replication scheme. To avoid aborting conflicting
transactions the scheduler is augmented with a sequence numbering scheme
and conflict-awareness to provide strong consistency. Differently from BaseCON,
failures in [Amza et al., 2003] are handled in an ad hoc manner. Moreover, the
correctness of the protocol relies on stronger assumptions than ours.

82 6.5 Related Work and Final Remarks

Chapter 7

Partial Database Replication

Most work on database replication using group communication concentrates on
full replication strategies. However, scalability of full replication protocols is
limited under update-intensive workloads: Each replica added to the system
allows to submit more transactions; if such transactions modify the database,
they will add load to every individual database. To improve the scalability of the
system, databases can be replicated partially only.

Partial replication usually favors large systems exhibiting strong access lo-
cality (e.g., geographically dispersed information systems). Each database site
may not have enough disk or memory resources to fully replicate large amounts
of data, thus partitioning allows to support a bigger database. If access locality
is observed and each transaction needs only a small subset of all sites to exe-
cute and commit, the processing and communication overhead associated with
replication can be reduced significantly. Unfortunately, it is not obvious how
to extend many of the protocols developed for full replication to systems with
partial replication. In full database replication, if all transactions are delivered
and processed in the same total order at all replicas and the replicas guarantee
consistency locally, global correctness of the system is ensured. However, that is
not true if partial replication is allowed [Alonso, 1997]. In a partial replication
scenario where each replica only holds a subset of the database, even when us-
ing total-order broadcast, replicas may compromise the commit atomicity of the
transaction. An additional agreement phase is required to ensure a consistent
decision on the transaction’s output (e.g., [Sousa et al., 2001]).

Partial replication is a complex subject and this chapter addresses just one as-
pect of it: distributed transactions execution. More specifically, we are interested
in the effects of distributed transactions on the abort rate of partially replicated
systems. In the following sections we introduce a simple probabilistic analysis of
transaction abort rates for two different concurrency control mechanisms: lock-

83

84 7.1 Distributed Transactions in Partial Replication

and version-based. The former models the behavior of a replication protocol
providing one-copy-serializability; the latter models snapshot isolation.

7.1 Distributed Transactions in Partial Replication

If the database is replicated partially, a transaction may require access to data
stored on remote replicas and thus, a distributed execution involving more than
one replica becomes necessary. The problems introduced by distributed transac-
tions in partially-replicated systems differ depending on the concurrency control
mechanism used. In lock-based systems, ensuring one-copy serializability, trans-
actions executing over multiple replicas will acquire locks on remote data items,
which may increase the likelihood of distributed deadlocks [Gray et al., 1996],
a problem that group communication protocols can mitigate [Agrawal et al.,
1997]. In version-based systems, guaranteeing snapshot isolation, both local
and remote read operations of each transaction must execute in a consistent
global database snapshot. Obtaining the requested snapshot for remote reads
may be a challenge in some contexts (e.g., middleware approaches based on
standard off-the-shelf databases). If such snapshot is not available, the transac-
tion is aborted.

Snapshot isolation has received a considerable amount of attention in the
context of full database replication. There are two main reasons for such a
trend. First, replication protocols ensuring SI are spared from readsets extrac-
tion. Second, read-only transactions executing under snapshot isolation are
never blocked or aborted. Unfortunately, in partial replication distributed trans-
actions may compromise these advantages: (a) inability to obtain the requested
snapshot for remote reads may cause aborts even for read-only transactions; and
(b) transaction readset information may be necessary in order to ensure correct-
ness of the system [Schenkel et al., 1999]. That being said, is snapshot isolation
still the preferred correctness criterion when partial replication is considered?

Both distributed deadlocks in lock-based systems and failed remote read op-
erations in version-based systems result in aborted transactions. Hence, we in-
troduce a probabilistic model for abort rates of partially replicated systems when
lock- and version-based concurrency control mechanisms are used. First, we
briefly describe the chosen replication strategy and then we present our analyti-
cal model. We show how the number of data versions available affects the abort
rate of the version-based system and try to identify the settings under which
snapshot isolation can be safely used with partial replication.

85 7.2 Simple Probabilistic Analysis

7.2 Simple Probabilistic Analysis

7.2.1 Replication Model

We assume a partial replication model where the original database is partitioned
and replicated over the database sites. No database site is expected to store the
whole set of items, although that is not forbidden. We call local the replica
to which the transaction is submitted, and remote the replica which contains
data items accessed by the transaction and not stored at the local site. Similarly,
an operation is called local if it is executed on a local replica, and remote
otherwise. Transactions that access data at more than one database site during
execution are called dist r ibuted.

We distinguish two phases through which transactions pass during process-
ing:

1. Execution phase. Transactions are initially submitted to one database site.
However, in partial replication, where each replica only holds a subset of
the database, a transactions may require access to data items not available
locally. In such a case, the transaction operation is forwarded to one of
the database sites holding the required item and executed remotely. If the
database engine adopts lock-based concurrency control, such distributed
transactions inevitably introduce the possibility of distributed deadlocks;
if the replicas implement snapshot isolation, the key problem is to obtain
a consistent global snapshot of the database composed of individual snap-
shots taken at each replica involved in the execution of the distributed
transaction. We assume that every remote request includes the required
snapshot version. Upon processing such a request the remote site demands
the correct snapshot from the database. If such a version of the data is not
available, the transaction is aborted.

2. Termination phase. Read-only transactions commit immediately upon re-
quest. Update transactions are forwarded to all (or a subset of) database
sites using a total-order multicast primitive. We assume that all database
sites involved in the execution of the transaction eventually reach a con-
sistent decision on the transaction’s fate: commit or abort. Depending on
the replication protocol, this may require a voting phase as part of the
transaction’s termination (e.g., [Sousa et al., 2001]). For different consis-
tency criteria, different certification tests are used. Two concurrent update
transactions Ti and T j are allowed to commit only if:

86 7.2 Simple Probabilistic Analysis

- (to ensure 1SR) Ti and T j executed at distinct replicas, Ti has been
delivered first and ws(Ti) ∩ rs(T j) = ;. If Ti and T j execute at the
same replica, the local database scheduler guarantees a serializable
execution.

- (to ensure SI) The writesets of Ti and T j do not intersect, that is,
ws(Ti) ∩ ws(T j) = ;. We assume that SI is implemented using strict
first-committer-wins rule, i.e., transactions are never aborted during
the execution phase because of a write-write conflict.

If the transaction passes the certification test, its updates are applied on
all copies of modified data items.

7.2.2 Analytical Model

In partial replication settings where each replica holds only a subset of the
database, support for execution of distributed transactions is inevitable, un-
less “perfect data partitioning” is assumed.1 In lock-based systems distributed
transactions may get involved in distributed deadlocks, while in version-based
systems remote read operations may be unable to obtain the requested database
snapshot at remote replicas. Both distributed deadlocks and failed remote read
operations result in aborted transactions. Hence, the goal of our probabilistic
analysis is twofold: (a) to quantify the abort rate of transactions due to dis-
tributed execution; and (b) to estimate the abort rate of transactions at the
termination phase.

The replicated system is modeled as a number of database sites, si tes, and
a fixed-size database composed of DB_SI Z E items. Every database item has
a number of copies uniformly distributed over the replicas. Thus, the entire
system consists of DB_SI Z E · copies resources. All transactions submitted to
the database have the same number of operations op and all operations take
the same op_t ime to execute. An operation is defined as a read or a write on
one data item; as a consequence, a single SQL statement may consist of many
operations. Each data item has the same probability of being accessed (there are
no hotspots). We model neither communication between database sites — both
local and remote accesses to data items have the same cost — nor failures of the
replicas.

1 If the database is partitioned so that every transaction can execute at a single site, support
for distributed transactions is not needed. However, such an approach requires prior knowledge
of the workload and a very particular data distribution over the replicas or at least a single site
that holds the whole database.

87 7.2 Simple Probabilistic Analysis

Every database site receives T PS transactions per second, so the total load
over the replicated system is TotalT PS = T PS · si tes and there are always
t xn = TotalT PS · op · op_t ime concurrent transactions executing. Every trans-
action is read-only with the probability of L. Each operation within the update
transaction has the probability k to be a read operation. The number of concur-
rent read-only transactions in the system is r_t xn = L · t xn, each with op read
operations. The number of update transactions is given by w_t xn= (1− L) · t xn
with r_op = k ·op read and w_op = (1−k)·op write operations. We also require
that the average number of data items accessed by concurrent transactions do
not exceed the database size. The main parameters of the model are listed in
Table 7.1.

DB_SIZE database size

TPS
number of transactions per second
submitted to a database site

L fraction of read-only transactions

op number of operations in a transaction

k
fraction of read operations in update
transactions

op_time time to execute an operation in seconds

sites number of replicas in the system

copies number of copies of each data item

Table 7.1. Model parameters

In the following two sections we introduce our probabilistic analysis for eval-
uating the abort rate of partial replication when lock- and version-based con-
currency control mechanisms are used. We assume that the lock-based model
ensures 1SR, while the version-based model provides GSI.

Lock-based system

Our model has been strongly influenced by the analytical model introduced by
Gray et al. [1996], where the authors analyze the deadlock rate of fully repli-
cated database systems based on locking only. Besides the assumptions con-
sidered throughout our probabilistic modelling, the work in [Gray et al., 1996]

88 7.2 Simple Probabilistic Analysis

does not account for read operations — all transactions are composed of updates
only. Hereafter we model read operations within update transactions as well as
read-only transactions. To calculate the abort rate at the termination phase, we
have followed the ideas introduced in [Pedone, 1999].

Execution phase. As in [Gray et al., 1996], we suppose that, in average, each
transaction is about half way complete, thus the number of resources locked by
executing transactions is at most

res_locked = ro_read_locks+ u_locks, (7.2.1)

where
ro_read_locks =

r_t xn · op

2
, (7.2.2)

u_locks = u_write_locks+ u_read_locks

=
w_t xn ·w_op

2
+

w_t xn · r_op

2
=

w_t xn · op

2
.

(7.2.3)

From Eq. 7.2.3, the probability that a read operation waits because of update
transactions is

p_r_op_waits_u=
u_write_locks

DB_SI Z E · copies
=

w_t xn ·w_op

2 · DB_SI Z E · copies
. (7.2.4)

Similarly, p_w_op_waits_u and p_w_op_waits_r are the probabilities that a
write operation waits for resources locked by update and read-only transactions:

p_w_op_waits_u=
u_locks

DB_SI Z E · copies
=

w_t xn · op

2 · DB_SI Z E · copies
, (7.2.5)

p_w_op_waits_r =
ro_read_locks

DB_SI Z E · copies
=

r_t xn · op

2 · DB_SI Z E · copies
. (7.2.6)

Now we can calculate the probability that a read-only transaction waits for re-
sources held by update transactions,

p_r_t ran_waits_u= 1− (1− p_r_op_waits_u)op, (7.2.7)

and the probability that an update transaction waits because of other update
transactions,

p_u_t ran_waits_u= 1− (1− p_r_op_waits_u)r_op

× (1− p_w_op_waits_u)w_op,
(7.2.8)

89 7.2 Simple Probabilistic Analysis

and because of read-only transactions,

p_u_t ran_waits_r = 1− (1− p_w_op_waits_r)w_op. (7.2.9)

A deadlock is created if transactions form a cycle waiting for each other. We
do not consider deadlocks that involve more than two transactions: deadlocks
composed of cycles of three or more transactions are very unlikely to occur [Gray
et al., 1996]. So the probability for a read-only transaction to deadlock is

p_r_deadlock ≈
p_r_t ran_waits_u · p_u_t ran_waits_r

r_t xn
, (7.2.10)

and the probability that an update transaction deadlocks is

p_w_deadlock ≈
p_u_t ran_waits_u2

w_t xn

+
p_u_t ran_waits_r · p_r_t ran_waits_u

w_t xn
.

(7.2.11)

From Eq. 7.2.10 and 7.2.11, read-only and update transactions deadlock rates
are:

r_deadlock_rate =
p_r_deadlock

op · op_t ime
, (7.2.12)

w_deadlock_rate =
p_w_deadlock

op · op_t ime
. (7.2.13)

Finally, we can estimate the total number of deadlocks of the system (in trans-
actions per second) as

abor ts_deadlock = r_deadlock_rate · r_t xn

+w_deadlock_rate ·w_t xn.
(7.2.14)

Termination phase. If there is only one copy of each data item (i.e., there is
no replication), strict 2PL ensures serializability and thus transactions are not
aborted during the termination phase. For more than one copy, two conflicting
transactions executing concurrently at distinct database sites may violate 1SR. As
mentioned in Section 7.2.1, to ensure 1SR, each committing transaction has to
pass the certification test which checks that there is no transaction that executed
concurrently and updated data items read by the committing transaction. Notice
that conflicts appear only if transactions access different copies of the same item.

90 7.2 Simple Probabilistic Analysis

We consider only those transactions that were not aborted during execution.
Thus, TotalT PS, the number of read-only and update transactions are:

TotalT PS′ = TotalT PS− abor ts_deadlock, (7.2.15)

r_t xn′ = r_t xn · (1− p_r_abor t), (7.2.16)

w_t xn′ = w_t xn · (1− p_w_abor t), (7.2.17)

t xn′ = TotalT PS′ · op · op_t ime. (7.2.18)

If there are only two concurrent transactions in the system, the probability that
an update transaction passes the certification test is

�

1−w_op/DB_SI Z E
�r_op.

Then the probability that the i-th transaction passes the certification test after
the commit of (i− 1) transactions is

p_i_t xn_pass =
�

1−
(i− 1) ·w_op

DB_SI Z E

�r_op

. (7.2.19)

On average, the probability that a transaction does not pass the certification test
is

p_t xn_no_pass = 1−
1

N
·

N
∑

i=1

p_i_t xn_pass, (7.2.20)

where N is the number of concurrent update transactions, excluding those that
execute at the same replica and do not cause certification aborts:

N = w_t xn′ ·
si tes− 1

si tes
. (7.2.21)

Consequently, the abort rate of update transactions that do not pass the certifi-
cation test is defined as follows:

u_abor t_rate =
p_t xn_no_pass

op · op_t ime
. (7.2.22)

And at last, the total number of aborts due to the certification test is

abor ts_sr_cer t = u_abor t_rate ·w_t xn′. (7.2.23)

Version-based system

During the execution, transactions are aborted if the requested versions of the
data items are not available. We assume that all database sites are able to main-
tain up to V versions per data item, e.g. with V = 1, transactions can only
obtain the current version of the data item. Notice that we assume a strict first-
committer-wins rule, i.e., transactions are never aborted during the execution
phase due to write-write conflict; such conflicts are resolved at termination.

91 7.2 Simple Probabilistic Analysis

Execution phase. In the same way as Eq. 7.2.1, during its execution, a trans-
action updates at most w_op resources. Therefore, at any time there are
res_upated_exec = (w_t xn · w_op)/2 resources updated because of the trans-
actions in the execution phase. Some of these transactions will be successfully
certified and their updates will be propagated to all the copies of the data items
accessed. These remote updates will influence the total number of resources
updated.2 Therefore, during termination there are

res_updated_term=
(copies− 1) ·w_t xn′ ·w_op

2
× p_commit (7.2.24)

resources updated, where w_t xn′ is defined in Eq. 7.2.34. p_commit is the
probability for an update transaction to pass the certification test and is equal
to 1− p_w_abor t_term (see Eq. 7.2.38). Hence, the total number of resources
updated is res_updated = res_updated_exec + res_updated_term and, con-
sequently, the probability for an item to be updated V times by concurrent trans-
actions is:

p_i tem_v_updated =
�

res_updated

DB_SI Z E · copies

�V

. (7.2.25)

The probability for a read operation to abort is the same as the probability of
waiting for V locks, i.e., the probability of V concurrent transactions to update
the same item:

p_r_op_abor t = p_i tem_v_updated. (7.2.26)

Since each read-only transaction has op operations, the probability for a read-
only transaction to abort is

p_r_abor t = 1− (1− p_r_op_abor t)op, (7.2.27)

and the probability of abort of an update transaction is

p_w_abor t = 1− (1− p_r_op_abor t)r_op. (7.2.28)

From Eq. 7.2.27 and 7.2.28, the abort rates for read-only and update transac-
tions are as follows:

r_abor t_rate =
p_r_abor t

op · op_t ime
, (7.2.29)

2We do not account for remote updates in the lock-based model since in general the deadlock
rate is very small and some remote updates will not affect significantly the final deadlock rate.

92 7.2 Simple Probabilistic Analysis

and

w_abor t_rate =
p_w_abor t

op · op_t ime
. (7.2.30)

Therefore, the total number of aborts during the execution phase of transactions
is

abor ts_exec = r_abor t_rate · r_t xn+w_abor t_rate ·w_t xn. (7.2.31)

Termination phase. Similarly to Eqs.7.2.15–7.2.18, we have to recalculate the
number of concurrent transactions that reach the termination phase:

TotalT PS′ = TotalT PS− abor ts_exec, (7.2.32)

r_t xn′ = r_t xn · (1− p_r_abor t), (7.2.33)

w_t xn′ = w_t xn · (1− p_w_abor t), (7.2.34)

t xn′ = TotalT PS′ · op · op_t ime. (7.2.35)

Furthermore, transactions aborted during the execution phase also affect the
fraction of read-only and update transactions present at the termination phase:

L′ =
r_t xn′

t xn′
. (7.2.36)

Thus, the probability that a write operation conflicts with another write opera-
tion is

p_w_op_con=
w_t xn′ ·w_op

2 · DB_SI Z E
. (7.2.37)

The probability that an update transaction aborts is

p_w_abor t_term= 1− (1− p_w_op_con)w_op. (7.2.38)

Update transactions abort rate due to write-write conflicts is determined as

w_abor t_rate_term=
p_w_abor t_term

op · op_t ime
. (7.2.39)

Finally, the total number of aborts at the termination phase is

abor ts_si_cer t = w_abor t_rate_term ·w_t xn′. (7.2.40)

93 7.3 Analytical Evaluation

7.3 Analytical Evaluation

7.3.1 Objectives

We have analytically estimated the transaction abort rate of a partially replicated
system to answer the following questions:

• What is the impact of distributed transactions on the abort rate of 1SR and
SI systems?

• How do data versions affect the abort rate of SI systems in the context of
partial replication?

• Under which environments are SI systems comparable to 1SR lock-based
systems ?

In the following we present the parameters used throughout the evaluation.

7.3.2 Parameter Values

As a base scenario we consider a system composed of 8 database sites and 2
copies of 2.500.000 items database. The system processes 250 transactions per
second. Each transaction takes 0.170 seconds to execute and is composed of 200
operations. 90% of the transactions in the workload are update transactions.3

All the parameters used are summarized in Table 7.2; parameters of the base
scenario are highlighted in bold.

In all figures we report the percentage (%) of transactions aborted during
execution and termination or just the total system abort rate. In the execution
phase the lock-based system is denoted as LB; VB V represents the version-based
system, where V is the number of versions available per data item (e.g. VB 1
indicates a scenario where only the current data version is obtainable). In the
termination phase we denote the different systems as 1SR and SI V .

3 We used the TPC-C benchmark [TPC, 2005] as a reference for our base case parameters.
Our implementation of the benchmark for 5 warehouses results in a database of 2.595.055
items and an average transaction response time of 0.170 seconds. In TPC-C update transactions
account for 92% of the workload.

94 7.3 Analytical Evaluation

Parameter Values considered

DB_SIZE 500.000, 2.500.000

TPS (100, 250, ..., 800)/sites

op 200, 1000

op_time 0.170/op

L 0, 0.1...1

V 1, 2, 3, 4

sites 1, 2, 4, 8, 12, 16, 20

copies 1, 2, 8

Table 7.2. Model parameter values

7.3.3 Standalone vs. Fully Replicated System

Figure 7.1 compares the execution and termination abort rates for standalone
and fully replicated systems. The standalone lock-based system has very low
deadlock rate and there are no aborts due to the certification test (see Fig. 7.1(a)):
if two conflicting transactions execute concurrently at the same replica, the local
database scheduler will serialize them, and thus both transactions can commit.
Adding replicas increases the number of transactions executing at distinct sites,
thus the aborts due to lack of synchronization grow accordingly (see Fig. 7.1(b)).
Differently from the model introduced by Gray et al. [1996], where the dead-
lock rate rises as the third power of the number of replicas, in our replication
model all commits of update transactions are ordered and thus replication does
not increase the deadlock rate of the 1SR system — the aborts in Figure 7.1(b)
are due to the certification test. We further use the lock-based 1SR system as a
baseline for analyzing the aborts of partially replicated SI systems.

In a version-based system, even if two conflicting transactions execute at the
same database site, only one is allowed to commit — notice that in SI two con-
current transactions conflict if they update the same data item. Therefore, repli-
cation does not affect the system abort rate. Moreover, there are no aborts due
to unavailable consistent snapshots in the standalone and the fully replicated
systems; in both cases the number of data versions available is unbounded.

95 7.3 Analytical Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

!"#$%#&'$()*+*"(,

-
.
'
/"
)/
#
"(
)0

1)!)2/#3"4'$)'2)/(#%)'5(/#"4'$*

LB

SR

VB

SI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

!"#$%&#'"!"()*$&#

+
,
)
-%
"-
.
%&
"/

0"!"1-.(%$)2")1"-&.3")*&-.%$)2#

LB

1SR

VB

SI

(a) standalone system (b) fully replicated system

Figure 7.1. Standalone vs. fully replicated system, TotalT PS = 250

7.3.4 Two Data Versions are Sufficient to Eliminate Execution
Aborts

Figure 7.2 presents the transaction abort rate during (a) execution and (b) ter-
mination, and (c) the total system abort rate for the base scenario configuration.
If only a single data version is available during the execution of transactions
under version-based concurrency control, up to ≈ 8% of transactions may abort
due to failed reads (see Fig. 7.2(a), VB 1 curve). The abort rate depends on the
number of write operations in update transactions. With 100% of write oper-
ations in update transactions, only read-only transactions can abort due to not
obtaining the requested database snapshot. On the other hand, with 100% of
read operations there are no updates and, hence, no failed reads.

The availability of at least one additional data version is sufficient to almost
completely eliminate the aborts during execution (Fig. 7.2(a), VB 2 curve)! This
is because the number of data versions available reduces the abort rate exponen-
tially (see Eq. 7.2.25). We investigate this phenomenon further in Figure 7.3,
which depicts the system abort rate at the execution phase when increasing the
number of available versions. Two versions of each data item reduce the ex-
ecution aborts so that they become insignificant (0.008% in the worst case).
Therefore, increasing further the number of versions available will not affect
remarkably the abort rate.

96 7.3 Analytical Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

!"#$%&#'"(")*+$&#
,
-
*
.%
".
/
%&
"0
1&
2
&
)
3
%$
*
4
5

6"!"7./)%$*4"*7".&/8"*+&./%$*4#

LB

VB 1

VB 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

!"#$%&#'"(")*+$&#

,
-
*
.%
".
/
%&
"0
1%
&
.2
$3
/
%$
*
3
4

5"!"6./)%$*3"*6".&/7"*+&./%$*3#

1SR

SI 1

SI 2

(a) during execution (b) during termination

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

!"#$%&#'"(")*+$&#

,
*
%-
."
-
/
*
0%
"0
-
%&
"1

2"!"30-)%$*4"*3"0&-5"*+&0-%$*4#

LB+1SR

VB 1+SI

VB 2+SI

(c) total abort rate

Figure 7.2. The effects of distributed transactions; base scenario

! !"# !"$!"% !"& !"' !"(!") !"* !"+ #

#!
!#!

#!
!*

#!
!(

#!
!&

#!
!$

#!
!

#!
$

!"#$%&#'"(")*+$&#

,
-
*
.%
".
/
%&
"0
1&
2
&
)
3
%$
*
4
5

6"!"7./)%$*4"*7".&/8"*+&./%$*4#

,

,

-.,#

-.,$

-.,%

-.,&

Figure 7.3. The effects of versions available; base scenario, y-axis in logarithmic
scale

97 7.3 Analytical Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

!"#$%&#'"(")*+$&#

,
*
%-
."
-
/
*
0%
"0
-
%&
"1

2"!"30-)%$*4"*3"0&-5"*+&0-%$*4#

LB+1SR

VB 1+SI

VB 2+SI

Figure 7.4. The effects of increasing read-only transactions in the workload;
L = 0.9

If update transactions contain a high number of read operations, VB 1+SI
can be as good as LB+1SR, while VB 2+SI may even outperform LB+1SR (see
Fig. 7.2(c), when 60% or more of read operations in update transactions). How-
ever, if the workload is dominated by update operations, version-based systems
abort more transactions, regardless of the number of versions per data item
available. This is due to the differences in the certification test. As presented in
Section 7.2.1, to ensure SI the certification test of a version-based system checks
write-write conflicts between concurrent transactions, while to ensure 1SR the
certification test of a lock-based system checks read-write conflicts. With a lot of
update operations the probability of write-write conflicts increases and thus, the
version-based system exhibits higher abort rate. During the termination phase,
the abort rate of SI 1 is lower than SI 2 (see Fig. 7.2(b)). This is because in the
termination phase our model accounts for aborts that happen during execution.
Since in VB 1 a lot of transactions are aborted during execution, fewer trans-
actions reach the termination phase, and consequently, fewer transactions are
aborted.

7.3.5 The Impact of Read-Only Transactions

To evaluate the impact of read-only transactions in the workload, we have varied
the L parameter. Figure 7.4 illustrates the total system abort rate when L = 0.9.
The abort rate of both LB+1SR and VB 2+SI is very low since with very few
updates the termination abort rate is small and it is unlikely that transactions
deadlock during the execution. However, for VB 1+SI, if the fraction of write

98 7.3 Analytical Evaluation

operations in the transactions is high, the execution aborts dominate the total
system abort rate. If all update transactions perform a lot of write operations,
read-only transactions still have a significant probability of aborting due to not
obtaining the requested version of the data item. For example, for VB 1+SI, L =
0.9 and k = 0, the probability for a read operation to abort due to not obtaining
the correct version is 0.169 ·10−3, but the probability for a read-only transaction
to abort during execution is 0.033 (see Eq. 7.2.26 and 7.2.27, respectively).
Thus, even if the workload over the partially replicated system is dominated by
read-only transactions, but the few update transactions perform a lot of updates,
read-only distributed transactions can still cause a noticeable number of aborts.
This is in contrast to typical fully replicated SI systems, in which the number of
versions available in each replica is unbounded, and thus, read-only transactions
never abort.4

7.3.6 Adding Database Sites to the System

Figure 7.5 illustrates how the number of database sites affects the total system
abort rate. We use 2 database copies; the number of transactions executing
concurrently over the replicated system is kept constant for all configurations
considered, i.e., TotalT PS = 250.

Adding replicas to the system has a different impact on lock- and version-
based systems. Although varied number of replicas has no influence on the
abort rate during the execution phase in both systems, the difference comes
from the distinct certification tests. In a lock-based system, if two conflicting
transactions execute concurrently at the same replica, the local database sched-
uler will ensure serializable execution, and thus both transactions can commit.
Increasing the number of replicas in the system, increases the number of transac-
tions executing at distinct replicas, thus the aborts due to lack of synchronization
grow accordingly (Fig. 7.5(a)). In a version-based model, even if two conflicting
transactions execute at the same database site, only one is allowed to commit.
Therefore, the number of database replicas in the system and so the amount of
parallelism among conflicting transactions does not affect the abort rate of the
system (Figs. 7.5(b) and (c)).

4Efficient implementations of SI, such as Oracle or PostgreSQL, limit the amount of space used
to record data versions. Thus, if the workload is update intensive, even read-only transactions
can abort.

99 7.3 Analytical Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

!"#$%&

'
(
)*
+,
*
-
(
.)
,.
*
)/
,0

1,!,2.*3)4(5,(2,./*6,(7/.*)4(58

2 sites

4 sites

8 sites

12 sites

16 sites

20 sites

(a) lock-based system

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

!"#$%&'

(
)
*+
,#
+
-
)
.*
#.
+
*/
#0

1#!#2.+3*4)5#)2#./+6#)7/.+*4)58

2 sites

4 sites

8 sites

12 sites

16 sites

20 sites

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

!"#$%&'

(
)
*+
,#
+
-
)
.*
#.
+
*/
#0

1#!#2.+3*4)5#)2#./+6#)7/.+*4)58

2 sites

4 sites

8 sites

12 sites

16 sites

20 sites

(b) version-based system, V = 1 (c) version-based system, V = 2

Figure 7.5. The effects of the number of database sites, base scenario

7.3.7 The Effects of the Load, the Number of Operations and
the Database Size

The throughput over the system has a linear impact on the total system abort
rate (see Fig. 7.6), while the number of operations has an exponential effect on
the aborts for both lock- and version-based systems (Fig. 7.7(a)).
Augmenting the number of operations increases the number of concurrent trans-
actions in the system, and thus has a quadratic impact on the number of re-
sources updated or locked (see Eq. 7.2.1). However, once we calculate various
probabilities (probability that transaction waits), the number of operations ap-
pears in the exponent of the formula (e.g., see Eq. 7.2.7).

100 7.3 Analytical Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

!"#$%&

'
(
)*
+,
*
-
(
.)
,.
*
)/
,0

1,!,2.*3)4(5,(2,./*6,(7/.*)4(58

TotalTPS=100

TotalTPS=200

TotalTPS=400

TotalTPS=600

TotalTPS=800

(a) lock-based system

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

!"#$%&'

(
)
*+
,#
+
-
)
.*
#.
+
*/
#0

1#!#2.+3*4)5#)2#./+6#)7/.+*4)58

TotalTPS=100

TotalTPS=200

TotalTPS=400

TotalTPS=600

TotalTPS=800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

!"#$%&'

(
)
*+
,#
+
-
)
.*
#.
+
*/
#0

1#!#2.+3*4)5#)2#./+6#)7/.+*4)58

TotalTPS=100

TotalTPS=200

TotalTPS=400

TotalTPS=600

TotalTPS=800

(b) version-based system, V = 1 (c) version-based system, V = 2

Figure 7.6. The impact of the load over the system; base scenario

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

!"#$%&#'"(")*+$&#

,
*
%-
."
-
/
*
0%
"0
-
%&
"1

2"!"30-)%$*4"*3"0&-5"*+&0-%$*4#

LB+1SR

VB 1+SI

VB 2+SI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

!"#$%&#'"(")*+$&#

,
*
%-
."
-
/
*
0%
"0
-
%&
"1

2"!"30-)%$*4"*3"0&-5"*+&0-%$*4#

LB+1SR

VB 1+SI

VB 2+SI

(a) increased number of operations (b) reduced database size

Figure 7.7. The impact of the number of operations, op = 1000 (a) and the
database size, DB_SI Z E = 500.000 (b); base scenario

101 7.4 Related Work and Final Remarks

The impact of the database size is smaller: being just at the denominator
of the Eq. 7.2.1 formula, reducing the database size, increases the total system
aborts (see Fig. 7.7(b)).

7.3.8 The Environments Beneficial to SI Version-Based Systems

Figure 7.8 depicts the environments under which SI can be safely used with
partial replication. We have varied the L and k parameters and report the results
where the total system abort rate is equal to or below 10% with TotalT PS = 250
(Fig. 7.8(a)) and TotalT PS = 400 (Fig. 7.8(b)). The dark and light gray areas
represent configurations of version-based SI systems with one (i.e., VB 1+SI)
and two data versions available (i.e., VB 2+SI). Workloads composed of a lot of
read-only transactions and workloads where update transactions contain many
read operations represent environments beneficial to SI systems.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

!!"#$%&'()*("*#+$,*(-+#$&'().

/
!
"#
$
%
&'
(
)
*(
"*
#+
$
,
!
(
)
01
*&
#$
)
.
$
%
&'
(
)
.

2*.'&+.3*4*%(-'+.

56*7*8*9:

56*4*8*9:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

!!"#$%&'()*("*#+$,*(-+#$&'().

/
!
"#
$
%
&'
(
)
*(
"*
#+
$
,
!
(
)
01
*&
#$
)
.
$
%
&'
(
)
.

2*.'&+.3*4*%(-'+.

56*4*7*89

56*:*7*89

(a) TotalT PS = 250 (b) TotalT PS = 400

Figure 7.8. Configurations where abort rate of SI systems is ≤ 10%; base sce-
nario

7.4 Related Work and Final Remarks

The majority of partial replication solutions in the literature guarantee one-copy
serializability (e.g., [Camargos et al., 2007; Cecchet et al., 2004; Coulon et al.,
2005; Fritzke and Ingels, 2001; Holliday et al., 2002; Kemme, 2000; Schiper
et al., 2006; Sousa et al., 2001]) and assume that database replicas adopt lock-
based concurrency control. Several of these protocols (e.g., [Cecchet et al.,
2004; Coulon et al., 2005; Schiper et al., 2006; Sousa et al., 2001]) build on the

102 7.4 Related Work and Final Remarks

strong assumption that transactions can always execute locally at one database
site. Such an assumption requires prior knowledge of the workload and a very
precise data distribution over the replicas (e.g., [Elnikety et al., 2007]) or at
least a single replica that holds the whole database (e.g., [Cecchet et al., 2004]).
The protocols in [Armendáriz-Íñigo et al., 2008; Serrano et al., 2007] allow dis-
tributed transactions by ensuring that all remote accesses are able to find the
required data version. The work in [Armendáriz-Íñigo et al., 2008] orders the
beginnings of distributed transactions at all the replicas involved and, thus, pre-
vents local executions. Serrano et al. [2007] proposes to use special “dummy”
transactions, created at all database sites every time an update transaction com-
mits. All remote operations must execute within the dummy transaction associ-
ated with the required database snapshot. Maintaining a high number of dummy
transactions may affect the performance of the system.

This chapter presents a simple probabilistic analysis of abort rates in partially
replicated systems. Two concurrency control mechanisms are considered: lock-
and version-based. The lock-based system models the behavior of a replication
protocol providing one-copy serializability, while the version-based system en-
sures snapshot isolation.

The presented analytical evaluation revealed that in the version-based sys-
tem the number of data versions available decreases the execution abort rate
exponentially. As a consequence, in all cases considered, two versions of each
data item were sufficient to eliminate the aborts due to distributed transactions.
Furthermore, in the version-based system even if the workload over the partially
replicated system is dominated by read-only transactions, but the few update
transactions perform a lot of updates, distributed read-only transactions can still
cause a noticeable number of aborts, as opposed to typical full replication pro-
tocols, in which the number of versions available is (in principle) unbounded,
and thus, read-only transactions executing under snapshot isolation are never
aborted.

Chapter 8

Conclusions

8.1 Contributions

Performance, high-availability, and correctness are the ultimate goals in the de-
velopment of distributed database systems and have been the subject of a large
amount of research in the last three decades. In spite of the many replica-
tion protocols proposed, their application in real scenarios is limited. Although
kernel-based replication solutions can benefit substantially from the optimiza-
tions in the database engine, such protocols are difficult to maintain in prac-
tice. Databases usually take part in complex IT infrastructures where replication
should ideally be transparent to both the end users and the database sites, and
should therefore be implemented in a middleware layer. Thus, the main focus of
this thesis is on non-intrusive database replication protocols. Such protocols are
independent of the underlying database engine and consequently can be easily
ported to different systems. The protocols proposed are workload-aware: the
performance of the system is improved by exploiting specific knowledge of the
workload. The thesis research has led to five contributions summarized below.

Multiversion Database State Machine replication. This thesis has presented
the Multiversion Database State Machine, an instance of the Database State Ma-
chine replication placed at the middleware layer. The Multiversion Database
State Machine assumes predefined, parameterized transactions. The particu-
lar data items accessed by a transaction depend on the transaction’s type and
the parameters provided by the application program when the transaction is in-
stantiated. By estimating the data items accessed by transactions before their
execution, even if conservatively, the replication protocol is spared from extract-
ing readsets and writesets during the execution. In the case of the Multiversion

103

104 8.1 Contributions

Database State Machine, this has also resulted in a certification test simpler than
the one used by the original Database State Machine, although both techniques
guarantee the same strong consistency.

Workload Characterization Techniques. This thesis has presented workload
characterization techniques that allow to identify transaction access patterns
outside the database engine. Such knowledge may be useful even before ac-
tually executing the transactions at the database engine. Conservative replica-
tion protocols require transaction’s access patterns data beforehand to guarantee
replicated system’s consistency; optimistic protocols may use such information to
reduce the synchronization aborts induced by conflicting transactions executing
concurrently at distinct database replicas. We have introduced the SQL Inspec-
tor, a tool capable to automatically identify conflicting transactions by partially
parsing them. To the best of our knowledge this is the first attempt to auto-
mate the extraction of transactions readsets and writesets outside the database
engine.

Conflict-Aware Load-Balancing Techniques. A key property of the Multiver-
sion Database State Machine is that if transactions with similar access patterns
execute at the same database replica, then the local replica’s scheduler will seri-
alize them and both can commit, reducing the abort rate. However, performance
is improved if transactions execute concurrently on different replicas. We have
proposed a hybrid load balancing technique which allows to give more or less
significance to minimizing conflicts or maximizing parallelism: based on the
information obtained by the SQL Inspector, we schedule transactions to repli-
cas so that the number of conflicting transactions executing on distinct replicas
is reduced and the load over the replicas is equitably distributed. Experimen-
tal results showed that exploring specific workload information while assigning
transactions to the replicas is a promising technique to improve the performance
of non-intrusive replication protocols.

BaseCON and the cost of correctness criteria for non-intrusive database repli-
cation. We have investigated the performance cost of implementing different
consistency degrees in BaseCON and two other non-intrusive replication proto-
cols. The experimental evaluation revealed that stronger consistency does not
necessarily imply worse performance in the context of middleware-based repli-
cation. On the contrary, two of the three protocols evaluated are able to provide
different consistency guarantees without penalizing system’s performance. Fur-

105 8.2 Future Directions

thermore, even being conservative BaseCON results in higher throughput than
both primary-backup and optimistic update-everywhere replication protocols.

Probabilistic model for partial replication. In this thesis we have introduced
a probabilistic model for abort rates of partially replicated systems. Two cor-
rectness criteria are considered: the lock-based system models the behavior of
a replication protocol providing one-copy-serializability; the version-based sys-
tem models snapshot isolation. The analytical evaluation has revealed that in
the version-based system the number of data versions available decreases the
execution abort rate exponentially. Furthermore, even if the workload over the
partially replicated system is dominated by read-only transactions, but the few
update transactions perform a lot of updates, distributed read-only transactions
can still cause a noticeable number of aborts, as opposed to typical full replica-
tion protocols, in which the number of versions available is (in principle) un-
bounded, and thus, read-only transactions executing under snapshot isolation
are never aborted.

8.2 Future Directions

In extension to the work presented in this thesis, we believe that several points
are worth further investigation.

Application-specific replication. In [Stonebraker et al., 2007] the authors crit-
icize the one-size-fits-all paradigm of databases and argue for a redesign, which
would take into account application-specific needs. Likewise, we believe that
database replication protocols can achieve better performance if application
knowledge is taken into account. Both protocols presented in this thesis and
the conflict-aware load-balancing techniques are workload-aware, i.e., the SQL
Inspector introduced in Chapter 4 allows to exploit application specific infor-
mation to improve the overall performance of the system. A more thorough
evaluation of load-balancing techniques, for example, with more emphasis on
transaction weight and with different workloads, would allow to take further
conclusions about the approach.

Recovery. The majority of replication protocols rely on the state transfer mech-
anism of group-communication to cope with recovery of failed sites, merging
of partitions, or joining of new sites. Therefore the database sites update and

106 8.2 Future Directions

resynchronize their database copies by copying the entire database state to an-
other site. This consumes time and bandwidth, as normal update operations of
the database system are interrupted. To speed up the recovery process specific
knowledge about transaction profiles may be necessary [Camargos et al., 2009].
It may be interesting to explore further how the SQL Inspector presented in this
thesis can be used to automatically obtain such information.

Adaptability and reconfiguration of the replication protocols. The distribu-
tion of transactions in the workload over time may vary significantly. If the
protocol is tailored for executing one type of transactions, but the mix changes
considerably, the performance of the system may drop dramatically. Replica fail-
ures and recovery may have similar effects. There have been only few works on
self-reconfiguration and adaptability in the area of database replication [Milán-
Franco et al., 2004; Correia et al., 2008; Serrano et al., 2008]. Design and
evaluation of the protocols able to react to different changes in the system (e.g.,
reconfiguration, workload) seems to be an interesting and relevant problem.

Practical partial replication. Both vDBSM and BaseCON were designed to
cope with full replication only. Although the original DBSM has been previously
extended to support partial replication [Sousa et al., 2001; Schiper et al., 2006],
the proposed solutions build on the strong assumption that transactions can al-
ways execute locally at one database site. It would be worth investigating if our
workload characterization techniques can help porting BaseCON and vDBSM to
partial replication environments, where no restrictions on data placements are
applied.

Snapshot Isolation and partial replication. In Chapter 7 we have presented
a probabilistic model of transaction abort rates in partially replicated systems,
reasoning about the usage of snapshot isolation in such environments. Snap-
shot isolation was originally introduced as a correctness criterion for centralized
databases [Berenson et al., 1995], later formalized for replicated environments
by Lin et al. [2005], and extended further to better fit replication in [Elnikety
et al., 2005]. We believe that partial replication requires yet another extension
of SI: existing definitions may forbid some execution histories which may be
acceptable, e.g., from the client point of view. In partial replication setting, it
may be worth recalling and investigating further the Forward Consistent View
introduced by Adya [1999].

Bibliography

Adya, A. [1999]. Weak Consistency: A Generalized Theory and Optimistic Imple-
mentations for Distributed Transactions, PhD thesis, Massachusetts Institute of
Technology. 106

Agrawal, D., G.Alonso, Abbadi, A. and I.Stanoi [1997]. Exploiting atomic broad-
cast in replicated databases, Euro-Par’97 : Proceedings of the 3th International
Euro-Par Conference on Parallel Processing. 22, 84

Aguilera, M. K., Chen, W. and Toueg, S. [1998]. Failure detection and consensus
in the crash-recovery model, DISC ’98: Proceedings of the 12th International
Symposium on Distributed Computing, Springer-Verlag, pp. 231–245. 7, 8

Alonso, G. [1997]. Partial database replication and group communication prim-
itives, ERSADS’97: Proceedings of the 2nd European Research Seminar on Ad-
vances in Distributed Systems. 83

Amir, Y. and Tutu, C. [2002]. From total order to database replication, ICDCS
’02: Proceedings of the 22 nd International Conference on Distributed Computing
Systems (ICDCS’02), IEEE Computer Society, Washington, DC, USA, pp. 494 –
506. 14, 22, 56

Amza, C., Cox, A. L. and Zwaenepoel, W. [2005]. A comparative evaluation of
transparent scaling techniques for dynamic content servers, ICDE’05: Proceed-
ings of the 21st International Conference on Data Engineering, pp. 230 – 241.
52

Amza, C., Cox, A. and Zwaenepoel, W. [2003]. Conflict-Aware Scheduling for
Dynamic Content Applications, USITS’03: Proceedings of the 4th USENIX Sym-
posium on Internet Technologies and Systems, pp. 6–12. 15, 35, 52, 81

Armendáriz-Íñigo, J. E., Mauch-Goya, A., de Mendívil, J. R. G. and Muñoz-Escoí,
F. D. [2008]. SIPRe: A partial database replication protocol with SI repli-

107

108 Bibliography

cas, SAC’08: Proceedings of the 23rd ACM Symposium on Applied computing,
pp. 2181–2185. 102

Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E. and O’Neil, P. [1995].
A critique of ANSI SQL isolation levels, Proceedings of ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 1 – 10. 9, 11, 57, 106

Bernabé-Gisbert, J. M., Zuikevičiūtė, V., Muñoz-Escoí, F. D. and Pedone, F.
[2008]. A probabilistic analysis of snapshot isolation with partial replica-
tion, SRDS’08: Proceedings of 27th IEEE International Symposium on Reliable
Distributed Systems, IEEE, pp. 249–258.

Bernstein, P., Hadzilacos, V. and Goodman, N. [1987]. Concurrency Control and
Recovery in Database Systems, Addison-Wesley. 9, 10, 13, 20, 55, 56

Camargos, L. J., Pedone, F. and Wieloch, M. [2007]. Sprint: a middleware for
high-performance transaction processing, Proceeding of EuroSys, pp. 385–398.
101

Camargos, L., Pedone, F., Pilchin, A. and Wieloch, M. [2009]. Optimistic recov-
ery in middleware storage systems, Technical Report 2009/03, University of
Lugano. 106

Cecchet, E., Marguerite, J. and Zwaenepoel, W. [2004]. C-JDBC: Flexible
database clustering middleware, USENIX’04: Proceedings of USENIX Annual
Technical Conference, Freenix track, pp. 9–18. 2, 22, 36, 52, 101, 102

Chandra, T. D. and Toueg, S. [1996]. Unreliable failure detectors for reliable
distributed systems, Journal of the ACM 43(2). 8

Correia, A. J., Pereira, J. and Oliveira, R. [2008]. Akara: A flexible clustering
protocol for demanding transactional workloads, OTM’08: On the Move to
Meaningful Internet Systems, Adaptive Distributed Systems, pp. 691–708. 106

Correia, A. J., Sousa, A., Soares, L., J.Pereira, Moura, F. and Oliveira, R. [2005].
Group-based replication of on-line transaction processing servers, LADC’05:
Proceedings of Second Latin American Symposium on Dependable Computing,
pp. 245–260. 2

Coulon, C., Pacitti, E. and Valduriez, P. [2005]. Consistency management for
partial replication in a high performance database cluster, ICPADS’05: Pro-
ceeding of 11th International Conference on Parallel and Distributed Systems,
pp. 809–815. 2, 101

109 Bibliography

Daudjee, K. and Salem, K. [2004]. Lazy database replication with ordering
guarantees, ICDE’04: Proceedings of the 20th International Conference on Data
Engineering, pp. 424–430. 56, 80

Daudjee, K. and Salem, K. [2006]. Lazy database replication with snapshot
isolation, VLDB’06: Proceedings of the 32nd International Conference on Very
Large Databases, pp. 715 – 726. 80

Delporte-Gallet, C. and Fauconnier, H. [2000]. Fault-tolerant genuine atomic
multicast to multiple groups, OPODIS’00: Proceedings of the 4th International
Conference on Principles of Distributed Systems, Suger, Saint-Denis, rue Catuli-
enne, France, pp. 107–122. 12

Elnikety, S., Dropsho, S. and Pedone, F. [2006]. Tashkent: Uniting Durability
with Transaction Ordering for High-Performance Scalable Database Replica-
tion, Proceedings of EuroSys, pp. 117 – 130. 15, 22, 23

Elnikety, S., Dropsho, S. and Zwaenepoel, W. [2007]. Tashkent+: Memory-
aware load balancing and update filtering in replicated databases, Proceeding
of EuroSys, pp. 399 – 412. 52, 102

Elnikety, S., Zwaenepoel, W. and Pedone, F. [2005]. Database replication using
generalized snapshot isolation, SRDS’05: Proceedings of the 24th IEEE Sympo-
sium on Reliable Distributed Systems, pp. 73– 84. 10, 80, 106

Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P. and Shasha, D. [2005]. Making
snapshot isolation serializable, ACM Transactions on Database Systems . 16

Fritzke, U. J. and Ingels, P. [2001]. Transactions on partially replicated data
based on reliable and atomic multicasts, ICDCS’01: Proceeding of 21st Interna-
tional Conference on Distributed Computing Systems, pp. 284–291. 101

Gray, J., Helland, P., O’Neil, P. and Shasha, D. [1996]. The dangers of replication
and a solution, SIGMOD Rec. 25(2): 173–182. 21, 57, 84, 87, 88, 89, 94

Gray, J. and Reuter, A. [1993]. Transaction Processing: concepts and techniques,
Morgan Kaufmann Publishers. 26, 27, 28

Holliday, J., Agrawal, D. and Abbadi, A. E. [2002]. Partial database replication
using epidemic communication, ICDCS’02: Proceedings of the 22nd Interna-
tional Conference on Distributed Computing Systems, pp. 485–493. 101

110 Bibliography

Irún-Briz, L., Decker, H., de Juan, R., Castro-Company, F., Armendáriz-Íñigo, J. E.
and Muñoz-Escoí, F. D. [2005]. MADIS: A slim middleware for database repli-
cation, Euro-Par’05: Proceedings of the 11th International Euro-Par Conference,
pp. 349–359. 14, 23

Jorwekar, S., Fekete, A., Ramamritham, K. and Sudarshan, S. [2007]. Automat-
ing the detection of snapshot isolation anomalies, VLDB ’07: Proceedings of the
33rd International Conference on Very Large Data Bases, pp. 1263–1274. 36

JSqlParser [2008].
URL: http://sourceforge.net/projects/jsqlparser 30

Kemme, B. [2000]. Database Replication for Clusters of Workstations, PhD thesis,
Swiss Federal Institute of Technology Zürich, Switzerland. 101

Kemme, B. and Alonso, G. [2000]. Don’t be lazy, be consistent: Postgres-R, a
new way to implement database replication, VLDB’00: Proceedings of the 26th
International Conference on Very Large Databases, pp. 134 – 143. 22

Kemme, B., Pedone, F., Alonso, G. and Schiper, A. [1999]. Processing trans-
actions over optimistic atomic broadcast protocols, ICDCS’99: Proceedings of
19th International Conference on Distributed Computing Systems, pp. 424–431.
21

Kemme, B., Pedone, F., Alonso, G., Schiper, A. and Wiesmann, M. [2003]. Using
optimistic atomic broadcast in transaction processing systems, IEEE Transac-
tions on Knowledge and Data Engineering 15(4): 1018–1032. 22

Lin, Y., Kemme, B., Patiño-Martínez, M. and Jiménez-Peris, R. [2005]. Middle-
ware based data replication providing snapshot isolation, Proceedings of the
2005 ACM SIGMOD International Conference on Management of data, pp. 419–
430. 2, 10, 14, 15, 22, 23, 80, 106

Milán-Franco, J. M., Jiménez-Peris, R., Patiño-Martínez, M. and Kemme, B.
[2004]. Adaptive middleware for data replication, Middleware’04: Proceedings
of the 5th ACM/IFIP/USENIX International Conference on Middleware, pp. 175–
194. 52, 106

Muñoz-Escoí, F. D., Pla-Civera, J., Ruiz-Fuertes, M. I., Irún-Briz, L., Decker,
H., Armendáriz-Íñigo, J. E. and de Mendívil, J. R. G. [2006]. Managing
transaction conflicts in middleware-based database replication architectures,
SRDS’06: Proceedings of the 25th IEEE Symposium on Reliable Distributed Sys-
tems, pp. 401–410. 2, 23

111 Bibliography

MySQL 5.0 Reference Manual [2008].
URL: http://dev.mysql.com/doc/refman/5.0/en/index.html 26

Oliveira, R., Pereira, J., Correia, A. and Archibald, E. [2006]. Revisiting 1-copy
equivalence in clustered databases, SAC’06: Proceedings of the 2006 ACM Sym-
posium on Applied Computing, pp. 728 – 732. 80

Pacitti, E., Coulon, C., Valduriez, P. and Özsu, M. T. [2005]. Preventive replica-
tion in a database cluster, Distributed and Parallel Databases 18: 223 – 251.
15, 23

Patiño-Martínez, M., Jiménez-Peris, R., Kemme, B. and Alonso, G. [2000]. Scal-
able replication in database clusters, DISC ’00: Proceedings of the 14th Inter-
national Conference on Distributed Computing, pp. 315–329. 14, 21, 22, 56

Patiño-Martínez, M., Jiménez-Peris, R., Kemme, B. and Alonso, G. [2005]. Con-
sistent Database Replication at the Middleware Level, ACM Transactions on
Computer Systems . 2, 15, 21, 22, 35, 56, 80

Pedone, F. [1999]. The Database State Machine and Group Communication Issues,
PhD thesis, École Polytechnique Fédérale de Lausanne, Switzerland. 88

Pedone, F. and Frølund, S. [2008]. Pronto: High availability for standard off-the-
shelf databases, Journal of Parallel and Distributed Computing 68(2): 150–164.
2, 22, 56, 57, 80

Pedone, F., Guerraoui, R. and Schiper, A. [1997]. Transaction reordering in
replicated databases, SRDS’97: Proceedings of the 16th IEEE Symposium on
Reliable Distributed Systems. 22

Pedone, F., Guerraoui, R. and Schiper, A. [1998]. Exploiting atomic broadcast
in replicated databases, Euro-Par’98: Proceedings of the 4th International Euro-
Par Conference on Parallel Processing. 22, 56

Pedone, F., Guerraoui, R. and Schiper, A. [2003]. The database state machine
approach, Journal of Distributed and Parallel Databases and Technology 14: 71–
98. 13, 14, 22, 56, 80

Plattner, C. and Alonso, G. [2004]. Ganymed: scalable replication for
transactional web applications, Middleware’04: Proceedings of the 5th
ACM/IFIP/USENIX International Conference on Middleware, pp. 155 – 174. 2,
14, 15, 52, 80

112 Bibliography

Rodrigues, L., Miranda, H., Almeida, R., Martins, J. and Vicente, P. [2002]. The
GlobData fault-tolerant replicated distributed object database, Proceedings of
the 1st Eurasian Conference on Advances in Information and Communication
Technology. 2, 22, 56, 80

Salas, J., Jiménez-Peris, R., Patiño-Martínez, M. and Kemme, B. [2006].
Lightweight reflection for middleware-based database replication, SRDS’06:
Proceedings of the 25th IEEE Symposium on Reliable Distributed Systems,
pp. 377 – 390. 36

Schenkel, R., Weikum, G., Weißenberg, N. and Wu, X. [1999]. Federated trans-
action management with snapshot isolation, Proceedings of the 8th Interna-
tional Workshop on Foundations of Models and Languages for Data and Objects
- Transactions and Database Dynamics ’99, pp. 1–25. 84

Schiper, N., Schmidt, R. and Pedone, F. [2006]. Optimistic algorithms for partial
database replication, OPODIS’06: Proceedings of the 10th International Confer-
ence on Principles of Distributed Systems, pp. 81–93. 2, 101, 106

Schneider, F. B. [1990]. Implementing fault-tolerant services using the state
machine approach: A tutorial, ACM Computing Surveys 22(4): 299–319. 11

Serrano, D., Patiño-Martínez, M., Jiménez-Peris, R. and Kemme, B. [2007].
Boosting database replication scalability through partial replication and 1-
copy-snapshot-isolation, PRDC’07: Proceedings of the 13th Pacific Rim Inter-
national Symposium on Dependable Computing, pp. 290–297. 102

Serrano, D., Patiño-Martínez, M., Jiménez-Peris, R. and Kemme, B. [2008]. An
autonomic approach for replication of internet-based services, SRDS’08: Pro-
ceedings of 27th IEEE International Symposium on Reliable Distributed Systems,
pp. 127–136. 106

Sethi, R. [1982]. Useless actions make a difference: Strict serializability of
database updates, Journal of the ACM 29(2): 394–403. 56

Sousa, A., Pedone, F., Moura, F. and Oliveira, R. [2001]. Partial replication
in the database state machine, NCA’01: Proceedings of the IEEE International
Symposium on Network Computing and Applications, pp. 298–309. 2, 83, 85,
101, 106

Stonebraker, M., Madden, S., Abadi, D. J., Harizopoulos, S., Hachem, N. and
Helland, P. [2007]. The end of an architectural era: (it’s time for a complete

113 Bibliography

rewrite), VLDB ’07: Proceedings of the 33rd international conference on Very
large data bases, pp. 1150–1160. 3, 105

The DaisyLib/Fractal project [2007]. http://daisylib.sourceforge.net/. 46

TPC [2001]. TPC benchmark W. Standard Specification.
http://www.tpc.org/tpcw/spec/. 29, 33

TPC [2005]. TPC benchmark C. Standard Specification.
http://www.tpc.org/tpcc/spec/. 29, 33, 93

Wiesmann, M., Pedone, F., Schiper, A., Kemme, B. and Alonso, G.
[2000a]. Database replication techniques: a three parameter classification,
SRDS’00:Proceedings the 19th IEEE Symposium on Reliable Distributed Systems,
pp. 206–215. 57

Wiesmann, M., Pedone, F., Schiper, A., Kemme, B. and Alonso, G. [2000b]. Un-
derstanding replication in databases and distributed systems, ICDCS’00: Pro-
ceedings of the 20th International Conference on Distributed Computing Systems,
pp. 464–474. 57

Wu, S. and Kemme, B. [2005]. Postgres-R(SI):combining replica control with
concurrency control based on snapshot isolation, ICDE’05: Proceedings of the
IEEE International Conference on Data Engineering, pp. 134 – 143. 22, 80

Zuikevičiūtė, V. and Pedone, F. [2005]. Revisiting the Database State Machine
Approach, WDIDDR’05: Proceedings of VLDB Workshop on Design, Implementa-
tion, and Deployment of Database Replication, pp. 1–7.

Zuikevičiūtė, V. and Pedone, F. [2006]. Conflict-Aware Load-Balancing Tech-
niques for Database Replication, Technical Report 2006/01, University of
Lugano.

Zuikevičiūtė, V. and Pedone, F. [2008a]. Conflict-Aware Load-Balancing Tech-
niques for Database Replication, SAC’08: Proceedings of ACM Symposium on
Applied Computing, Dependable and Adaptive Distributed Systems Track, ACM
Press, pp. 2168–2173.

Zuikevičiūtė, V. and Pedone, F. [2008b]. Correctness Criteria for Database Repli-
cation: Theoretical and Practical Aspects, DOA’08: Proceedings of 10th In-
ternational Symposium on Distributed Objects, Middleware, and Applications,
Springer Verlag 2008.

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Contributions
	Thesis Outline

	System Model and Definitions
	Model
	Database and Transactions
	Consistency Criteria
	Serializability
	Snapshot Isolation

	State Machine Replication
	Total-Order Broadcast and Multicast

	Replication Made Simple
	Revisiting the Database State Machine Approach
	Deferred-Update Replication
	DBSM

	DBSM or Readsets-free Certification
	Multiversion Database State Machine
	Proof of Algorithm Correctness

	Related Work and Final Remarks

	Workload Characterization Techniques
	SQL Statements Inspection
	Locking in MySQL InnoDB
	DML
	DDL
	The SQL Inspector

	Analysis of the Benchmarks
	TPC-W
	TPC-C
	Accuracy of the SQL Inspector

	Related Work and Final Remarks

	Conflict-Aware Load-Balancing Techniques
	Minimizing Conflicts and Maximizing Parallelism
	Static vs. Dynamic Load Balancing
	Analysis of the Benchmarks
	A Simple Example
	Scheduling TPC-C

	Evaluation
	Prototype Overview
	Experimental Setup
	Throughput and Response Time
	Abort Rate Breakdown

	Related Work and Final Remarks

	The Cost of Correctness Criteria for Non-Intrusive Database Replication
	Correctness Criteria
	Replication Protocols
	Primary-Backup Replication
	Optimistic Update Everywhere Replication
	Pessimistic Update Everywhere Replication

	BaseCON
	One-Copy Serializability
	Session Consistency
	Strong Serializability
	Proofs of Correctness

	Evaluation
	Experimental Environment
	Performance Results

	Related Work and Final Remarks

	Partial Database Replication
	Distributed Transactions in Partial Replication
	Simple Probabilistic Analysis
	Replication Model
	Analytical Model

	Analytical Evaluation
	Objectives
	Parameter Values
	Standalone vs. Fully Replicated System
	Two Data Versions are Sufficient to Eliminate Execution Aborts
	The Impact of Read-Only Transactions
	Adding Database Sites to the System
	The Effects of the Load, the Number of Operations and the Database Size
	The Environments Beneficial to SI Version-Based Systems

	 Related Work and Final Remarks

	Conclusions
	Contributions
	Future Directions

	Bibliography

